Keywords: aggregates, European Standards, construction materials, TEE.



Σχετικά έγγραφα
ΠΡΟΣΩΡΙΝΕΣ ΕΘΝΙΚΕΣ ΤΕΧΝΙΚΕΣ ΠΡΟ ΙΑΓΡΑΦΕΣ

; +302 ; +313; +320,.

Math 6 SL Probability Distributions Practice Test Mark Scheme

Other Test Constructions: Likelihood Ratio & Bayes Tests

Η ΕΠΙΔΡΑΣΗ ΤΗΣ ΑΙΘΑΝΟΛΗΣ,ΤΗΣ ΜΕΘΑΝΟΛΗΣ ΚΑΙ ΤΟΥ ΑΙΘΥΛΟΤΡΙΤΟΤΑΓΗ ΒΟΥΤΥΛΑΙΘΕΡΑ ΣΤΙΣ ΙΔΙΟΤΗΤΕΣ ΤΗΣ ΒΕΝΖΙΝΗΣ

Χρήση Ανακυκλωµένων Τούβλων ως Αδρανών Σκυροδέµατος Use of recycled clay bricks as concrete aggregates

ΤΙΤΛΟΣ ΜΕΛΕΤΗΣ : ΠΡΟΜΗΘΕΙΑ ΑΣΦΑΛΤΟΥ ΑΣΦΑΛΤΟΜΙΓΜΑΤΟΣ ΑΔΡΑΝΩΝ ΥΛΙΚΩΝ ΑΡΙΘΜΟΣ ΜΕΛΕΤΗΣ : Π8/2011 : ΙΔΙΟΙ ΠΟΡΟΙ ΧΡΗΜΑΤΟΔΟΤΗΣΗ

GS3. A liner offset equation of the volumetric water content that capacitance type GS3 soil moisture sensor measured

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Διπλωματική Εργασία. Μελέτη των μηχανικών ιδιοτήτων των stents που χρησιμοποιούνται στην Ιατρική. Αντωνίου Φάνης

Γεώργιος ΡΟΥΒΕΛΑΣ 1, Κων/νος ΞΗΝΤΑΡΑΣ / ΑΓΕΤ ΗΡΑΚΛΗΣ 2, Λέξεις κλειδιά: Αδρανή, άργιλος, ασβεστολιθική παιπάλη, ισοδύναμο άμμου, μπλε του μεθυλενίου

Biodiesel quality and EN 14214:2012

ΤΜΗΜΑ ΦΥΣΙΚΩΝ ΠΟΡΩΝ & ΠΕΡΙΒΑΛΛΟΝΤΟΣ

Quantitative chemical analyses of rocks with X-ray fluorescence analyzer: major and trace elements in ultrabasic rocks

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

Μηχανική Μάθηση Hypothesis Testing

The Simply Typed Lambda Calculus

ΠΕΡΙΕΧΟΜΕΝΑ. Κεφάλαιο 1: Κεφάλαιο 2: Κεφάλαιο 3:

Conductivity Logging for Thermal Spring Well

Si + Al Mg Fe + Mn +Ni Ca rim Ca p.f.u

Figure 3 Three observations (Vp, Vs and density isosurfaces) intersecting in the PLF space. Solutions exist at the two indicated points.


Λέξεις κλειδιά: Αδρανή, αποσάθρωση, κρυστάλλωση αλάτων

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Thin Film Chip Resistors

Αικατερίνη ΜΗΛΙΟΠΟΥΛΟΥ 1

TABLE OF CONTENT. Chapter Content Page

Capacitors - Capacitance, Charge and Potential Difference

2 Composition. Invertible Mappings

ΑΚΑ ΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΘΕΜΑ : ΧΗΜΙΚΑ ΠΡΟΣΘΕΤΑ ΠΟΥ ΠΡΟΟΡΙΖΟΝΤΑΙ ΓΙΑ ΤΟ ΝΕΡΟ ΤΟΥ ΑΤΜΟΛΕΒΗΤΑ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ

EE512: Error Control Coding

ΥΠΟΚΑΤΑΣΤΑΣΗ ΦΑΡΙΝΑΣ ΤΣΙΜΕΝΤΟΥ ΑΠΟ ΑΝΑΚΥΚΛΩΜΕΝΑ ΥΛΙΚΑ ΚΑΤΕ ΑΦΙΣΗΣ ΚΤΙΡΙΩΝ

Reminders: linear functions

SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Section 8.3 Trigonometric Equations

Instruction Execution Times

Υλικά Σκυροδέµατος Οδοστρωµάτων απέδων: Αδρανή

Repeated measures Επαναληπτικές μετρήσεις

ΚΑΝΟΝΙΣΤΙΚΟ ΠΛΑΙΣΙΟ ΓΙΑ ΤΗ ΧΡΗΣΗ ΒΙΟΜΗΧΑΝΙΚΩΝ ΠΑΡΑΠΡΟΪΟΝΤΩΝ ΧΑΛΥΒΟΥΡΓΙΑΣ ΩΣ ΑΔΡΑΝΩΝ ΓΙΑ ΤΗΝ ΠΑΡΑΣΚΕΥΗ ΣΚΥΡΟΔΕΜΑΤΟΣ

Matrices and Determinants

Calculating the propagation delay of coaxial cable

Inverse trigonometric functions & General Solution of Trigonometric Equations

«ΑΓΡΟΤΟΥΡΙΣΜΟΣ ΚΑΙ ΤΟΠΙΚΗ ΑΝΑΠΤΥΞΗ: Ο ΡΟΛΟΣ ΤΩΝ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΣΤΗΝ ΠΡΟΩΘΗΣΗ ΤΩΝ ΓΥΝΑΙΚΕΙΩΝ ΣΥΝΕΤΑΙΡΙΣΜΩΝ»

Η σήµανση СЄ στα αδρανή υλικά

Assalamu `alaikum wr. wb.

Fractional Colorings and Zykov Products of graphs

Section 9.2 Polar Equations and Graphs

the total number of electrons passing through the lamp.

Approximation of distance between locations on earth given by latitude and longitude

Finite Field Problems: Solutions

Correction Table for an Alcoholometer Calibrated at 20 o C

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Isotopic and Geochemical Study of Travertine and Hot Springs Occurring Along the Yumoto Fault at North Coast of the Oga Peninsula, Akita Prefecture

Αξιολόγηση των Φασματικού Διαχωρισμού στην Διάκριση Διαφορετικών Τύπων Εδάφους ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Σπίγγος Γεώργιος

ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «ΘΕΜΑ»

Μειέηε, θαηαζθεπή θαη πξνζνκνίσζε ηεο ιεηηνπξγίαο κηθξήο αλεκνγελλήηξηαο αμνληθήο ξνήο ΓΗΠΛΩΜΑΣΗΚΖ ΔΡΓΑΗΑ

Statistical Inference I Locally most powerful tests

Na/K (mole) A/CNK

E#ects of Drying on Bacterial Activity and Iron Formation in Acid Sulfate Soils

[1] P Q. Fig. 3.1

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Congruence Classes of Invertible Matrices of Order 3 over F 2

EPL 603 TOPICS IN SOFTWARE ENGINEERING. Lab 5: Component Adaptation Environment (COPE)

2R2. 2 (L W H) [mm] Wire Wound SMD Power Inductor. Nominal Inductance Packing Tape & Reel. Design Code M ±20%

Αξιοποίηση σκωριών EAFS ως πρόσθετο υλικό για την παραγωγή τσιμέντων τύπου Portland

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ

Strain gauge and rosettes

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Problem Set 3: Solutions

Πτυχιακή Εργασία. Παραδοσιακά Προϊόντα Διατροφική Αξία και η Πιστοποίηση τους

derivation of the Laplacian from rectangular to spherical coordinates

ΠΑΡΑΜΕΤΡΟΙ ΕΠΗΡΕΑΣΜΟΥ ΤΗΣ ΑΝΑΓΝΩΣΗΣ- ΑΠΟΚΩΔΙΚΟΠΟΙΗΣΗΣ ΤΗΣ BRAILLE ΑΠΟ ΑΤΟΜΑ ΜΕ ΤΥΦΛΩΣΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Supplementary Information 1.

PRODUCT IDENTIFICATION SWPA 3012 S 1R0 N T

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΠΡΕΣΒΕΙΑ ΤΗΣ ΕΛΛΑΔΟΣ ΓΡΑΦΕΙΟ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΕΜΠΟΡΙΚΩΝ ΥΠΟΘΕΣΕΩΝ ΑΔΙΑΒΑΘΜΗΤΟ ΚΑΝΟΝΙΚΟ


ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΠΟΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΒΙΟΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΣΤΗΜΗΣ ΤΡΟΦΙΜΩΝ. Πτυχιακή εργασία

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Homework 3 Solutions

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΣΕΞΟΥΑΛΙΚΗΣ ΔΡΑΣΤΗΡΙΟΤΗΤΑΣ ΤΩΝ ΓΥΝΑΙΚΩΝ ΚΑΤΑ ΤΗ ΔΙΑΡΚΕΙΑ ΤΗΣ ΕΓΚΥΜΟΣΥΝΗΣ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ

ΑΓΓΛΙΚΑ Ι. Ενότητα 7α: Impact of the Internet on Economic Education. Ζωή Κανταρίδου Τμήμα Εφαρμοσμένης Πληροφορικής

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

Thin Film Chip Resistors

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Σχέση στεφανιαίας νόσου και άγχους - κατάθλιψης

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

Transcript:

Crushed limestone aggregates for concrete and masonry: Results from tests according to EN 12640, EN 13043, EN 13242, and EN 13139 standards. Dimitris Xirouchakis, Alexis Theodoropoulos Keywords: aggregates, European Standards, construction materials, TEE. ΠΕΡΙΛΗΨΗ: Τα θραυστά ασβεστολιθικά αδρανή αποτελούν την κύρια πηγή αδρανών για την βιοµηχανία παραγωγής σκυροδέµατος, κονιαµάτων, ασφαλτικών µιγµάτων και αδρανών οδοποιίας στην Ελλάδα. Ιστορικά, οι δοκιµές ελέγχου των αδρανών και οι εθνικές προδιαγραφές βασίστηκαν σε διεθνή πρότυπα, π.χ., ASTM International & AASHTO. Το πλαίσιο ελέγχου και πιστοποίησης της παραγωγής αδρανών στην Ελλάδα όπως και στην υπόλοιπη ΕΕ έχει αλλάξει µε την ενεργοποίηση των Ευρωπαϊκών Προτύπων. Στα πλαίσια ελέγχων και πιστοποιήσεων λατοµείων του Ελληνικού χώρου συνεχίζουµε την συλλογή και αξιολόγηση των γεωµετρικών, φυσικών, χηµικών και µηχανικών χαρακτηριστικών θραυστών ασβεστολιθικών αδρανών από διάφορα λατοµεία της ηπειρωτικής και νησιωτικής χώρας εκτός Ιονίων νήσων. Εδώ παρουσιάζουµε τα αποτελέσµατα των δοκιµών αρχικού τύπου για τον έλεγχο της παραγωγής αδρανών σκυροδέµατος και κονιαµάτων. Οι δοκιµές αφορούν υλικά µε τις κοινές εµπορικές ονοµασίες: 1) χαλίκι 2) ψηφίδα / γαρµπίλι και 3) άµµος. Εκτός µερικών (π.χ., αλκαλοπυριτική αντίδραση, χηµικοί προσδιορισµοί), οι δοκιµές εκτελέστηκαν σύµφωνα µε τα πρότυπα που αναφέρονται στα στα ΕΝ 12620:2002, EN 13043:2002/AC:2004, EN 13242:2002/AC:2004 και EN 13139:2002 και τα αποτελέσµατα συνοψίζονται παρακάτω. ABSTRACT: Crushed limestone aggregates are the main source of aggregates in the Greek Construction industry. Historically, testing followed the ASTM International and AASHTO standard test methods. In light of the changes across EU concerning the implementation of EN standard test methods as well as the legal and technical framework for construction products bearing the CE mark, we have been testing, collecting, and evaluating limestone aggregate testing data from quarries across Greece. Here we present an initial assessment of a small data set and the correlations observed. 1 Geologist, MSc., PhD, GeoTerra Ltd, Geomechanics & Quality Control Laboratory, 12 Anthrakorichon Street, 142 35 Nea Ionia, dxirouch@gmail.com 2 Mining Metallurgical Engineer, MSc., A. Theodoropoulos P. Moskofoglou Partners. Q4U Consulting Engineers, 14 Patission Street 14, 106 77 Athens, a.theodoropoulos@q4u.gr 1

INTRODUCTION We present the results from initial type testing of limestone aggregates according to EN standard methods which are referenced in EN 12640, EN 13043, EN 13242, and EN 13139 standards. Specifically, we have looked at the chemical, physical, and mechanical properties that are of interest to the construction materials industry. Our goal is to contribute towards a critically assessed data base of limestone aggregates properties as established with these methods in light of their widespread usage in Greece, particularly, and elsewhere in general. We used limestone aggregate samples from quarries located in the main land and the islands. The samples primarily represent deep and shallow sea Mesozoic limestones (Eldridge and Fairbridge 1997) with samples from central Greece and the islands exhibiting variable degrees of re-crystallization. Testing was mainly performed in two ISO 17025 accredited testing laboratories located in Athens. The results represent a self-consistent data set whereas data accuracy is secured through the interlaboratory testing programs of the respective laboratories. Chemistry DISCUSSION Chemically the samples cover the range from low quality (CaCO 3 is 85,0 93,5%) to highly pure limestones (CaCO 3 >98,5%) (Table 1). Preliminary powder XRD data indicate that they contain calcite (95,7 99,5%), dolomite (0,8 3,3%), and <1% iron oxides, iron sulfides, quartz and phyllosilicate minerals. Heavy metals (Table 2) were either not detected or detected at levels that are typical of marine carbonates globally (Turekian and Wedepohl, 1961). Alkali-Silica reactivity analyses show that reaction between alkalis and silica of limestone aggregates and cement in concrete this should not be a problem with the type of aggregates examined here (Table 3); all alkalinity and silica concentration analyses plot on the field of harmless aggregates (ASTM C 289, fig. 1). However, we do lack data in Greece to judge the reaction potential for alkalis and carbonate minerals in concrete. Furthermore, polyaromatic hydrocarbons were not detected and the radioactive decay measurements of isotopes such Ra 226, Ra 228, Th 228, Th 232, U 238 and K 40 are at innocuous levels (EU Council Directive 96/29/EURATOM 31/5/1996). Geometrical, physical, and mechanical properties Sand sieve analyses (Fig. 1) show that the all grains pass through the 8 mm sieve with D max between 4 and 8 mm, and exhibit a fairly wide range of values in between the 8 mm 2

and 63 µm sieves. Sand fines content is between 7 and 20%. The crushed limestone sands examined are devoid of organic substances such as humus and fulvic acid, moreover, their lightweight contaminants and water soluble components are negligible. The quality of fines (MB, SE), angularity (E cs ), durability (MS), and water absorption (WA 24 ) behavior is deemed more than satisfactory (Table 4). Mean apparent dry density values for sand as well as for fine and coarse gravel confirm the mineralogy data as they are much closer to that of pure calcite (CaCO 3 ) 2,71 g/cm 3 and much less to that of dolomite (CaMg(CO 3 ) 2 ) 2,85 g/cm 3 or any of the other carbonate minerals, i.e., siderite (FeCO 3 ) 3,87 g/cm 3, magnesite (MgCO 3 ) 3,0 g/cm 3, ankerite (CaFe(CO 3 ) 2 ) 3,2 g/cm 3. We take fine gravel to mean aggregates with D max equal to 12,5 with a range between 12,5 and 16, mm, and coarse gravel aggregates with D max equal to 31,5 (Fig. 1, 3, and 4). Other than that the physical and mechanical properties values of the two fractions are unsurprisingly close (Table 6 and 8) as these properties strongly depend on mineralogy and rock texture. For the interested reader, we note that ASTM and EN Los Angeles tests on the same material differ by two units with the ASTM LA value lower than the EN LA value. Correlations Meaningful correlations among physical and mechanical properties of sand arise in a few cases (Table 5). There is a positive correlation between MB and E cs values that may suggest that clay-size material or clays may inhibit flow of sand grains. The correlation between ρ α and E cs was anticipated since the E cs calculation is based on density. A close relationship between MB and SE did not materialize in these types of aggregates as they are generally devoid of clay-size or clay materials. However, if we include in the data set MB and SE values from all-in aggregates which are used in road pavement construction then the correlation becomes stronger as the data cover a greater range of values (Fig. 2). For fine and coarse gravel, significant (i.e. correlation coefficient > 0,5 ) and common in both aggregate types correlations are observed between the following pairs of tests: MS and V LA, MD E and LA, FI and SI (Table 7 and 9). The correlation between MS and V LA is surprising and needs further investigation as we have not seen it in the literature. Nonetheless, the strong relationships between these three pairs of tests suggest that it may be advantageous to use them as discriminant constraints of aggregate quality (Fig. 5, 6, and 7); aggregates falling in the lower right quadrangle should have a better overall behavior overtime. We do not find for limestone aggregates a statistically significant relationship between either water absorption or silica content and wet Micro-Deval test results as seen in Brennan et al. (2003) for igneous aggregates. In contrast, the data agree 3

with the Pétursson s conclusions (2000) regarding the strong correlation between FI and SI values in Icelandic, presumably, basaltic aggregates. REFERENCES ASTM C289, Standard Test Method for Potential Alkali-Silica Reactivity of Aggregates (Chemical Method), ASTM International, West Conshohocken, PA, (2007). Brennan, M.J., Crawley, K., Sheahan, J.N., and Jordan, J., Ranking the performance of aggregates using CEN test results, Road Materials and Pavement Design, Vol. 4, No4, 439 454, (2003). Moores, E.M., Fairbridge, R.W., Encyclopedia of European and Asian regional geology, Springer, (1997). European Aggregates Association Annual Report, http://www.uepg.eu/uploads/documents/pub-15_en-uepg_-_ar2007_en.pdf, (2007) EN 12620, Aggregates for concrete, (2008). EN 13043, Aggregates for bituminous mixtures and surface treatments for roads, airfields and other trafficked areas, (2002). EN 13139, Aggregates for mortar, (2002). EN 13242, Aggregates for unbound and hydraulically bound materials for use in civil engineering work and road construction, (2008). Harrison, D.J., Industrial Minerals: Limestone, British Geological Survey Technical Report WG/92/29, (1993). Lorenz, W. and Gwosdz, W., Manual of the Geotechnical Assessment of Mineral Construction Material, Geologisches Jahrbuch Sonderhefte, Reihe H, Heft SH 15, Hannover, (2003). Pétursson Pétur, Testing of the aggregate bank with two CEN methods, MDE and FI, Public Roads Administration, Report E-38, Reykjavic, (2000). Turekian, K.K. and Wedepohl, K.H., Distribution of the Elements in some major units of the Earth's crust, Geological Society of America, Bulletin 72: 175-192, (1961). US Geological Survey Minerals Yearbook, http://minerals.usgs.gov/minerals/pubs, (2007). 4

Table 1. Major and minor oxides Parameter Unit N µ S min max SO -2 4 (water-soluble) 2 nd Cl - 5 0,001 0,001 0,000 0,002 SO -2 3 (acid-soluble) 2 nd PbO 7 0,001 0,000 0,001 0,001 ZnO 11 0,001 0,002 0,000 0,010 P 2 O 5 11 0,073 0,112 0,030 0,295 FeO 5 nd Fe 2 O 3 16 0,074 0,056 0,01 0,28 Na 2 O 16 0,040 0,005 0,03 0,05 K 2 O 15 0,008 0,006 0,00 0,02 SiO 2 16 1,220 0,792 0,22 6,03 Al 2 O 3 16 0,080 0,064 0,02 0,19 MgO 16 0,657 0,633 0,15 2,66 CaO 16 54,0 1,4 50,9 55,4 CO 2 16 42,9 0,9 40,5 43,6 H 2 O 16 0,12 0,03 0,07 0,19 Moisture 16 0,75 1,60 0,07 5,31 Sum 99,9 99,2 100,9 Table 1 (continued). Major and minor oxides Parameter Unit N µ S min max Loss on ignition % 16 43,2 1,2 41,4 46,9 CaCO 3 % CaO in CaCO 3 % Να 2 Ο eq % 16 96,1 2,3 90,8 99,0 16 99,7 1,4 95,4 100,1 16 0,05 0,01 0,03 0,06 Symbols: (n) number of measurements, (µ) average, (s) standard deviation, (min) minimum value, (max) maximum value, (nd) not detected. 5

Table 2. Heavy metals concentration Parameter Unit n µ s min max Co mg/kg 16 0,4 1,2 nd 3,8 Ni mg/kg 14 9,1 13,3 nd 33,5 Cr mg/kg 14 8,4 5,6 nd 22,0 Cd mg/kg 14 0,0 0,2 nd 0,6 Pb mg/kg 14 1,1 2,3 nd 5,8 Sb mg/kg 14 0,1 0,2 nd 0,8 As mg/kg 14 0,4 0,4 nd 1,1 Hg mg/kg 14 0,0 0,0 nd nd Table 3. Alkali-Silica reactivity data Parameter unit n µ s min max S c mmol/l 16 19,0 41,7 0,3 132,0 R c mmol/l 16 956,4 31,2 16,0 1040,0 Silica concentration (S c ). Alkalinity (R c ). Figure 1. Range (solid lines) and mean (heavy solid line) of sand sieve analyses. 6

Table 4. Sand physical and mechanical characteristics Parameter Unit N µ s min max Methylene blue MB g/kg 18 0,5 0,3 0,2 1,2 Sand equivalent SE % Flow coefficient E cs Sec 18 69 6 52 81 17 21 8 14 38 3 18 2,697 0,054 2,522 2,743 Apparent dry density ρ α Mg/m Water absorption (24 h) WA 24 % Mg 2 SO 4 test MS % Lightweight contaminators LPC % Water-soluble constituents WS % 18 0,9 0,1 0,5 1,1 17 3,4 2,1 0,2 7,4 16 0,210 0,524 0,000 1,990 15 0,084 0,154 0,000 0,570 3 18 1,603 0,101 1,372 1,754 Dry bulk density (loose) ρ b Mg/m Table 5. Correlation coefficient matrix for sand properties MB SE E cs ρ α WA 24 MS LPC WS ρ b MB 1,00 SE -0,23 1,00 E cs 0,86-0,10 1,00 ρ α -0,61 0,19-0,78 1,00 WA 24-0,07-0,27 0,15-0,21 1,00 MS 0,40-0,24 0,39-0,25 0,20 1,00 LPC 0,34 0,06 0,49-0,36-0,23 0,03 1,00 WS -0,13-0,23-0,16 0,12-0,42 0,33-0,11 1,00 ρ b -0,01 0,08 0,28-0,36 0,28 0,20-0,30 0,32 1,00 7

Figure 2. Sand Equivalent (SE) and Methylene Blue (MB) relationship among sand from crushed limestone aggregates for use in concrete and road base construction. The heavy solid line is a simple linear fit to the data with solid lines on either side marking the 95% confidence limits of the prediction ability of the equation for this type of aggregates only. Figure 3. Range (solid lines) and mean (heavy solid line) of fine gravel sieve analyses. 8

Table 6. Fine gravel physical and mechanical properties Parameter unit n µ s min max Apparent dry density Water absorption (24 h) WA 24 % Mg 2 SO 4 test MS % Resistance to fragmentation LA % Resistance to wear (wet) MD E % Shape Index SI % Flakiness Index FI % Resistance to thermal shock 3 18 2,704 0,022 2,643 2,746 ρ α Mg/m V LA 18 0,5 0,1 0,3 0,8 17 2,9 2,0 0,4 7,4 18 28,3 4,4 21,0 42,0 18 17,5 6,9 8,5 32,6 17 13,5 7,8 5,1 29,5 18 14,6 5,8 7,7 24,2 16 2,3 1,4 1,0 4,6 3 18 1,393 0,056 1,328 1,505 Dry bulk density (loose) ρ b Mg/m Table 7. Correlation coefficient matrix for fine gravel properties ρ α WA 24 MS LA MD E SI FI V LA ρ b ρ α 1,00 WA 24 0,37 1,00 MS -0,14-0,13 1,00 LA -0,22-0,13 0,06 1,00 MD E 0,16-0,17-0,03 0,59 1,00 SI -0,01-0,20-0,43 0,18 0,19 1,00 FI 0,23 0,12-0,15 0,08-0,10 0,62 1,00 V LA 0,00 0,07 0,95-0,18-0,16-0,55-0,12 1,00 ρ b -0,42 0,64 0,64 0,23-0,26-0,53-0,11 0,52 1,00 9

Figure 4. Range (solid lines) and mean (heavy solid line) of coarse gravel sieve analyses. Table 8. Coarse gravel physical and mechanical properties Parameter unit n µ s min max Apparent dry density 3 18 2,698 0,025 2,611 2,727 ρ α Mg/m Water absorption (24 h) WA 24 % Mg 2 SO 4 test MS % Resistance to fragmentation LA % Resistance to wear (wet) MD E % Shape Index SI % Flakiness Index FI % 18 0,4 0,1 0,3 0,6 17 2,8 2,2 0,1 7,4 18 28,6 5,3 17,0 42,0 18 18,9 7,3 9,9 32,6 16 13,4 5,7 6,0 22,2 18 12,1 4,8 4,8 23,6 Resistance to thermal shock V LA 15 1,9 1,4 0,2 4,6 3 18 1,378 0,050 1,281 1,466 Dry bulk density (loose) ρ b Mg/m 10

Table 9. Correlation coefficient matrix for coarse gravel properties ρ α WA 24 MS LA MD E SI FI V LA ρ b ρ α 1,00 WA 24-0,21 1,00 MS -0,31 0,04 1,00 LA 0,02 0,37 0,27 1,00 MD E 0,22 0,17 0,07 0,56 1,00 SI 0,54-0,44-0,24 0,15 0,36 1,00 FI -0,03-0,30 0,14 0,10 0,09 0,65 1,00 V LA -0,11-0,30 0,76-0,12-0,34-0,26 0,25 1,00 ρ b -0,33-0,20 0,47 0,13-0,16-0,32-0,15 0,53 1,00 Figure 5. Resistance to fragmentation vs. Resistance to wear values. Heavy solid lines represent the respective means. 11

Figure 6. Flakiness index vs. Shape index. Heavy solid lines represent the respective means. Figure 7. Magnesium sulfate vs. Thermal Shock Resistance values. Heavy solid lines represent the respective means. 12