Lecture 44. Constituent Lidar (4) Multi-wavelength Raman DIAL & DOAS and MAX-DOAS

Σχετικά έγγραφα
LIDAR REMOTE SENSING PROF. XINZHAO CHU CU-BOULDER, FALL 2012 Lecture 08. Fundamentals of Lidar Remote Sensing (4) Solutions for Lidar Equations

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Finite Field Problems: Solutions

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

2 Composition. Invertible Mappings

EE512: Error Control Coding

Homework 3 Solutions

Section 8.3 Trigonometric Equations

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Srednicki Chapter 55

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Approximation of distance between locations on earth given by latitude and longitude

derivation of the Laplacian from rectangular to spherical coordinates

Areas and Lengths in Polar Coordinates

PARTIAL NOTES for 6.1 Trigonometric Identities

DuPont Suva 95 Refrigerant

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

Statistical Inference I Locally most powerful tests

Example Sheet 3 Solutions

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Section 7.6 Double and Half Angle Formulas

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]

Inverse trigonometric functions & General Solution of Trigonometric Equations

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Areas and Lengths in Polar Coordinates

Second Order RLC Filters

Math221: HW# 1 solutions

4.6 Autoregressive Moving Average Model ARMA(1,1)

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

DuPont Suva 95 Refrigerant

[1] P Q. Fig. 3.1

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

The Simply Typed Lambda Calculus

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Concrete Mathematics Exercises from 30 September 2016

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Homework 8 Model Solution Section

Numerical Analysis FMN011

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Variational Wavefunction for the Helium Atom

Derivation of Optical-Bloch Equations

ST5224: Advanced Statistical Theory II

Solutions to Exercise Sheet 5

Forced Pendulum Numerical approach

Matrices and Determinants

Lecture 2. Soundness and completeness of propositional logic

( ) 2 and compare to M.

Problem Set 3: Solutions

ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΓΗΑΣΜΖΜΑΣΗΚΟ ΠΡΟΓΡΑΜΜΑ ΜΔΣΑΠΣΤΥΗΑΚΩΝ ΠΟΤΓΩΝ «ΤΣΖΜΑΣΑ ΔΠΔΞΔΡΓΑΗΑ ΖΜΑΣΩΝ ΚΑΗ ΔΠΗΚΟΗΝΩΝΗΩΝ» ΣΜΖΜΑ ΜΖΥΑΝΗΚΩΝ Ζ/Τ ΚΑΗ ΠΛΖΡΟΦΟΡΗΚΖ

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Fractional Colorings and Zykov Products of graphs

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

( y) Partial Differential Equations

6.3 Forecasting ARMA processes

C.S. 430 Assignment 6, Sample Solutions

Calculating the propagation delay of coaxial cable

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

The challenges of non-stable predicates

w o = R 1 p. (1) R = p =. = 1

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Strain gauge and rosettes

If we restrict the domain of y = sin x to [ π 2, π 2

Reminders: linear functions

Differential equations

Second Order Partial Differential Equations

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

Section 9.2 Polar Equations and Graphs

Other Test Constructions: Likelihood Ratio & Bayes Tests

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Exercises to Statistics of Material Fatigue No. 5

the total number of electrons passing through the lamp.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

ΠΣΤΧΛΑΚΘ ΕΡΓΑΛΑ ΜΕΣΡΘΕΛ ΟΠΣΛΚΟΤ ΒΑΚΟΤ ΑΣΜΟΦΑΛΡΑ ΜΕ ΘΛΛΑΚΟ ΦΩΣΟΜΕΣΡΟ ΕΚΟ

Lecture 26: Circular domains

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ. Πτυχιακή εργασία

Major Concepts. Multiphase Equilibrium Stability Applications to Phase Equilibrium. Two-Phase Coexistence

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Section 8.2 Graphs of Polar Equations

UDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example:

(C) 2010 Pearson Education, Inc. All rights reserved.

Quadratic Expressions

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Every set of first-order formulas is equivalent to an independent set

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Instruction Execution Times

1 String with massive end-points

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Transcript:

LIDAR REMOTE SENSING PROF. XINZHAO CHU CU-BOULDER, SPRING 21 Lecture 44. Constituent Lidar (4) Multi-wavelength Raman DIAL & DOAS and MAX-DOAS q Review conventional DIAL q Raman DIAL for Ozone Measurement q Rotational Vibrational-Rotational (RVR) Raman DIAL q Multiwavelength (Raman) DIAL q Differential Optical Absorption Spectroscopy (DOAS) 1

q DIAL lidar equation LIDAR REMOTE SENSING PROF. XINZHAO CHU CU-BOULDER, SPRING 21 Lidar Equation for DIAL [ ] P S (λ,r) = P L (λ) β scatter (λ,r)δr % ' & A R 2 (. R 1 * exp 2 α (λ,r)dr ) / 23. R 1 exp 2 σ abs (λ,r)n c (r)dr / 23 η(λ)g(r) [ ] + P B Extinction caused by interested constituent extinction (absorption) Extinction caused by other molecules and aerosols q Compared to resonance fluorescence, the main difference in DIAL is that the backscatter coefficient is from the elastic-scattering from air molecules and aerosols, not from the fluorescence of interested molecules. β Scatter (λ,r) = β aer (λ,r) + β mol (λ,r) q The parameter in the DIAL equation α (λ,r) = α aer (λ,r) +α mol (λ,r) +σ IG (λ,r)n IG (r) Aerosol Extinction Air Molecule Extinction Interference gas absorption 2

LIDAR REMOTE SENSING PROF. XINZHAO CHU CU-BOULDER, SPRING 21 Conventional DIAL Ozone Measurement λ ON = 288.9nm λ OFF = 299.1nm 3

n c (R) = LIDAR REMOTE SENSING PROF. XINZHAO CHU CU-BOULDER, SPRING 21 Conventional DIAL Solutions 1 2Δσ abs 1 Δσ abs. & ln P S(λ OFF,R) P B ) 2 ( + ' P S (λ ON,R) P B * d & ln P L(λ OFF )η(λ OFF )) / ( + 3 dr ' P L (λ ON )η(λ ON ) * & ln β aer(λ OFF,R) + β mol (λ OFF,R)) ( + 1 ' β aer (λ ON,R) + β mol (λ ON,R) * 4. [ α aer (λ ON,R) α aer (λ OFF,R)] 2 / + [ α mol (λ ON,R) α mol (λ OFF,R)] 3 1 + [ σ IG (λ ON,R) σ IG (λ OFF,R)]n IG 4 All terms non-range dependent vanish after the derivative d/dr Introducing large error when large aerosol gradient or IG exists4

LIDAR REMOTE SENSING PROF. XINZHAO CHU CU-BOULDER, SPRING 21 Ozone Raman DIAL [Ulla Wandinger, Raman Lidar chapter, 25] 5

LIDAR REMOTE SENSING PROF. XINZHAO CHU CU-BOULDER, SPRING 21 Conventional Raman DIAL for O 3 Measurements in Clouds On- Resonance Off- Resonance Conventional Raman DIAL uses two primary wavelengths transmitted (e.g., 38 and 351 nm) into the atmosphere and ozone is calculated from the differential absorption of the corresponding Raman return signals of molecular N 2 (e.g., 332 and 382 nm).

LIDAR REMOTE SENSING PROF. XINZHAO CHU CU-BOULDER, SPRING 21 Raman DIAL Equations q Raman channels (e.g., from N 2 Raman inelastic scattering, instead of elastic scattering from air molecules or aerosols), [ ] ON P S (λ Ref,R) = ON PL (λ ) ON ON % βraman (λ,λref,r)δr ' & / R ON exp α aer (λ,r) ON +αaer (λ Ref,r) ON +αmol (λ,r) ON +αmol (λ Ref,r) 1 A R 2 ( ) dr ON (,r) ) n 2 IGdr 34 ON (,r) ) n c (r)dr 2 4 η(λ ON [ Ref )G(R) ] + P B / R ON exp σ IG (λ,r) +σ IG (λ 1 Ref / R ON exp σ abs (λ,r) +σ abs (λ 1 Ref [ ] OFF P S (λ Ref,R) = OFF PL (λ ) OFF OFF % βraman (λ,λref,r)δr ' & OFF (,r) ) dr OFF (,r) ) n IG dr 2 34 OFF (,r) ) n 2 c(r)dr 4 η(λ OFF Ref )G(R) / R OFF exp α aer (λ,r) OFF +αaer (λ Ref,r) OFF +αmol (λ,r) +αmol (λ 1 Ref / R OFF exp σ IG (λ,r) +σig (λ 1 Ref / R OFF exp σ abs (λ,r) +σ abs (λ 1 Ref 3 ( * ) A R 2 3 ( * ) [ ] + P B 7 2 34 2 34

LIDAR REMOTE SENSING PROF. XINZHAO CHU CU-BOULDER, SPRING 21 Solution for Raman DIAL Equations q From the two Raman reference channel equations, we obtain the number density of the constituent that we are interested in. & ln P S(λ OFF Ref,R) P ) 2 ( B P S (λ ON + ' Ref,R) P B * 1 d & n c (R) = ln P L(λ OFF )η(λ OFF Ref )) / ( Δσ abs dr ' P L (λ ON )η(λ ON + 3 Ref ) * & ln β Raman (λ OFF Ref,R)) ( ' β Raman (λ ON + 1 Ref,R)* 4 1 Δσ abs. / 1 Δα aer (R) 2 + Δα mol (R) 3 + Δσ IG (R)n IG 4 q Here, the Δ expressions consist of four terms each Δξ = ξ(λ ON ) +ξ(λ ON Ref ) ξ(λ OFF ) ξ(λ OFF Ref ) with ξ = σ abs,α aer,α mol,σ IG 8 A B C D E F

LIDAR REMOTE SENSING PROF. XINZHAO CHU CU-BOULDER, SPRING 21 Solution in Ozone Case q Term B can be measured and it is range-independent, so the derivative is zero, q Term C is only concerned about molecule Raman scattering, so can be calculated. q Term D will be determined through using the Raman channel at OFF wavelength and introducing Angstrom exponent. q Term E is concerned about molecule Rayleigh scattering, so can be be calculated from atmosphere temperature and pressure. q Term F can be minimized through choosing proper wavelengths, thus, can be ignored. 9

LIDAR REMOTE SENSING PROF. XINZHAO CHU CU-BOULDER, SPRING 21 Ozone Raman DIAL Instrumentation Return Signals - On-line: 332 nm (N 2 Raman scattering from 38 nm) Off-line: 382 nm (N 2 Raman scattering from 351 nm) 1

LIDAR REMOTE SENSING PROF. XINZHAO CHU CU-BOULDER, SPRING 21 Ozone Raman DIAL Receiver Return signals 11

LIDAR REMOTE SENSING PROF. XINZHAO CHU CU-BOULDER, SPRING 21 RVR Raman DIAL for O 3 Measurement Rotational Vibrational-Rotational Raman DIAL transmits single primary wavelength (e.g., 38 nm) into the atmosphere and then ozone measurement is based on differential absorption of ozone between the purely rotational Raman (RR) return signals from N 2 (37 nm) and O 2 (37 nm) as the onresonance wavelength, and the vibrational-rotational Raman (VRR) return signals from N 2 (332 nm) or O 2 (323 nm) as the off-resonance wavelength. 12

LIDAR REMOTE SENSING PROF. XINZHAO CHU CU-BOULDER, SPRING 21 Rotational Vibrational-Rotational (RVR) Raman DIAL with Single Laser 13

LIDAR REMOTE SENSING PROF. XINZHAO CHU CU-BOULDER, SPRING 21 RVR Raman DIAL [Reichardt et al., Applied Optics, 39, 72-79, 2] 14

LIDAR REMOTE SENSING PROF. XINZHAO CHU CU-BOULDER, SPRING 21 Single-Laser RVR Raman DIAL 15

LIDAR REMOTE SENSING PROF. XINZHAO CHU CU-BOULDER, SPRING 21 RVR Raman DIAL Equation q For the elastic DIAL channel at ON-resonance wavelength 38 nm, [ ] P S (λ L,R) = P L (λ L ) ( β aer (λ L,R) + β mol (λ L,R))ΔR % ' & A R 2 ( ) * exp. 2 R α (λ,r) +α (λ,r) 1 ( )dr / aer L mol L 23. R 1 exp 2 σ IG (λ L,r)n IG dr / 23 exp. 2 R σ abs (λ L,r)n c (r)dr 1 / 23 η(λ L )G(R) [ ] + P B q For the purely rotational Raman channels from N 2 and O 2 at 37 nm, [ ] P S (λ RR,R) = P L (λ L ) β Raman (λ L,λ RR,R)ΔR / R 2 exp ( α aer (λ L,r) +α aer (λ RR,r) +α mol (λ L,r) +α mol (λ RR,r) 1 )dr 34 % ' & A R 2 / R 2 exp ( σ IG (λ L,r) +σ IG (λ RR,r))n IG dr 1 34 / R 2 exp ( σ abs (λ L,r) +σ abs (λ RR,r))n c (r)dr 1 34 η(λ RR )G(R) ( * ) [ ] + P B The beauty of the RVR Raman DIAL is the utilization of pure rotational Raman (RR) scattering so that aerosol backscatter is excluded in the RR channel. 1

LIDAR REMOTE SENSING PROF. XINZHAO CHU CU-BOULDER, SPRING 21 RVR Raman DIAL Equation Continued q For the vibrational-rotational Raman channel from N 2 at 332 nm, [ ] P S (λ VRR,R) = P L (λ L ) β Raman (λ L,λ VRR,R)ΔR / R 2 exp ( α aer (λ L,r) +α aer (λ VRR,r) +α mol (λ L,r) +α mol (λ VRR,r) 1 )dr 34 / R 2 exp ( σ IG (λ L,r) +σ IG (λ VRR,r))n IG dr 1 34 % ' & A R 2 / R 2 exp ( σ abs (λ L,r) +σ abs (λ VRR,r))n c (r)dr 1 34 η(λ VRR )G(R) ( * ) [ ] + P B Certainly, the vibrational-rotational Raman (VRR) scattering channel also excludes aerosol backscatter. 17

LIDAR REMOTE SENSING PROF. XINZHAO CHU CU-BOULDER, SPRING 21 Solution for RVR Raman DIAL q From the Rotational Raman (RR) and the Vibrational-Rotational Raman (VRR) equations, the ozone number density can be derived as n c (R) = 1 Δσ abs. & ln P S(λ VRR,R) P B ) 2 ( + ' P S (λ RR,R) P B * d & ln η(λ VRR ( ) ) / + 3 dr ' η(λ RR ) * & ln β Raman(λ VRR,R)) ( + 1 ' β Raman (λ RR,R) * 4 1 Δσ abs. Δα aer (R) 2 / + Δα mol (R) 3 1 + Δσ IG (R)n IG 4 q Here, the Δ expressions consist of four terms each, but the outgoing laser wavelength terms are cancelled out A B C D E F Δξ = [ ξ(λ L ) +ξ(λ RR )] [ ξ(λ L ) +ξ(λ VRR )] = ξ(λ RR ) ξ(λ VRR ) with ξ = σ abs,α aer,α mol,σ IG 18

LIDAR REMOTE SENSING PROF. XINZHAO CHU CU-BOULDER, SPRING 21 Challenge in RVR Raman DIAL q Term B is range-independent, so the derivative is zero, q Term C is only concerned about molecule Raman scattering. q Term D will be determined through using the Raman VRR channel and introducing Angstrom exponent. q Term E is concerned about molecule Rayleigh scattering, so can be be calculated from atmosphere temperature and pressure. q Term F can be minimized through choosing proper wavelengths, thus, can be ignored. The main challenge in RVR Raman DIAL is how to sufficiently suppress the elastic scattering at laser wavelength in the pure rotational Raman (RR) channel, as the wavelength difference is only 1 nm. Modern interference filter has FWHM of.3 nm, but its wing (or tail) can certainly extend to more than 1 nm. Since Rayleigh scattering is about 3 orders of magnitude larger than rotational Raman scattering, the influence from Rayleigh scattering is not easy to be excluded. Thus, RVR Raman DIAL is not easy to be realized. 19

LIDAR REMOTE SENSING PROF. XINZHAO CHU CU-BOULDER, SPRING 21 Multiwavelength (Raman) DIAL 1ON 1OFF 2ON 2OFF Multiwavelength DIAL uses three or more wavelengths transmitted into the atmosphere and ozone is calculated from the differential absorption of several pairs of elastic scattering signals from air molecules and aerosols. The influence from differential scattering and extinction of aerosols are dramatically decreased by properly choosing wavelengths. 2

LIDAR REMOTE SENSING PROF. XINZHAO CHU CU-BOULDER, SPRING 21 Multiwavelength DIAL Equation q For the elastic DIAL channel at 1ON-resonance wavelength, [( ) ΔR ] P S (λ 1 ON,R) = P L (λ 1 ON ) β aer (λ 1 ON,R) + β mol (λ 1 ON,R) % ' & A R 2 ( ) dr ( ) * exp. 2 R α (λ ON,r) +α (λ ON /,r) aer 1 mol 1 [ ] + P B. R exp 2 σ IG (λ ON 1 1,r)n IG (r)dr / 23 exp. 2 R σ abs(λ ON 1 1,r)n c (r)dr / 23 η(λ ON 1 )G(R) q For the elastic DIAL channel at 1OFF-resonance wavelength, [( ) ΔR ] P S (λ 1 OFF,R) = P L (λ 1 OFF ) β aer (λ 1 OFF,R) + β mol (λ 1 OFF,R) % ' & A R 2 ( ) dr ( ) * exp. 2 R α (λ OFF,r) +α (λ OFF /,r) aer 1 mol 1 [ ] + P B. R exp 2 σ IG (λ OFF 1 1,r)n IG (r)dr / 23 exp. 2 R σ abs (λ OFF 1 1,r)n c (r)dr / 23 η(λ OFF 1 )G(R) q For the elastic DIAL channel at 2ON-resonance wavelength, [( ) ΔR ] P S (λ 2 ON,R) = P L (λ 2 ON ) β aer (λ 2 ON,R) + β mol (λ 2 ON,R) q For the elastic DIAL channel at 2OFF-resonance wavelength, [( ) ΔR ] P S (λ 2 OFF,R) = P L (λ 2 OFF ) β aer (λ 2 OFF,R) + β mol (λ 2 OFF,R) % ' & A R 2 ( ) dr ( ) * exp. 2 R α (λ OFF,r) +α (λ OFF /,r) aer 2 mol 2 [ ] + P B. R exp 2 σ IG (λ OFF 1 2,r)n IG (r)dr / 23 exp. 2 R σ abs (λ OFF 1 2,r)n c (r)dr / 23 η(λ OFF 2 )G(R) % ' & A R 2 ( ) dr ( ) * exp. 2 R α (λ ON,r) +α (λ ON /,r) aer 2 mol 2 [ ] + P B. R exp 2 σ IG (λ ON 1 2,r)n IG (r)dr / 23 exp. 2 R σ abs (λ ON 1 2,r)n c (r)dr / 23 η(λ ON 2 )G(R) 21 1 23 1 23 1 23 1 23

LIDAR REMOTE SENSING PROF. XINZHAO CHU CU-BOULDER, SPRING 21 3-Wavelength Dual-DIAL for O 3 q From above equations, we can derive the following $ ln P S (λ ON 1,R) P B P S (λ ON 2,R) P ' $ & B P S (λ OFF 1,R) P B P S (λ OFF ) = ln P L (λ ON 1 )η(λ ON 1 ) P L (λ ON 2 )η(λ ON 2 ) ' & % 2,R) P B ( % P L (λ OFF 1 )η(λ OFF 1 ) P L (λ OFF 2 )η(λ OFF ) 2 ) ( $ + ln β aer (λ ON 1,R) + β mol (λ ON 1,R) β aer (λ ON 2,R) + β mol (λ ON 2,R) ' & % β aer (λ OFF 1,R) + β mol (λ OFF 1,R) β aer (λ OFF 2,R) + β mol (λ OFF ) 2,R) ( R 2 [( α aer (λ ON 1,r) α aer (λ OFF 1,r)) ( α aer(λ ON 2,r) α aer (λ OFF 2,r))] dr R 2 [( α mol (λ ON 1,r) α mol (λ OFF 1,r)) ( α mol(λ ON 2,r) α mol (λ OFF 2,r))] dr R 2 [( σ IG (λ ON 1,r) σ IG (λ OFF 1,r)) ( σ IG (λ ON 2,r) σ IG (λ OFF 2,r))] n IG (r)dr R 2 [( σ abs (λ ON 1,r) σ abs (λ OFF 1,r)) ( σ abs (λ ON 2,r) σ abs (λ OFF 2,r))] n c (r)dr Three wavelengths form a dual-pair DIAL, with λ 1OFF = λ 2ON. Thus, the influence from aerosol extinction and backscatter can be minimized by choosing appropriate pairs of wavelengths. 22

LIDAR REMOTE SENSING PROF. XINZHAO CHU CU-BOULDER, SPRING 21 Solution for Dual-DIAL O 3 q Ozone number density can be derived from above equations: n c (R) = 1 2Δσ abs 1 Δσ abs 4 & ln P S(λ ON 1,R) P B P S (λ ON 2,R) P ) 8 ( B P S (λ OFF 1,R) P B P S (λ OFF + ' 2,R) P B * d +ln P L (λ & ON 1 )η(λ ON 1 ) P L (λ ON 2 )η(λ ON 2 ) ) 5 ( dr ' P L (λ OFF 1 )η(λ OFF 1 ) P L (λ OFF 2 )η(λ OFF + 9 2 )*. & + ln β aer (λ ON 1,R) + β mol (λ ON 1,R) ) & ( ' β aer (λ OFF 1,R) + β mol (λ OFF + ln β aer (λ ON 2,R) + β mol (λ ON 2,R) ) 1 ( 1,R)* ' β aer (λ OFF 2,R) + β mol (λ OFF + 3 7 / 2,R)* 23 : 4 ( α aer (λ ON 1,R) α aer (λ OFF 1,R)) α aer (λ ON 2,R) α aer (λ OFF 8 [ ( 2,R))] + [( α mol (λ ON 1,R) α mol (λ OFF 1,R)) ( α mol (λ ON 2,R) α mol (λ OFF 5 2,R))] 9 + [( σ IG (λ ON 1,R) σ IG (λ OFF 1,R)) ( σ IG (λ ON 2,R) σ IG (λ OFF 2,R) 7 )] n IG (R) : A B C D E F Where the differential absorption cross-section is defined as Δσ abs = ( σ abs (λ ON 1,r) σ abs (λ OFF 1,r)) ( σ abs(λ ON 2,r) σ abs (λ OFF 2,r)) 23

LIDAR REMOTE SENSING PROF. XINZHAO CHU CU-BOULDER, SPRING 21 Choice of Wavelength for Dual-DIAL % Δβ = ln β aer (λ ON 1,R) + β mol (λ ON 1,R) ( % ' & β aer (λ OFF 1,R) + β mol (λ OFF * ln β aer (λ ON 2,R) + β mol (λ ON 2,R) ( ' 1,R) ) & β aer (λ OFF 2,R) + β mol (λ OFF * 2,R) ) Δα aer = ( α aer (λ ON 1,R) α aer (λ OFF 1,R)) ( α aer (λ ON 2,R) α aer (λ OFF 2,R)) Δα mol = ( α mol (λ ON 1,R) α mol (λ OFF 1,R)) ( α mol (λ ON 2,R) α mol (λ OFF 2,R)) Δσ IG = ( σ IG (λ ON 1,R) σ IG (λ OFF 1,R)) ( σ IG (λ ON 2,R) σ IG (λ OFF 2,R)) Δσ abs = ( σ abs (λ ON 1,r) σ abs (λ OFF 1,r)) ( σ abs (λ ON 2,r) σ abs (λ OFF 2,r)) q Different channels interact on the same aerosols and interference gases (IG) but with different wavelengths. The main error in conventional DIAL is caused by the uncertainty of the wavelength dependence and information (like density) of the backscatter, extinction, and interference owing to aerosols and IG. β aer (λ) 1 λ a, α aer(λ) 1 λ a q If the wavelength dependence (Angstrom factor) is stable within the detection wavelength range, it is possible to cancel the influence by carefully choosing the wavelengths of two pairs - the difference between two pairs can be minimized. 24

LIDAR REMOTE SENSING PROF. XINZHAO CHU CU-BOULDER, SPRING 21 Solution for Dual-DIAL O 3 q By choosing the pairs of wavelengths, terms C-F (now the difference between two pairs of DIAL wavelengths) can be minimized or cancelled out. Thus, the O 3 measurement errors caused by the uncertainties of terms C- F can be dramatically decreased. q Notice that the choice of the pairs of wavelengths must satisfy one important condition that the differential absorption cross-section given above must be large enough to meet the requirements of measurements sensitivity and spatial resolution. q For the O 3 measurements, the dual-dial can be carried out by three wavelengths chosen at 277.1, 291.8, and 313.2 nm. The middle wavelength 291.8 nm acts as the off-wavelength for the 1st pair, while the onwavelength for the 2nd pair. q To minimize the influence from aerosol backscatter and extinction, a constant C can be introduced into above lidar equation. C is approximately determined by the ratio of the wavelength differences between two pairs of DIAL: C = λ 1 ON λ 1 OFF λ 2 ON λ 2 OFF λ 1 OFF = λ 2 ON Here 25

LIDAR REMOTE SENSING PROF. XINZHAO CHU CU-BOULDER, SPRING 21 Solution with Constant C Introduced n c (R) = 1 2Δσ abs 1 Δσ abs 4 & ln P S (λ ON 1,R) P B P S (λ ON C & 2,R) P ) ) 8 ( B P S (λ OFF ( 1,R) P B ' P S (λ OFF + + ( ' 2,R) P B * + * & d +ln P L (λ ON 1 )η(λ ON 1 ) P L (λ ON 2 )η(λ ON C & 2 ) ) ) ( dr P L (λ OFF 1 )η(λ OFF ( 1 ) ' P L (λ OFF 2 )η(λ OFF + + 5 9 ( 2 ) ' * + *. & + ln β aer (λ ON 1,R) + β mol (λ ON 1,R) ) & ( ' β aer (λ OFF 1,R) + β mol (λ OFF + Cln β aer (λ ON 2,R) + β mol (λ ON 2,R) ) 1 ( 1,R)* ' β aer (λ OFF 2,R) + β mol (λ OFF + 3 / 2,R)* 23 7 : 4 ( α aer (λ ON 1,R) α aer (λ OFF 1,R)) C α aer (λ ON 2,R) α aer (λ OFF 8 [ ( 2,R))] + [( α mol (λ ON 1,R) α mol (λ OFF 1,R)) C( α mol (λ ON 2,R) α mol (λ OFF 5 2,R))] 9 + [( σ IG (λ ON 1,R) σ IG (λ OFF 1,R)) C( σ IG (λ ON 2,R) σ IG (λ OFF 2,R) 7 )] n IG (R) : A B C D E F Where the differential absorption cross-section is defined as Δσ abs = ( σ abs (λ ON 1,r) σ abs (λ OFF 1,r)) C ( σ abs(λ ON 2,r) σ abs (λ OFF 2,r)) 2

LIDAR REMOTE SENSING PROF. XINZHAO CHU CU-BOULDER, SPRING 21 Simulation Results for Dual-DIAL O 3 C =.5 27

LIDAR REMOTE SENSING PROF. XINZHAO CHU CU-BOULDER, SPRING 21 Dual-DIAL for SO 2 Measurements Fukuchi et al., Opt. Eng., 38, 141-145, 1999 Fujii et al., Applied Optics, 4, 949-95, 21 28

LIDAR REMOTE SENSING PROF. XINZHAO CHU CU-BOULDER, SPRING 21 Dual-DIAL for SO 2 Measurements 29

LIDAR REMOTE SENSING PROF. XINZHAO CHU CU-BOULDER, SPRING 21 Differential Optical Absorption Spectroscopy (DOAS) di(λ) = I(λ)α(λ)dz = Iσ ik (λ)(n i N k )dz & I(λ,z) = I exp '( ) σ ik (λ)(n i N k )dz * + è I(λ,z) = I e σ (λ)(n i N k )L = I e z -- Lambert-Beer s Law α (λ)l 3

LIDAR REMOTE SENSING PROF. XINZHAO CHU CU-BOULDER, SPRING 21 DOAS Configurations 31

LIDAR REMOTE SENSING PROF. XINZHAO CHU CU-BOULDER, SPRING 21 DOAS 32

LIDAR REMOTE SENSING PROF. XINZHAO CHU CU-BOULDER, SPRING 21 DOAS Principles [Platt and Stutz, DOAS Book, 28] 33

LIDAR REMOTE SENSING PROF. XINZHAO CHU CU-BOULDER, SPRING 21 DOAS Principles 34

LIDAR REMOTE SENSING PROF. XINZHAO CHU CU-BOULDER, SPRING 21 DOAS Principles 35

LIDAR REMOTE SENSING PROF. XINZHAO CHU CU-BOULDER, SPRING 21 DOAS Principles 3

LIDAR REMOTE SENSING PROF. XINZHAO CHU CU-BOULDER, SPRING 21 MAX-DOAS Principles [Hönninger et al., ACP, 24] 37

LIDAR REMOTE SENSING PROF. XINZHAO CHU CU-BOULDER, SPRING 21 MAX-DOAS Principles [Hönninger et al., ACP, 24] 38

LIDAR REMOTE SENSING PROF. XINZHAO CHU CU-BOULDER, SPRING 21 MAX-DOAS Measurements [Hönninger et al., ACP, 24] 39

LIDAR REMOTE SENSING PROF. XINZHAO CHU CU-BOULDER, SPRING 21 MAX-DOAS Measurements [Hönninger et al., ACP, 24] 4

LIDAR REMOTE SENSING PROF. XINZHAO CHU CU-BOULDER, SPRING 21 Multi-Angle Pointing TOPAZ Lidar Horse Pool site: Winter 213 9 2 2 Composite vertical O3 and aerosol profiles every 5 min [Courtesy of Dr. Chris Senff]