Entisar El-Yagubi & Maslina Darus

Σχετικά έγγραφα
Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

CERTAIN PROPERTIES FOR ANALYTIC FUNCTIONS DEFINED BY A GENERALISED DERIVATIVE OPERATOR

The Fekete Szegö Theorem for a Subclass of Quasi-Convex Functions

PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1)

n=2 In the present paper, we introduce and investigate the following two more generalized

Subclass of Univalent Functions with Negative Coefficients and Starlike with Respect to Symmetric and Conjugate Points

On a Subclass of k-uniformly Convex Functions with Negative Coefficients

ON INTEGRAL MEANS FOR FRACTIONAL CALCULUS OPERATORS OF MULTIVALENT FUNCTIONS. S. Sümer Eker 1, H. Özlem Güney 2, Shigeyoshi Owa 3

Meromorphically Starlike Functions at Infinity

2 Composition. Invertible Mappings

Congruence Classes of Invertible Matrices of Order 3 over F 2

Fractional Calculus of a Class of Univalent Functions With Negative Coefficients Defined By Hadamard Product With Rafid -Operator

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

The k-α-exponential Function

On New Subclasses of Analytic Functions with Respect to Conjugate and Symmetric Conjugate Points

Reminders: linear functions

A Novel Subclass of Analytic Functions Specified by a Family of Fractional Derivatives in the Complex Domain

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

STRONG DIFFERENTIAL SUBORDINATIONS FOR HIGHER-ORDER DERIVATIVES OF MULTIVALENT ANALYTIC FUNCTIONS DEFINED BY LINEAR OPERATOR

Example Sheet 3 Solutions

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

On Classes Of Analytic Functions Involving A Linear Fractional Differential Operator

Solutions to Exercise Sheet 5

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Homomorphism in Intuitionistic Fuzzy Automata

Second Order Partial Differential Equations

Statistical Inference I Locally most powerful tests

Some Properties of a Subclass of Harmonic Univalent Functions Defined By Salagean Operator

Other Test Constructions: Likelihood Ratio & Bayes Tests

A Note on Intuitionistic Fuzzy. Equivalence Relation

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

ST5224: Advanced Statistical Theory II

EE512: Error Control Coding

C.S. 430 Assignment 6, Sample Solutions

Matrices and Determinants

Section 8.3 Trigonometric Equations

CERTAIN SUBCLASSES OF UNIFORMLY STARLIKE AND CONVEX FUNCTIONS DEFINED BY CONVOLUTION WITH NEGATIVE COEFFICIENTS

Fractional Colorings and Zykov Products of graphs

A General Note on δ-quasi Monotone and Increasing Sequence

On the k-bessel Functions

SECOND HANKEL DETERMINANT FOR SUBCLASSES OF PASCU CLASSES OF ANALYTIC FUNCTIONS M. S. SAROA, GURMEET SINGH AND GAGANDEEP SINGH

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Second Order RLC Filters

Homework 8 Model Solution Section

Homework 3 Solutions

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Bulletin of the. Iranian Mathematical Society

New bounds for spherical two-distance sets and equiangular lines

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Areas and Lengths in Polar Coordinates

A summation formula ramified with hypergeometric function and involving recurrence relation

Uniform Convergence of Fourier Series Michael Taylor

CRASH COURSE IN PRECALCULUS

derivation of the Laplacian from rectangular to spherical coordinates

ON A SUBCLASS OF UNIFORMLY CONVEX FUNCTIONS INVOLVING CHO-SRIVASTAVA OPERATOR

Partial Differential Equations in Biology The boundary element method. March 26, 2013

4.6 Autoregressive Moving Average Model ARMA(1,1)

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Every set of first-order formulas is equivalent to an independent set

Commutative Monoids in Intuitionistic Fuzzy Sets

w o = R 1 p. (1) R = p =. = 1

Neighborhood and partial sums results on the class of starlike functions involving Dziok-Srivastava operator

Areas and Lengths in Polar Coordinates

SOME INCLUSION RELATIONSHIPS FOR CERTAIN SUBCLASSES OF MEROMORPHIC FUNCTIONS ASSOCIATED WITH A FAMILY OF INTEGRAL OPERATORS. f(z) = 1 z + a k z k,

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Problem Set 3: Solutions

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Palestine Journal of Mathematics Vol. 2(1) (2013), Palestine Polytechnic University-PPU 2013

Approximation of distance between locations on earth given by latitude and longitude

SOME PROPERTIES OF FUZZY REAL NUMBERS

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Parametrized Surfaces

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

On class of functions related to conic regions and symmetric points

The k-bessel Function of the First Kind

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

Normalization of the generalized K Mittag-Leffler function and ratio to its sequence of partial sums

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Quadratic Expressions

Some new generalized topologies via hereditary classes. Key Words:hereditary generalized topological space, A κ(h,µ)-sets, κµ -topology.

D Alembert s Solution to the Wave Equation

F19MC2 Solutions 9 Complex Analysis

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Generating Set of the Complete Semigroups of Binary Relations

Math221: HW# 1 solutions

Strain gauge and rosettes

Research Article Some Properties of Certain Class of Integral Operators

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points

Srednicki Chapter 55

Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Tridiagonal matrices. Gérard MEURANT. October, 2008

Transcript:

Journal of Quality Measurement Analysis Jurnal Pengukuran Kualiti dan Analisis JQMA 0() 04 7-6 ON FEKETE-SZEGÖ PROBLEMS FOR A SUBCLASS OF ANALYTIC FUNCTIONS (Berkenaan Permasalahan Fekete-Szegö bagi Subkelas Fungsi Analisis) ENTISAR EL-YAGUBI & MASLINA DARUS ABSTRACT The aim of this paper is to determine the Fekete-Szegö inequalities for a normalised analytic function defined on the open unit disc for which z(d λ ) / (D λ )δ N 0 λ λ 0 lies in a region starlike with respect to it is symmetric with respect to the real axis by using the operator D λ given recently by the authors. As a special case of this result Fekete-Szegö inequality for a class of functions defined by fractional derivatives is also obtained. Keywords: analytic function; starlike function; subordination; Fekete-Szegö inequality; derivative operator ABSTRAK Matlamat makalah ini adalah untuk menentukan ketaksamaan Fekete-Szegö bagi fungsi analisis ternormal yang ditakrif pada cakera unit terbuka dengan z(d λ ) / (D λ ) λ λ 0 δ N 0 terletak pada rantau bak bintang terhadap dan simetri terhadap paksi nyata dengan menggunakan pengoperasi D λ yang diberi penulis baru-baru ini. Sebagai kes khas bagi hasil ini ketaksamaan Fekete-Szegö bagi kelas fungsi yang ditakrif oleh terbitan pecahan juga diperoleh. Kata kunci: fungsi analisis; fungsi bak bintang; subordinasi; ketaksamaan Fekete-Szegö; pengoperasi terbitan. Introduction Let A denote the class of functions of the form = z a n z n (z U ) () n= which are analytic in the open unit disc U = {z : z C z < }. Also let S be the subclass of A consisting of all functions which are univalent in U. Let φ P where φ(z) is an analytic function with positive real part on A with φ(0) = φ (0) > 0 let S * (φ) be the class of functions in f A such that z f (z) φ(z) (z U ) () C(φ) be the class of functions in f A for which

Entisar El-Yagubi & Maslina Darus z f (z) f (z) φ(z) (z U ). (3) where denotes to the subordination between two analytic functions. Let a n be a complex number 0 µ. A classical theorem of Fekete Szegö (933) states that for f S given by () µa exp µ µ. The inequality is sharp. For a brief history of the Fekete-Szegö problem for the class of starlike functions S convex functions C close-to-convex functions K see the papers by Mohammed Darus (00) Srivastava et al. (00) Darus (00) Al-Abbadi Darus (0) Ravichran et al. (004) Al-Shaqsi Darus (008). In particular for f K given by () Keogh Merkes (969) showed that 3 4µ if 0 µ 3 µa 3 4 if 9µ 3 µ 3 if 3 µ 4µ 3 if µ for each µ there is a function in K for which equality holds. Definition. (El-Yagubi & Darus 03) Let f be in the class A. For δ N 0 λ λ 0 we define the differential operator as follows: D λ = z (λ λ )(n ) b n= (n ) b m C(δ n)a n z n (4) where C(δ n) = defined by δ n δ = (δ ) n (n )! (δ ) n denotes the Pochhammer symbol n = 0 (δ ) n = δ (δ )(δ )...(δ n ) δ!n!. 8

On Fekete-Szegö problems for a subclass of analytic functions Using the operator D λ we define the class M λ (φ) as follows: Definition.. Let φ P be a univalent starlike function with respect to which maps the unit disc U onto a region in the right half plane symmetric with respect to the real axis φ(0) = φ (0) > 0. A function f A is in the class M λ (φ) if z(d λ ) D λ φ(z) (5) where δ N 0 λ λ 0 D λ denotes the differential operator (4). The motivation of this paper is to generalise the Fekete-Szegö inequalities proved by Srivastava Mishra (000) for functions in the class M λ (φ). We also give some applications of our results for certain functions defined by fractional derivatives. To prove our main results the following lemma is required. Lemma. (Ma & Minda 994). If p (z) = c (z) c z is an analytic function with positive real part in U then 4v if v 0 c vc if 0 v 4v if v. When v < 0 or v > the equality holds if only if p (z) is z z rotations. If 0 < v < then equality holds if only if p (z) is z If v = 0 the equality holds if only if p (z) = γ z z γ z (0 γ ) z or one of its or one of its rotations. z or one of its rotations. If v = the equality holds if only if p (z) is the reciprocal of one of the functions such that the equality holds in the case of v = 0. Also the above upper bound is sharp it can be improved as follows when 0 < v < : c vc v c (0 < v ) c vc ( v) c ( < v ). 9

Entisar El-Yagubi & Maslina Darus. Main Results Our first result is contained in the following theorem. Theorem.. Let φ(z) be an analytic function with positive real part on A φ(z) = B z B z. If is given by () belongs to M λ φ(z) then ( λ b) m B (δ )(δ )( (λ ) b) ( λ b) m µb m (δ ) ( λ b) m ( λ b) m B if µ σ (δ )(δ )( (λ ) b) m ( λ µa b) m B if σ (δ )(δ )( (λ ) b) m µ σ ( λ b) m B (δ )(δ )( (λ ) b) ( λ b) m µb m (δ ) ( λ b) m ( λ b) m B if µ σ (δ )(δ )( (λ ) b) m (6) where σ σ (δ ) ( λ b) m (B B ) B (δ )(δ )( λ b) m ( (λ ) b) m B (δ ) ( λ b) m (B B ) B (δ )(δ )( λ b) m ( (λ ) b) m B. (8) (7) Proof. For f M λ φ(z) let p(z) = z(d λ ) D λ = b z b z. (9) Substituting (4) in (9) comparing the coefficients of z z 3 on both sides in equation (9) we have λ b b m (λ ) b λ b (δ )a = b m (δ )(δ )a 3 = λ λ b b m (δ ) a b. (0) 0

On Fekete-Szegö problems for a subclass of analytic functions Now we want to find out the values for b b. Since φ(z) is univalent p φ the function p (z) = φ ( p(z)) φ ( p(z)) = c z c z () is analytic has a positive real part in U. Thus we have p(z) = φ p (z) p (z). From the equations (9) () we obtain c b z b z = φ z c z c z c z this implies = φ c z (c c )z = B c z B (c c )z B 4 c z () b = B c b = B (c c ) 4 B c. By substituting the values of b b in equation (0) we have B a = c ( b) m ( λ b) m (δ ) a 3 = Therefore we have ( 4 B c B (c c ) 4 B c )( λ b) m ( (λ ) b) m (δ )(δ ) B a 3 µa = ( λ b) m ( (λ ) b) m (δ )(δ ) (c c [ ( B B. (3) (δ )(δ )( λ b) m ( (λ ) b) m µ ( λ b) m (δ ) ( λ b) m (δ ) B )])

Entisar El-Yagubi & Maslina Darus which implies B a 3 µa = ( λ b) m ( (λ ) b) m (δ )(δ ) [c νc ] where ν = ( B B (δ )(δ )( λ b)m ( (λ ) b) m µ ( λ b) m (δ ) ( λ b) m (δ ) B ). If µ σ then by Lemma. we obtain ( λ µa b) m B (δ )(δ )( (λ ) b) ( λ b) m µb m (δ ) ( λ b) m ( λ b) m B (δ )(δ )( (λ ) b) m. If µ σ then we get ( λ µa b) m B (δ )(δ )( (λ ) b) ( λ b) m µb m (δ ) ( λ b) m ( λ b) m B (δ )(δ )( (λ ) b) m. Similarly if σ µ σ we get µa ( λ b) m B (δ )(δ )( (λ ) b) m.

On Fekete-Szegö problems for a subclass of analytic functions 3. Application of Fractional Derivatives For fixed g A let M g λ (φ) be the class of functions f A for which ( f g) M λ (φ). Note that for any two analytic functions = z a n z n g(z) = z b n z n their convolution is defined by n= ( f * g)(z) = * g(z) = z a n b n z n. n= Definition 3. (Owa & Srivastava 987). Let f be analytic in a simply connected region of the z-plane containing the origin. The functional derivative of f of order γ is defined by D z γ = Γ( γ ) d z dz 0 f (ζ ) (z ζ ) γ dζ (0 γ < ) where the multiplicity of (z ζ ) γ is removed by requiring that log(z ζ ) is real for z ζ > 0. Using Definition 3. the well known extension involving fractional derivatives fractional integrals Owa Srivastava (987) introduced the operator Ω γ : A A which is defined by Ω γ = Γ( γ )z γ D z γ (γ 34 ). n= γ The class M λ γ that M λ Let (φ) consists of functions f A for which Ω γ f M λ (φ). Note (φ) is the special case of the class M g λ (φ) when g(z) = z n= Γ(n )Γ( γ ) Γ(n γ ) g(z) = z g n z n (g n > 0). n= z n. Since D λ M λ g (φ) if only if D λ * g(z) M λ (φ) we obtain the coefficient estimate for functions in the class M g λ (φ) from the corresponding estimate for functions in the class M λ (φ). Applying Theorem. for the function 3

Entisar El-Yagubi & Maslina Darus D λ * g(z) = z λ λ b b m (δ )a g z we get the following result after an obvious change of the parameter µ. Theorem 3.. Let g(z) = z g n= n z n (g n > 0) let the function φ(z) be given by φ(z) = B n z n. If D λ given by (4) belongs to M g λ (φ) then n= µa ( λ b) m B (δ )(δ )( (λ ) b) m g 3 ( λ b) m µb (δ ) ( λ b) m g ( λ b) m B if µ σ (δ )(δ )( (λ ) b) m g 3 ( λ b) m B (δ )(δ )( (λ ) b) m g 3 if σ µ σ ( λ b) m B ( λ b) m µb (δ )(δ )( (λ ) b) m g 3 (δ ) ( λ b) m g ( λ b) m B if µ σ (δ )(δ )( (λ ) b) m g 3 where σ g (δ ) ( λ b) m (B B ) B g 3 (δ )(δ )( λ b) m ( (λ ) b) m B Since σ (Ω γ D λ g (δ ) ( λ b) m (B B ) B g 3 (δ )(δ )( λ b) m ( (λ ) b) m B. ) = z n= Γ(n )Γ( γ ) Γ(n γ ) (λ )(n ) b (n ) b m C(δ n)a n z n we have g Γ(3)Γ( γ ) Γ(3 γ ) = ( γ ) 4

On Fekete-Szegö problems for a subclass of analytic functions g 3 Γ(4)Γ( γ ) Γ(4 γ ) = 6 ( γ )(3 γ ). Proof. By using the same technique as in the proof of Theorem. the required result is obtained. For g g 3 given by above equalities Theorem 3. reduces to the following result. Corollary 3.. Let g(z) = z g n= n z n (g n > 0) let the function φ(z) be given by φ(z) = B n z n. If D λ given by (3) belongs to M g λ (φ). Then n= ( γ )(3 γ )( λ b) m B 6(δ )(δ )( (λ ) b) ( γ ) ( λ b) m µb m 4(δ ) ( λ b) m ( γ )(3 γ )( λ b) m B 6(δ )(δ )( (λ ) b) if µ σ m ( γ )(3 γ )( λ µa b) m B 6(δ )(δ )( (λ ) b) if σ µ σ m ( γ )(3 γ )( λ b) m B 6(δ )(δ )( (λ ) b) ( γ ) ( λ b) m µb m 4(δ ) ( λ b) m ( γ )(3 γ )( λ b) m B 6(δ )(δ )( (λ ) b) if µ σ m where (3 γ )(δ ) ( λ σ b) m (B B ) B 3( γ )(δ )(δ )( λ b) m ( (λ ) b) m B σ (3 γ )(δ ) ( λ b) m (B B ) B 3( γ )(δ )(δ )( λ b) m ( (λ ) b) m B. Acknowledgement The work presented here was partially supported by AP-03-009. 5

Entisar El-Yagubi & Maslina Darus References Al-Abbadi M. H. & Darus M. 0. The Fekete-Szegö theorem for a certain class of analytic functions. Sains Malaysiana 40(4): 385-389. Al-Shaqsi K. & Darus M. 008. On Fekete-Szegö problems for certain subclass of analytic functions. Appl. Math. Sci. (9): 43-44. Darus M. 00. The Fekete-Szegö problems for close-to-convex functions of the class K sh (αβ). Acta Mathematica Academiae Paedagogicae Nyiregyhaziensis 8(): 3-8. El-Yagubi E. & Darus M. 03. Subclasses of analytic functions defined by new generalised derivative operator. Journal of Quality Measurement Analysis 9(): 47-56. Fekete M. & Szegö G. 933. Eine bermerkung über ungerade schlichte function. J. Lond. Math. Soc. 8: 85-89. Keogh F. R. & Merkes E. P. 969. A coefficient inequality for certain classes of analytic functions. Proc. Amer. Math. Soc. 0: 8-. Ma W. & Minda D. 994. A unified treatment of some special classes of univalent functions. In Li Z. Ren F. Yang L. & Zhang S. (Eds.). Proceedings of the Conference on Complex Analysis pp. 57-69 Int. Press. Mohammed A. & Darus M. 00. On Fekete-Szegö problem for certain subclass of analytic functions. Int. J. Open Problems Compt. Math. 3(4): 50-50. Owa S. & Srivastava H. M. 987. Univalent starlike generalized hypergeometric functions. Canad. J. Math. 39(5): 057-077. Ravichran V. Gangadharan A. & Darus M. 004. On Fekete-Szegö inequality for certain class of Bazilevic functions. Far East Journal of Mathematical Sciences 5(): 7-80. Srivastava H. M. & Mishra A. K. 000. Applications of fractional calculus to parabolic starlike uniformly convex functions. Computer Math. Appl. 39: 57-69. Srivastava H. M. Mishra A. K. & Das M. K. 00. The Fekete-Szegö problem for a subclass of close-to-convex functions. Complex Variables Theory Application 44: 45-63. School of Mathematical Sciences Faculty of Science Technology University Kebangsaan Malaysia 43600 UKM Bangi Selangor DE MALAYSIA E-mail: entisar_e980@yahoo.com maslina@ukm.edu.my* *Corresponding author 6