Self and Mutual Inductances for Fundamental Harmonic in Synchronous Machine with Round Rotor (Cont.) Double Layer Lap Winding on Stator

Σχετικά έγγραφα
Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

Technical Report. General Design Data of a Three Phase Induction Machine 90kW Squirrel Cage Rotor

ΗΜΥ 340 Μηχανική Ηλεκτρικής Ισχύος Περιστρεφόμενες μηχανές ac

Theoretical Competition: 12 July 2011 Question 2 Page 1 of 2

Oscillatory integrals

I Feel Pretty VOIX. MARIA et Trois Filles - N 12. BERNSTEIN Leonard Adaptation F. Pissaloux. ι œ. % α α α œ % α α α œ. œ œ œ. œ œ œ œ. œ œ. œ œ ƒ.

Solutions 3. February 2, Apply composite Simpson s rule with m = 1, 2, 4 panels to approximate the integrals:

ΑΣΥΓΧΡΟΝΕΣ ΜΗΧΑΝΕΣ ΑΣΥΓΧΡΟΝΟΣ ΚΙΝΗΤΗΡΑΣ ΜΕ ΔΑΚΤΥΛΙΟΦΟΡΟ ΡΟΤΟΡΑ. Σύστημα ανύψωσης ψηκτρών. Ρότορας κινητήρα με δακτυλίδια

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών. Εθνικό Μετσόβιο Πολυτεχνείο. Thales Workshop, 1-3 July 2015.

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

[1] P Q. Fig. 3.1

TYJX Series Rare Earth Permanent Magnet Excited Three Phase Synchronous Motor

TeSys contactors a.c. coils for 3-pole contactors LC1-D

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Solutions_3. 1 Exercise Exercise January 26, 2017

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

Math221: HW# 1 solutions

( y) Partial Differential Equations

50 Hz n= 1450 rpm. Standardised EN 733 centrifugal pumps. PERFORMANCE RANGE Flow rate up to 3000 l/min (180 m³/h) Head up to 24 m INSTALLATION AND USE

Siemens AG Rated current 1FK7 Compact synchronous motor Natural cooling. I rated 7.0 (15.4) 11.5 (25.4) (2.9) 3.3 (4.4)

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

( )( ) La Salle College Form Six Mock Examination 2013 Mathematics Compulsory Part Paper 2 Solution

EE512: Error Control Coding

Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté

CRASH COURSE IN PRECALCULUS

Homework 8 Model Solution Section

Multi-dimensional Central Limit Theorem

Matrices and Determinants

Example Sheet 3 Solutions

Second Order RLC Filters

the total number of electrons passing through the lamp.

DC040B Series Salient Characteristics

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

DC054B Series Salient Characteristics

Topic 4. Linear Wire and Small Circular Loop Antennas. Tamer Abuelfadl

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

Multi-dimensional Central Limit Theorem

ELWOOD HIGH PERFORMANCE MOTORS H-SERIES MOTOR DATA

DC SERVO MOTORS. EC057B Series Salient Characteristics E E

Inverse trigonometric functions & General Solution of Trigonometric Equations

CYLINDRICAL & SPHERICAL COORDINATES

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Finite Field Problems: Solutions

Phasor Diagram of an RC Circuit V R

Physics 505 Fall 2005 Practice Midterm Solutions. The midterm will be a 120 minute open book, open notes exam. Do all three problems.

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

DC SERVO MOTORS Previous N23XX Series. EC057C Series Salient Characteristics

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Trigonometric Formula Sheet

α & β spatial orbitals in

LAPLACE TYPE PROBLEMS FOR A DELONE LATTICE AND NON-UNIFORM DISTRIBUTIONS


wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Karta Katalogowa CATALOGUE CARD

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Solutions - Chapter 4

6.4 Superposition of Linear Plane Progressive Waves

1000 VDC 1250 VDC 125 VAC 250 VAC J K 125 VAC, 250 VAC

Section 8.3 Trigonometric Equations

IE3 IE2. 100% From Europe. Squirrel-Cage Low Voltage Motor. Premium Efficiency. High Efficiency. Made in Europe. Converter fed Motor.

MOTORI PER VENTILATORI MOTORS FOR BLOWERS

2 Composition. Invertible Mappings

[1], [2] - (Danfoss, Rexroth, Char-Lynn. [3, 4, 5]), .. [6]. [7]

Fourier Transform. Fourier Transform

PERFOMANCE TABLE FOR 3M SERIES 3000 R.P.M. / 2 POLES LRT RLT. Eff % P.F. COSΦ. Duty Type : (S1) Rated Voltage : 400 V / 440 V

Section 7.6 Double and Half Angle Formulas

If ABC is any oblique triangle with sides a, b, and c, the following equations are valid. 2bc. (a) a 2 b 2 c 2 2bc cos A or cos A b2 c 2 a 2.

PARTIAL NOTES for 6.1 Trigonometric Identities

Lecture 5: Numerical Integration

r t t r t t à ré ér t é r t st é é t r s s2stè s t rs ts t s

!!! )!)(!,!! )!! )! (!!)!

ST5224: Advanced Statistical Theory II

1 String with massive end-points

EE101: Resonance in RLC circuits

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du)

Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes.

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Finish: Anticorrosive finish in polyester. Number of motor poles 4=1400 r/min. 50 Hz 6=900 r/min. 50 Hz 8=750 r/min. 50 Hz

Τελικό Project Εργαστηρίου Ηλεκτρονικών Φίλτρων Χειµερινό Εξάµηνο

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Το άτομο του Υδρογόνου

Utkin Walcott & Zak ¼

Approximation of distance between locations on earth given by latitude and longitude

motori elettrici electric motors

Section 9.2 Polar Equations and Graphs

Cable Systems - Postive/Negative Seq Impedance

Second Order Partial Differential Equations

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

= 0.927rad, t = 1.16ms

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Geodesic Equations for the Wormhole Metric

ELE 3310 Tutorial 11. Reflection of plane waves Wave impedance of the total field

Spherical Coordinates

Example 1: THE ELECTRIC DIPOLE

Transcript:

Sel nd Mutul Inductnces or Fundmentl Hrmonc n Synchronous Mchne wth Round Rotor (Cont.) Double yer p Wndng on Sttor

Round Rotor Feld Wndng (1) d xs s r n even r Dene S r s the number o rotor slots. Dene s r s the number o rotor slots between two poles, or the number o slots per pole. s r Sr

Round Rotor Feld Wndng () sr odd

MMF rom Round Rotor When s r s Even (1) F wth υ rom ll conductors υ turns (υ 1) γ r sr υ 1,,..., υ θ de d xs θde θd F F h 1,3,5... F cos( hθ ) F cos( h θ ) s r F h h h de h d 4 (υ 1) γ r υ sn h υ 1 Fh h Rotor wndng turns re typclly ll connected n seres.

Dene: MMF rom Round Rotor When s r s Even () s r υ υ 1 totl number o seres turns o rotor sr 4 1 ( 1) 4 ˆ υ γ r h Fh sn h sr υ h υ 1 h υ υ 1 where ˆ h k w, h eectve number o seres turns or h th hrmonc w, h sr 1 (υ 1) γ r sn s r υ υ 1 k h υ 1 υ wndng ctor or h th hrmonc

MMF rom Round Rotor When s r s Odd (1) F wth 1 rom conductors 1 turns 1 θ de F wth υ rom ll conductors υ turns ( υ 1) γ r υ,..., s r + 1 υ θ de F F where F F cos( hθ ) F cos( h θ ) h h h de h d h 1,3,5... 4 ( υ 1) γ r s r + 1 1 Fh sn h + υ sn h h υ

MMF rom Round Rotor When s r s Odd () Dene: s r + 1 1 + υ υ totl number o seres turns o rotor 4 1 Fh h h h + h where sr + 1 ˆ ( 1) 4 1 υ γ h sn sn sr + 1 υ υ 1 + υ υ ˆ h k w, h eectve number o seres turns or h th hrmonc 1 ( υ 1) γ r sr + 1 1 kw, h sn h + sn h sr + 1 υ υ 1 + υ υ wndng ctor or h th hrmonc

Mutul Inductnce between Sttor nd Rotor Feld Wndng I we pply current n rotor eld wndng, then when rotor s movng, the mgnetc eld n rgp rom rotor eld wndng s: ow, we cn clculte lux n hse A wndng rom eld current. λ B where 4 µ g d e ˆ cos( θ ) λ ˆ Φ cosθ rom eld wndng, pk Dene: B, pk Dl Φ, pk B, pk ge Dl 4 µ ˆ 8µ ˆ cosθ me g e λ 8µ Dl ˆ ˆ cosθ g e 8µ Dl ˆ ˆ where s g e me µ 4 me ˆ Dl ˆ ˆ g e θ s d ˆ k θ θ w β θ me cosθ me m cosθ θ me me θ Eectve number o turns on eld wndng. m

Sel Inductnce o Rotor Feld Wndng For the mgnetc eld rom rotor eld wndng s: ow, we cn clculte lux n eld wndng by ntegrtng on. pk, ˆ Φ λ Dl B pk pk,, Φ e e g Dl g Dl k ˆ 8 ˆ 4 ˆ µ µ λ ) cos( ˆ 4 d e g B θ µ e pk g B ˆ 4, µ ˆ 8 g Dl e m µ λ where θ d m l +

Stedy Stte Anlyss o Synchronous Mchne wth Round Rotor

Termnl Voltge or Round Rotor Motor + c b c b s s s c b dt d R R R R v v v v λ λ λ λ + + c b When + + c b me s me s me s me s s me s s me s s c b ) 3 cos( ) 3 cos( cos ) 3 cos( ) 3 cos( cos θ θ θ θ θ θ λ λ λ λ

Round Rotor Motor t Stedy Stte dλ v dt dθme At stedy stte ωe me et + r dt d v R s + s s Iωe sn ( ωet+ φr ) dt R s+ λ s + s cosθme θ ω φ d jφr + jωet R s + s + Re s Iωee e dt j et v Re e ω j et Re I e ω jφr + E I ω e et ( V φ ) ( A ) A s e V R I + jx I + E φ s A s A A X ω s e s s 8µ Dl ˆ ˆ ge

Round Rotor Genertor t Stedy Stte Motor V φ R I + jx I + E s A s A A Genertor V φ R I jx I + E s A s A A v dλ v R s+ dt λ ( ) + cosθ s s me + dt d jφr + jωet v R s s Re s Iωee e j et Re( e ω j et V φ ) Re( I Ae ω ) s 8µ E A Dl ˆ ˆ ge

Open Crcut Voltge (1) Assume the rmture wndngs re open crcut, the mgnetc eld n the r gp comes rom the eld wndng only. Bg rom eld wndng B, pk cos( ωet θ + φr ) B, pk cos( θ ωet φr ) B Dl From otes Flux nkge n hse Wndng β ( ω e t + φr ), pk Φ, pk rom eld wndng Φ, pk cos Φ, pk ( ω t φ ) λ ˆ β ˆ cos + dλ ( ) ˆ sn( ) ˆ dφ E t Φ ω ω t+ ϕ + cos( ω t+ ϕ ) dt dt rom eld wndng, pk A, pk e e r e r dφ, pk At stedy stte, we hve dt e r E A ( t) ˆ ˆ Φ Φ, pk, pk ω sn( ω t ω cos( ω t e e e e + φ ) r + φr + ) hsor o E A (t) s: E A ω ˆ Φ e, pk e j( ϕr + )

Open Crcut Voltge () E A s ω e s I e j( φr + ) 8µ ˆ ˆ Dl g e B E A ω ˆ Φ Φ, pk e, pk B r, pk Dl j( φr + ) 4µ ˆ I cos( θ θ ) r me g e e We cn nd out tht they re the sme. λ ˆ Φ, pk, pk E µ Dl ˆ ˆ E Dl ˆ ˆ 1 8 I g e 8 r r ( ) ( ) j φ + j φ + A ωe I e ωλ e, pke g e A, rms e e, pk

Volt-Second Blnce E ˆ Φ 4.44 ˆ Φ A, rms e, pk e, pk E ˆ Φ ˆ Φ A, rms or:, pk 4.44, pk e λ, pk Exmple: 6Hz genertor s to be operted t 5 Hz, then the opertng voltge must be derted to 5/6 o ts orgnl vlue.

Induced hse Voltge For the net mgnetc eld, t stedy stte: Bnet Bpk cos( ω et θ + φ net ( t ) λ ˆ Φ cos ω + φ, net pk e net ) Φ pk B pk Dl The stedy stte phse voltge n rmture phse A wndng s: dλ ( ) ˆ sn( ) ˆ Vφ t Φ pkωe ωet + φnet Φ pkωe cos( ωet + φnet + ) dt j( ϕnet + ) ˆ V ω Φ e hsor ϕ e pk The rms phse voltge s, V ˆ Φ 4.44 ˆ Φ φ rms e pk e pk λ pk

Y Connecton (Genertor)

Connecton (Genertor)

Φ pk Exmple 1 For 3 phse, 4 pole, 4 slot, 5/6 ptch mchne wth double lyer lp wndng, the pek mgnetc led ntensty n the rgp s.45 T. There s one slot skew. The mchne sht speed s 8 rpm. The sttor nner dmeter s.5 m. The mchne length s.3 m. There re 1 turns per col. All the turns re connected n seres. The three phse cols re Y connected. (1)Wht s the rms phse voltge o the mchne? ()Wht s the rms termnl voltge o the mchne? V ˆ Φ 4.44 ˆ Φ ϕ, rms e pk e pk B Dl pk 4 ˆ k w q q S m λ pk c ACmchne1.m

Exmple For smple pole, 3 phse, Y connected mchne (sngle lyer wndng) shown n the gure, the pek mgnetc eld ntensty n the rgp s.t. There s no skew. The mchne sht speed s 36 rpm. The sttor nner dmeter s.5 m. The mchne length s.3 m. There re 15 turns n the col. (1)Wht s the rms phse voltge o the mchne? ()Wht s the rms termnl voltge o the mchne? V ˆ Φ 4.44 ˆ Φ ϕ, rms e pk e pk λ pk Φ pk B Dl pk For ths exmple: ˆ c (ote: Ths s sngle lyer wndng.) ACmchne.m

Voltge nd Speed Regulton Voltge regulton: VR V nl V V l l 1% Speed regulton: Or: SR SR n ω nl n nl ω l n ω l l l 1% 1%

AC Mchne Ecency out η 1% n out n loss

AC Mchne oss Mechnsm 1. Electrcl or copper losses (I R losses). Core losses 3. Mechncl losses 4. Stry or mscellneous losses

Electrcl or Copper oss Sttor Copper oss (SC): 3I R SC A s Rotor Copper oss (RC): I R RC F F

Core, Mechncl nd Stry osses

AC Genertor ower Flow power converted rom mechncl to electrcl T ω conv em m

AC Motor ower Flow power converted rom electrcl to mechncl T ω conv em m