Peptidylarginine deiminase 4

Σχετικά έγγραφα
The effect of curcumin on the stability of Aβ. dimers

a 2,5 b 2,5 upplemental Figure 1 IL4 (4h) in Ja18-/- mice IFN-γ (16h) in Ja18-/- mice 1,5 1,5 ng/ml ng/ml 0,5 0,5 4ClPh PyrC 4ClPh PyrC

Cycloaddition of Homochiral Dihydroimidazoles: A 1,3-Dipolar Cycloaddition Route to Optically Active Pyrrolo[1,2-a]imidazoles

Table S1 Selected bond lengths [Å] and angles [ ] for complexes 1 8. Complex 1. Complex 2. Complex 3. Complex 4. Complex 5.

Supporting Information

C H Activation of Cp* Ligand Coordinated to Ruthenium. Center: Synthesis and Reactivity of a Thiolate-Bridged

Photo-Induced Self-Assembly of Pt(II)-Linked Rings and Cages via the Photolabilization of a Pt(II) Pyridine Bond

Table S1. Summary of data collections and structure refinements for crystals 1Rb-1h, 1Rb-2h, and 1Rb-4h.

IV. ANHANG 179. Anhang 178

College of Life Science, Dalian Nationalities University, Dalian , PR China.

Electronic Supplementary Information (ESI)

Nickel and Platinum PCP Pincer Complexes Incorporating an Acyclic Diaminoalkyl Central Moiety Connecting Imidazole or Pyrazole Rings

Supplementary Materials

Table of Contents 1 Supplementary Data MCD

Malgorzata Korycka-Machala, Marcin Nowosielski, Aneta Kuron, Sebastian Rykowski, Agnieszka Olejniczak, Marcin Hoffmann and Jaroslaw Dziadek

Supporting Information

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

Supporting Information

Multifunctinality and Crystal Dynamics of Highly Stable Porous Metal-Organic Framework [Zn 4 O(NTB) 2 ]

Supporting Information. Research Center for Marine Drugs, Department of Pharmacy, State Key Laboratory

Supporting Information

chlorostibine Iou-Sheng Ke and François P. Gabbai Department of Chemistry, Texas A&M University, College Station, TX

Patrycja Miszczyk, Dorota Wieczorek, Joanna Gałęzowska, Błażej Dziuk, Joanna Wietrzyk and Ewa Chmielewska. 1. Spectroscopic Data.

Manuscript submitted to the Journal of the American Society for Mass Spectrometry, September 2011.

Zebra reaction or the recipe for heterodimeric zinc complexes synthesis

Supporting Information

Electronic supplementary information (ESI) Bodipy functionalized ortho-carborane dyads for low-energy photosensitization

Structural and Physical Basis for Anti-IgE Therapy

Table S1. Neutralization IC 50 and IC 80 Titers (µg/ml) of the Antibody VRC08 against 195 HIV-1 Envpesudoviruses,

Carbohydrates in the gas phase: conformational preference of D-ribose and 2-deoxy-D-ribose

± 20% ± 5% ± 10% RENCO ELECTRONICS, INC.

Nitric oxide (NO) reactivity studies on mononuclear Iron(II) complexes supported by a tetradentate Schiff base Ligand

Supporting Information. Partial thioamide scan on the lipopeptaibiotic trichogin GA IV. Effects on

Hydrologic Process in Wetland

Supporting Information

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Comparison of carbon-sulfur and carbon-amine bond in therapeutic drug: -S-aromatic heterocyclic podophyllum derivatives display antitumor activity

10-π-electron arenes à la carte: Structure. Sr, Ba; n = 6-8) complexes

Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo

Heavier chalcogenone complexes of bismuth(iii)trihalides: Potential catalysts for acylative cleavage of cyclic ethers. Supporting Information

Supplementary Information for

Enantioselective Synthesis of the Anti-inflammatory Agent ( )-Acanthoic Acid

Dipole-Guided Electron Capture Causes Abnormal Dissociations of Phosphorylated Pentapeptides

ELECTRONIC SUPPLEMENTARY MATERIAL-RSC Adv.

Synthesis, Crystal Structure and Supramolecular Understanding of 1,3,5-Tris(1-phenyl-1H-pyrazol-5- yl)benzenes

Engineering Tunable Single and Dual Optical. Emission from Ru(II)-Polypyridyl Complexes. Through Excited State Design

Supporting Information

Supporting Information

1.1 1., Litopenaeus vannamei N- -β-d- NAGase. Asp Glu. K I 9.50 mmol/l mmol/l. Litopenaeus vannamei

Supporting Information To. Microhydration of caesium compounds: Journal of Molecular Modeling

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

Human angiogenin is a potent cytotoxin in the absence of ribonuclease inhibitor

Pyrrolo[2,3-d:5,4-d']bisthiazoles: Alternate Synthetic Routes and a Comparative Study to Analogous Fused-ring Bithiophenes

Supporting Information. Palladium Complexes with Bulky Diphosphine. Synthesis of (Bio-) Adipic Acid from Pentenoic. Acid Mixtures.

Nguyen Hien Trang* **

Supporting Information. Three new high-nuclear transition-metal-substituted

Supporting Information

BIOXHMEIA, TOMOΣ I ΠANEΠIΣTHMIAKEΣ EKΔOΣEIΣ KPHTHΣ ΑΠΕΙΚΟΝΙΣΗ ΜΟΡΙΑΚΩΝ ΔΟΜΩΝ

Supporting Information File 2. Crystallographic data of syn-bis-quinoxaline, 16c CH 3 CO 2 C 2 H 5 ;

; +302 ; +313; +320,.

BIOXHMEIA, TOMOΣ I ΠANEΠIΣTHMIAKEΣ EKΔOΣEIΣ KPHTHΣ ΑΠΕΙΚΟΝΙΣΗ ΜΟΡΙΑΚΩΝ ΔΟΜΩΝ

Electronic Supplementary Information (ESI)

Supporting Information


SUPPORTING INFORMATION TO. On Two Alizarin Polymorphs

Supporting Information. Generation Response. Physics & Chemistry of CAS, 40-1 South Beijing Road, Urumqi , China. China , USA

Improved Peptide and Protein Torsional Energetics with the OPLS-AA Force Field

Supporting Information

ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΣΚΟΥΤΕΛΗ ΑΛΕΞΑΝΔΡΑ

Supplementary Information. Living Ring-Opening Polymerization of Lactones by N-Heterocyclic Olefin/Al(C 6 F 5 ) 3

High mobility group 1 HMG1

E#ects of Drying on Bacterial Activity and Iron Formation in Acid Sulfate Soils

Electronic Supplementary Information

Supporting Information

Tunable Ligand Emission of Napthylsalophen Triple-Decker Dinuclear Lanthanide (III) Sandwich Complexes

ΔΟΜΗ ΠΡΩΤΕΪΝΩΝ II. Σελίδα 1 ΒΙΟΠΛΗΡΟΦΟΡΙΚΗ. Τ. Θηραίου

Fused Bis-Benzothiadiazoles as Electron Acceptors

Electronic Supplementary Information (ESI)

Supporting Information. Pd(0)-Catalyzed Decarboxylative Coupling and Tandem C H Arylation/Decarboxylation for the. Synthesis of Heteroaromatic Biaryls

Electronic Supplementary Information:

ΑΝΤΙΓΡΑΦΗ ΚΑΙ ΕΚΦΡΑΣΗ ΤΗΣ ΓΕΝΕΤΙΚΗΣ ΠΛΗΡΟΦΟΡΙΑΣ

SUPPLEMENTARY MATERIAL

Channels and Monomolecular Nanotubes

Supporting Information

Advances in the study of to0in in halobios

Targeting Bacillus anthracis toxicity with a genetically selected inhibitor of the PA/CMG2

Experimental. Crystal data

Study on the Stability of Insulin Hexamer in Solution by Molecular Dynamics Simulations

Molecular evolutionary dynamics of respiratory syncytial virus group A in

Electrolyzed-Reduced Water as Artificial Hot Spring Water

Table S1. All regions of WCC enrichment at p<0.001 and z score >3.09

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

4 ο ΚΕΦΑΛΑΙΟ. Γ ε ν ε τ ι κ ή

Uncovering the impact of capsule shaped amine-type ligands on. Am(III)/Eu(III) separation

LP N to BD* C-C = BD C-C to BD* O-H = LP* C to LP* B =5.

Studies on the Binding Mechanism of Several Antibiotics and Human Serum Albumin

PROGRESS IN CHEMISTRY. balanol A X Computational Chemistry of Protein Kinase A and Its Inhibitor Balanol

Composition Analysis of Protein and Oil and Amino Acids of the Soybean Varieties in Heilongjiang Province of China

Supplementary Material

Comparison of nutrient components in muscle of wild and farmed groups of Myxocyprinus asiaticus

Transcript:

Peptidylarginine deiminase 4 PAD4,,, Structural basis for Ca 2+ -induced activation of peptidylarginine deiminase 4 (PAD4) and histone N-terminal recognition Kyouhei ARITA, Toshiyuki SHIMIZU, Hiroshi HASHIMOTO, Mamoru SATO International Graduate School of Arts and Sciences, Yokohama City University DNA H2A, H2B, H3, H4 (H2A-H2B) 2 (H3) 2 (H4) 2 H H2A, H2B, H3, H4 N Peptidylarginine deiminase 4 PAD4 Ca 2+ (Fig. 1) PAD 5 PAD1-4, PAD6 PAD4 nuclear localization signal: NLS [1] PAD [2] PAD4 (Fig. 1)[3, 4] H3 Arg17 H4 Arg3 CARM1 (cofactor associated arginine methyltransferase 1) PRMT1 (protein arginine methyltrasnferase 1) [5, 6] PAD4 H3 Arg2, Arg8, Arg17, Arg26 H4 Arg3 H3 Arg17 H4 Arg3 CARM1 PRMT1 CARM1 PRMT1 PAD4 (Fig. 1)[3, 4] PAD4 PAD 1) PAD4 [7] 2) PAD PAD 3) MHC II (HLA-DRB1*0401) 4) PAD [8] PAD4 PAD4 PAD4 PAD4 [9] [10]

Figure 1 Transcriptional regulation by histone arginine citrullination by PAD4 and methylation by CARM1 and PRMT1. PAD4 Ca 2+ PAD4 0.1 M Imidazole ph 8.0, 0.2 M Li 2 SO 4, 8 % PEGMME2000 [11] EMTS Ethyl mercurithiosalicylate), TMLA(Trimethyl lead acetate), KAu(CN) 2, K 2 PtCl 4, LuCl 3 MIRAS Ca 2+ PAD4 Ca 2+ PAD4- benzoyl L-arginine amide: BA PAD4 C645A Ca 2+ Ca 2+ BA PAD4 C645A [Ca 2+ PAD4(C645A)] Ca 2+ PAD4 PAD4- Ca 2+ PAD4 C645A Ca 2+ H3 Arg8 H3 Arg17 H4 Arg3 Table 1 Fig. 2a PAD4 PAD4 2 N (N-terminal domain) C (C-terminal domain) Ca 2+ Ca 2+ PAD4 Ca 2+ PAD4- BA 5 3 N 2 Table 1. Crystallographic data, and data collection and refinement statistics Ca 2+- free Ca 2+ -bound BA Peptide H3-1 Peptide H3-2 Peptide H4 PAD4 PAD4 Complex Complex Complex Complex Crystallographic data and data collection statistics Space group C2 C2 C2 C2 C2 C2 Cell dimensions a (Å) 144.6 146.4 146.1 146.3 146.1 146.2 b (Å) 60.4 60.1 60.0 60.8 60.1 60.6 c (Å) 113.4 115.3 115.4 115.1 115.7 115.2 ß ( ) 123.6 124.4 124.2 124.3 124.3 124.2 Resolution range (Å) 33.42-2.80 50.00-2.60 50.00-2.30 50.00-2.00 50.00-2.07 50.00-2.25 Total observations 93,345 127,227 273,837 233,822 222,220 153,298 Unique reflections 38,041 24,864 36,718 55,675 47,513 39.724 Completeness (%) 97.6 (98.3) 96.2 (96.8) 97.9 (93.5) 97.7 (96.2) 92.6 (63.9) 98.3 (98.2) R merge (%) 4.6 (26.1) 5.0 (36.1) 5.0 (21.7) 5.6 (39.5) 6.2 (33.3) 6.1 (34.5) Refinement Resolution (Å) 2.80 2.60 2.30 2.10 2.10 2.25 No. reflections 17,603 22,280 32,646 43,126 41,436 35,325 R /R free (%) 23.1 / 26.4 22.4 / 26.9 21.1 / 25.2 20.2 / 24.1 20.2 / 24.6 19.9 / 24.8 No. atoms Protein 4,382 4,745 4,951 4,952 4,937 4,943 Substrate 0 0 20 39 40 37 Ca 2+ 0 5 5 5 5 5 Water 0 64 162 224 191 154 R.m.s. deviations Bond lengths (Å) 0.019 0.017 0.014 0.012 0.012 0.012 Bond angles ( ) 1.894 1.662 1.595 1.465 1.468 1.622

Figure 2 Overall structure of the substrate complex of Ca 2+ -bound PAD4 (C645A). Ribbon representation of the monomeric form of the substrate complex. Five Ca 2+ ions (Ca1, Ca2, Ca3, Ca4, and Ca5) are shown as black balls, and the substrate, benzoyl-l-arginine amide (BA), as a dark blue ball-and-stick model. Sub-domains 1 and 2 and the C-terminal domain are presented in yellow, green, and red, respectively. The putative nuclear localization signal (NLS) region is shown by a dotted line. Ribbon representation of the dimeric form of the substrate complex. A crystallographic 2-fold axis runs vertically at the center of the dimer. N 1-300 2 sub-domain 1 sub-domain 2 (Fig. 2a) sub-domain 1 sub-domain 2 sub-domain1 56 PPAKKKST 63 NLS 2 β-strands disorder G55S, V82A, G112A sub-domain 1 C G55S, V82A, G112A Ca 2+ 2 PAD4 sub-domain 2 3 Ca 2+ (Fig. 2a) Ca 2+ PAD4 disorder Ca 2+ PAD4 Ca 2+ PAD4- Ca 2+ α-helix (Fig. 3b) Ca 2+ Asp388 153 179 Asp155 Asp157 Asp176 Ca 2+ Ca 2+ Protein kinase C (PKC) C2 PKC C2 Ca 2+ sub-domain 2 Ca 2+ Figure 3 Structures around substrate and Ca 2+ binding sites in Ca 2+ -bound PAD4 (C645A). The substrate, benzoyl-l-arginine amide (BA), is shown as a green stick model. Ca 2+ ions are shown as yellow balls. Structure around Ca1, Ca2, and the substrate, benzoyl-l-arginine amide, in the C-terminal domain. Structure around Ca3, Ca4, and Ca5 in the N-terminal domain. C 5 Ca 2+ EF (Fig. 3) Ca 2+ BA C 2 Ca 2+ PAD4 2 1 (Fig. 2b) 2 PAD4 2 2 301-663 C Fig. 2a α/β 5 5 ββαβ module Fig. 4α/β L- L- arginine deiminase (ADI)[12] L- guanidinoacetic acid arginine:glycine amidinotransferase (AT)[13] L- α/β BA 1 Ca 2+ (Ca1) 1 Ca 2+ (Ca2) 2 ββαβ modules 2, Fig. 4 α-helix β-strand Ca1 Gln349, Glu353, Glu411 Phe407 Leu410 2 Ca2 Glu351, Asp369, Asn373 Ser370 1 (Fig. 3a) Fig. 3a BA BA 2

Asp350, His471, Asp473, Cys645 4 PAD4 Figure 4 Ribbon representation of the C-terminal domain in the substrate complex of Ca 2+ -bound PAD4 (C645A). Five ββαβ modules 1, 2, 3, 4, and 5 are colored light blue, red, dark blue, yellow, and orange, respectively. The substrate, benzoyl-l-arginine amide (BA), is shown as a green stick model. Ca 2+ ions are shown as yellow balls. Asp350 Asp473 Cys645(Ala645) His471 (-CH 2 -CH 2 -CH 2 -) Trp347 Val469 BA BA Arg374 Arg639 BA Arg374 PAD4 L- BA L- PAD4 BA (Asp350, His471, Asp473, Cys645) L L ADI Asp350, His471, Asp473, Cys645 PAD Ca 2+ PAD4, Ca 2+ PAD4 Ca 2+ PAD4- BA PAD4 Ca 2+ Ca 2+ PAD4 disorder acidic concave surface (Fig. 5a) 2 Ca 2+ (Ca1 Ca2) disorder (active site cleft) (Fig. 5b) Ca 2+ PAD4 Ca 2+ PAD4-BA 2 Ca 2+ (Ca1 Ca2) BA (Fig. 5c) 2 Ca 2+ (Ca1 Ca2) Ca1 Ca2 PAD E351A PAD N Ca 2+ C Asp388 Ca3 PAD4 Ca1 Ca2 PAD4 Ca 2+ Ca 2+ (active site cleft) Ca 2+ (c) Figure 5 Electrostatic surface potentials of Ca 2+ -free PAD4, Ca 2+ -bound PAD4, and the substrate(ba) complex of Ca 2+ -bound PAD4 (C645A) (c). Surface colors represent the potential from -10 k B T -1 (red) to +10 k B T -1 (blue). The substrate, benzoyl-l-arginine amide (BA), is shown as a green space-filling model. The acidic concave face and the active site cleft are marked by green and yellow circles, respectively.

Calpain[14] Lys Gln Transglutaminase[15] Ca 2+ Calpain PAD4 disorder Ca 2+ PAD4 BA PAD4 PAD4 Ca 2+ PAD4 C645 N 10 N 3 H3 1 Ac- 4 KQTARKSTGG 13 peptide H3-1 H3 2 Ac- 14 KAPRKQLATK 23 peptide H3-2 H4 Ac- 1 SGRGKGGKGL 10 peptide H4 3 N N (N-1), (N-2), (N-3), C (N+1), (N+2), (N+3) (Figs.6, 7b) 10 (N-2) (N+2) 5 (N-2) (N+1) 4 PAD4 (Fig. 6) (N-2) (N+1) 4 (N-2) H3-2 (N-2) Ala (c) Figure 6 Structures around the active sites of the Ca 2+ -bound PAD4 (C645A) in complex with peptides H3-1, H3-2, and H4. Left, ball-and-stick representation of the structures. The protein moiety is colored grey, and the peptides, H3-1, H3-2, and H4 (c) are colored green, magenta, and yellow, respectively. Superimposed are F o F c electron densities of the peptides, contoured at 2σ. Right, schematic diagrams of the structures on the left. Dotted lines and green half-circles show hydrogen bonds and hydrophobic interactions, respectively.

(N-2) PAD4 (N-2) PAD4 5 (N-2) Gly, Ala, Ser β (Fig. 7a) (N-2) (N+2) 5 (N-2) (N+1) 4 PAD4 (Fig. 6) (N+2) PAD4 PAD4 Arg374 β (Fig. 7b) (N-2) (N+2) (N+2) β (N-1) (N+2) β, N PAD4 β PAD4 PAD4 [16] PAD4 PAD4 β PAD4 PAD4 N PAD4 PAD4 Figure 7 Histone N-terminal structures. structural comparison of PAD4-bound forms. Peptides H3-1, H3-2, and H4 are shown as ball-and-stick representations colored green, magenta, and yellow, respectively. top view of the peptide H3-2 structure shown in, together with a molecular surface representation near the active site cleft. The weak intra-peptide interactions between the backbone oxygen at (N-1) position and the backbone nitrogen at (N+2) position are shown as dotted line. Ca 2+ PAD4, Ca 2+ PAD4, Ca 2+ PAD4 3 C Ca 2+ Ca 2+ Ca 2+ N PAD4 β PAD4, PAD4 PAD4-

PAD4. PF PF-AR SPring-8 3000 2006 6 20 [1] Nakashima, K., Hagiwara, T., and Yamada, M. J. Biol. Chem. 277, 49562-49568 (2002). [2] Vossenaar, E. R., Zendman, A. J. W., Venrooij, W. J., and Pruijn, G. J. M. BioEssays 25, 1106-1118 (2003). [3] Cuthbert, G. L. et al. Cell 118, 545-553 (2004). [4] Wang, Y. et al. Science 306, 279-283 (2004). [5] Bauer, U. M., Daujat, S., Nielsen, S. J., Nightingale, K., and Kouzarides, T: EMBO Rep. 3, 39-44 (2002). [ 6 ] Wa n g, H., H u a n g, Z. Q., X i a, L., F e n g, Q., Erdjument-Bromage, H., Strahl, B. D., Briggs, S. D., Allis, C. D., Wong, J., Tempst, P., and Zhang, Y. Science 293, 853-857 (2001). [7] Suzuki, A. et al. Nat. Genet. 34, 395-402 (2003). [8] van Boekel, M. A., Vossenaar, E. R., van den Hoogen, F. H., and van Venrooij, W. J. Arthritis Res. 4, 87-93 (2002). [9] Arita, K., Hashimoto, H., Shimizu, T., Nakashima, K., Yamada, M., and Sato, M. Nat. Struct. Mol. Biol. 11, 777-783 (2004) [10] Arita, K., Shimizu, T., Hashimoto, H.,Hidaka, Y., Yamada, M., and Sato, M. Proc. Natl. Acad. Sci. USA 103, 5291-5296 (2006). [11] Arita, K., Hashimoto, H., Shimizu, T., Yamada, M., and Sato, M. Acta Crystallogr. D59, 2332-2333 (2003). [12] Das, K. et al. Structure 12, 657-667 (2004). [13] Humm, A., Fritsche, E., Steinbacher, S., and Huber, R. EMBO J. 16, 3373-3385 (1997). [14] Khorchid A., and Ikura M. Nat. Struct. Biol. 9, 239-241 (2002). [15] Ahvazi, B., Kim, H. C., Kee, S. H,. Nemes, Z., and Steinert, P. M. EMBO J. 21, 2055-2067 (2002). [16] Tarcsa, E., Marekov, L. N., Mei, G., Melino, G., Lee, S. E., and Steinert, P. M. J. Biol. Chem. 271, 30709-30716 (1996). Kyouhei ARITA TEL: 045-508-7227 e-mail: kyouhei@tsurumi.yokohama-cu.ac.jp 2006 4 Toshiyuki SHIMIZU TEL: 045-508-7226 e-mail: shimizu@tsurumi.yokohama-cu.ac.jp 1989 2001 4 2005 4 Hiroshi HASHIMOTO TEL: 045-508-7227 e-mail: hash@tsurumi.yokohama-cu.ac.jp 2000 2001 4 2005 4 Mamoru SATO 230-0045 1-7-25 TEL: 045-508-7225 e-mail: msato@tsurumi.yokohama-cu.ac.jp 1983 1996 4 2005 4