ELECTRONIC SUPPLEMENTARY MATERIAL. Figure 1S.- Chemical structure of: a) alizarin; b) purpurin; c) pseudopurpurin; d) xanthopurpurin; e) quinizarin.

Σχετικά έγγραφα
Supplementary Materials: Risk Assessment for Children Exposed to Beach Sands Impacted by Oil Spill Chemicals

Comparison of experimental and estimated polarizabilities for organic compounds using ThermoML Archive data

Sulfonated graphene as highly efficient and reusable acid carbocatalyst for the synthesis of ester plasticizers

SUPPLEMENTARY MATERIAL

SPEKTRUM HASIL ANALISA GC-MS METIL ESTER

Electronic Supplementary Information. Carbon dioxide as a reversible amine-protecting

Chemical Name Index 443

Supplementary Materials: Detection of 191 Taxifolin Metabolites and Their Distribution in Rats Using HPLC-ESI-IT-TOF-MS n

Chemical Name Index. Chemical Name Index 459

Chemical profiling analysis of Maca using UHPLC-ESI-Orbitrap MS coupled. ingredients

Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones

Supporting Information

Molecular Basis of Olfactory Chemoreception in the Common Bed Bug, Cimex lectularius. Feng Liu, Zhou Chen, Nannan Liu

The Free Internet Journal for Organic Chemistry

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Supporting Information

Supporting Information: Design principles for α-tocopherol analogues

Supplementary Materials

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

Facile construction of the functionalized 4H-chromene via tandem. benzylation and cyclization. Jinmin Fan and Zhiyong Wang*

Supplementary Figure S1. Single X-ray structure 3a at probability ellipsoids of 20%.

Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction

Supporting Information

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Supporting Information. Consecutive hydrazino-ugi-azide reactions: synthesis of acylhydrazines bearing 1,5- disubstituted tetrazoles

Synthesis, structural studies and stability of the model, cysteine containing DNA-protein cross-links

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts

Supporting Information. for. Angew. Chem. Int. Ed. Z Wiley-VCH 2003

Supporting Information. Experimental section

Extended dissolution studies of cellulose in imidazolium based ionic liquids

Eremophila spp. by Combined use of Dual High-Resolution PTP1B and α- Glucosidase Inhibition Profiling and HPLC-HRMS-SPE-NMR

Iodine-catalyzed synthesis of sulfur-bridged enaminones and chromones via double C(sp 2 )-H thiolation

Supplementary Information

Supporting Information for

A new ent-kaurane diterpene from Euphorbia stracheyi Boiss

Synthesis of novel 1,2,3-triazolyl derivatives of pregnane, androstane and D-homoandrostane. Tandem Click reaction/cu-catalyzed D-homo rearrangement

Electronic Supplementary Information

Electronic Supplementary Information

GC-MS 84.22% % Aroma components analysis in blackcurrant fruit and fruit wine by GC-MS

Supporting Information

Divergent synthesis of various iminocyclitols from D-ribose

Supplementary Information

Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3

Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran

Άρθρο 28 (1) Επιχρίσματα επιφανειών που προορίζονται να έλθουν σ επαφή με τρόφιμα.

Supporting Information. Palladium Complexes with Bulky Diphosphine. Synthesis of (Bio-) Adipic Acid from Pentenoic. Acid Mixtures.

Supplementary Information

Universal Solvent GC Method Table

Electronic Supplementary Information

Dipole-Guided Electron Capture Causes Abnormal Dissociations of Phosphorylated Pentapeptides

Ionic liquid effect over the Biginelli reaction under homogeneous and heterogeneous catalysis

Supporting Information. Table of Contents. II. Experimental procedures. II. Copies of 1H and 13C NMR spectra for all compounds

1 h, , CaCl 2. pelamis) 58.1%, (Headspace solid -phase microextraction and gas chromatography -mass spectrometry,hs -SPME - Vol. 15 No.

Novel electroluminescent donor-acceptors based on dibenzo[a,c]phenazine as

Joint Research Centre

Supporting Information

Peptidomimetics as Protein Arginine Deiminase 4 (PAD4) Inhibitors

Efficient Synthesis of Ureas by Direct Palladium-Catalyzed. Oxidative Carbonylation of Amines

Malgorzata Korycka-Machala, Marcin Nowosielski, Aneta Kuron, Sebastian Rykowski, Agnieszka Olejniczak, Marcin Hoffmann and Jaroslaw Dziadek

Direct Palladium-Catalyzed Arylations of Aryl Bromides. with 2/9-Substituted Pyrimido[5,4-b]indolizines

Supporting Information for Fe-Catalyzed Reductive Coupling of Unactivated Alkenes with. β-nitroalkenes. Contents. 1. General Information S2

SUPPLEMENTARY DATA. Waste-to-useful: Biowaste-derived heterogeneous catalyst for a green and sustainable Henry reaction

Electronic Supplementary Information

REACH SIPA ACH BERTHIER Déc 08 - version 1

Pankow JF, Luo W, Melnychenko AN, Barsanti, KC, Isabelle LM, Chen C, Guenther AB, Rosenstiel TN.

Aqueous MW eco-friendly protocol for amino group protection.

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Supplementary Information

New Cytotoxic Constituents from the Red Sea Soft Coral Nephthea sp.

Supplement: Intramolecular N to N acyl migration in conformationally mobile 1 -acyl-1- systems promoted by debenzylation conditions (HCOONH 4

SUPPORTING INFORMATION. 1. General... S1. 2. General procedure for the synthesis of compounds 3 and 4 in the absence of AgOAc...

Supporting Information

Phosphorus Oxychloride as an Efficient Coupling Reagent for the Synthesis of Ester, Amide and Peptide under Mild Conditions

Near-Silence of Isothiocyanate-Carbon in 13 C-NMR Spectra. A Case Study of Allyl Isothiocyanate

Pyrrolo[2,3-d:5,4-d']bisthiazoles: Alternate Synthetic Routes and a Comparative Study to Analogous Fused-ring Bithiophenes

Eco-friendly synthesis of diverse and valuable 2-pyridones by catalyst- and solvent-free thermal multicomponent domino reaction

Eur. J. Org. Chem WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006 ISSN X SUPPORTING INFORMATION

Fast healing of polyurethane thermosets using. reversible triazolinedione chemistry and shapememory

SUPPORTING INFORMATION

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2009

The N,S-Bidentate Ligand Assisted Pd-Catalyzed C(sp 2 )-H. Carbonylation using Langlois Reagent as CO Source. Supporting Information.

First Total Synthesis of Antimitotic Compound, (+)-Phomopsidin

Supporting Information

PRICE LIST. HPLC 95%, synth., cryst. 1 mg x 1 mg HPLC 98%, synth., cryst. 1 mg x 1 mg 2430

and Selective Allylic Reduction of Allylic Alcohols and Their Derivatives with Benzyl Alcohol

Rh(III)-Catalyzed C-H Amidation with N-hydroxycarbamates: A. new Entry to N-Carbamate Protected Arylamines

Synthesis of Imines from Amines in Aliphatic Alcohols on Pd/ZrO 2 Catalyst at Ambient Conditions

VII Contents Introduction Individual Fragrance and Flavor Materials

Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic

Supporting information

Joint Research Centre

Selective mono reduction of bisphosphine

Protease-catalysed Direct Asymmetric Mannich Reaction in Organic Solvent

Βασιλεία Ι. Σινάνογλου Αναπληρώτρια Καθηγήτρια

Patrycja Miszczyk, Dorota Wieczorek, Joanna Gałęzowska, Błażej Dziuk, Joanna Wietrzyk and Ewa Chmielewska. 1. Spectroscopic Data.

Lyotropic Liquid Crystals in Amino acid derived Protic Ionic Liquids: Physicochemical Properties and Behaviour as Amphiphile Self-Assembly Media

Global Reference List of Chemically Defined Substances

ESI for. A simple and efficient protocol for the palladium-catalyzed. ligand-free Suzuki reaction at room temperature in aqueous DMF.

Transcript:

ELECTRNIC SUPPLEMENTARY MATERIAL Figure 1S.- Chemical structure of: a) alizarin; b) purpurin; c) pseudopurpurin; d) xanthopurpurin; e) quinizarin. R 1 R 2 R 3 R 4 Name R 1 R 2 R 3 R 4 a Alizarin H H H H b Purpurin H H H H c Pseudopurpurin H CH H H d Xanthopurpurin H H H H e Quinizarin H H H H

Figure 2S.- Chemical structure of: a) curcumin, b) demethoxycurcumin, c) bisdemethoxycurcumin, d) cyclocurcumin, e) 5 -methoxycurcumin and f) dihydrocurcumin. a) H H H 3 C b) H H c) H H d) H H H 3 C

e) H H H 3 C f) H H H 3 C

Figure 3S- Chemical structure of: a) isophorone, b) safranal, c) picrocrocin, d) crocin and e) crocetin. a) H 3 C b) H 3 C C H 3 c) H 3 C CH d) HH 2 C H H H H 3 C CH

e) H H f) R R R= CH 2 H CH 2 H H H H H H H

Figure 4S.- Chemical structure of: a) indigotin and b) indirubin. a) H N N H b) N H NH

Figure 5S.- Ion chromatogram of madder obtained from: a) on line trimethylsilylation with pyrolysis of solid sample of dye at 600ºC; b) on line trimethylsilylation with pyrolysis of the extracted dye at 600ºC. a) Abundance 600000 550000 500000 2 450000 400000 350000 300000 250000 200000 150000 100000 50000 11 6 3 12 14 15 16 17 Time--> 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 b) Abundance 4 5000000 4500000 24 4000000 3500000 3000000 2500000 2000000 1500000 1000000 500000 1 7 8 5 12 17 17 16 15 21 20 13 9 18 10 19 22 23 25 Time--> 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00 28.00 30.00 32.00

Figure 6S.- Ion chromatogram of curcuma obtained from: a)on line trimethylsilylation with pyrolysis of solid sample of dye at 600ºC; b) on line trimethylsilylation with pyrolysis of the extracted dye at 600ºC; c) on line methylation with pyrolysis of solid sample of dye at 600ºC. a) Abundance 900000 800000 700000 11 19 600000 500000 400000 300000 200000 15 10 22 20 21 27 17 26 29 33 34 35 100000 Time (min) 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 b) Abundance 1400000 1300000 1200000 1100000 1000000 900000 800000 700000 600000 500000 400000 300000 200000 100000 16 29 37 19 23 36 30 26 31 34 35 27 28 32 33 Time- (min) 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00

c) Abundance 700000 11 650000 600000 550000 500000 450000 400000 350000 6 2 4 300000 250000 200000 150000 100000 3 1 9 8 5 7 12 13 14 19 20 21 17 18 24 25 50000 Time--> 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00

Figure 7S.- Ion chromatogram of indigo obtained from: a) on line trimethylsilylation with pyrolysis of solid sample of dye at 600ºC; b) on line trimethylsilylation with pyrolysis of the extracted dye at 600ºC. a) Abundance 3500000 7 3000000 2500000 2000000 1500000 9 Time--> 1000000 500000 1 2 3 8 5 6 4 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 10 14 15 16 20 19 21 b) Abundance 3500000 3000000 2500000 2000000 1500000 12 16 1000000 500000 11 14 15 20 18 19 21 13 17 23 24 22 Time--> 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00 28.00 30.00 32.00 34.00

Figure 8S.- Proposed structures of principal mass spectra fragments of: a) 2-methyl-1- hydroindol-3-one; b) 3-[(trimethylsilyl)oxy]-1H-indole. a) b)

Table 1S.- Retention time, m/z and abundance values of characteristic ion (70 ev) of the principal derivatised compounds from madder obtained by pyrolysis-gc/ms using HMDS with and without extraction. 17.56 41(6), 57(12), 76(4), 104(6), 149(100), 167(3), 223(6) 19.37 41(5), 76(4), 104(4), 149(100), 205(3), 223(4) 14.18 45(7), 73(37), 119(5), 147(100), 163(6), 193(3), 221(24), 16.13 73(12), 103(17), 140(8), 221(24), 251(11), 295(100), 26.21 41(89, 91(49), 104(14), 123(10), 149(100), 178(3), 27.85 45(6), 73(11), 105(5), 139(7), 238(2), 255(38), 269(10), 6.93 45(13), 59(6), 73(100), 89(2), 103(15), 117(10), 133(23), 20.98 43(29), 55(22), 73(94), 75(70), 117(100), 129(49), 26.13 43(10), 76(2), 104(3), 149(100), 251(16) t R Mass spectra data Peak #. Assignment (min) Characteristic ion (70 ev), m/z, (%) 1 Benzoic acid, TMS ester a 5.10 32 (8), 51(9), 77(47), 105(68), 135(45), 179(100), 194(9) 2 2-propanone, bis-[(tms)oxy] a 4.86 45(12), 59(7), 66(6), 73(100), 87(4), 103(49), 117(4), 129(8), 147(14), 189(24), 219(9) 3 Dodecanoic acid, TMS ester a 13.47 43(19), 59(22), 73(100), 75(57), 103(13), 117(55), 129(30), 132(17), 145(12), 213 (2), 257(44), 272(2) 4 1,2-benzenedicarboxylic acid, di-2- methylpropyl ester a 5 1,2-benzenedicarboxylic acid, di-butyl ester a 6 Glycerol, TMS ether a 7.05 45(17), 59(12), 73(100), 89(7), 103(11), 117(37), 129(36), 133(10), 147(36), 189(6), 205(36), 217(2) 7 1,2-benzenedicarboxylic acid, di-tms ester a 295(18), 310(2) 8 1,4-benzenedicarboxylic acid, di-tms ester a 310(6) 9 1,2-benzenedicarboxylic acid, dibutylphenylmethyl ester a 206(16), 225(6) 10 1,2-dihydroxyanthraquinone (alizarin), mono-tms ether b 297(100), 312(32) 11 Propanoic acid, 2,3-bis[(TMS)oxy], TMS ester a 147(64), 175(3), 189(40), 205(11), 217(4), 292(29), 307(5) 12 Hexadecanoic acid (palmitic acid), TMS ester a 132(45), 145(29), 269(4), 313(99), 328(6) 13 1,2-benzenedicarboxylic acid, di-hexyl ester a 14 ctadecan-1-ol, TMS ether a 23.30 43(19), 57(18), 73(33), 75(52), 83(11), 103(25), 111(7), 125(3), 311(2), 327(100) 15 9,12-octadecadienoic acid (linoleic acid), TMS ester a 23.92 41(36), 73(100), 117(26), 149(37), 223(40), 262(9), 337(35) 16 9-ctadecenoic acid (oleic acid), TMS ester a 24.02 41(34), 55(47), 73(100), 117872), 129(62), 145(27), 185(8), 222(11), 339(60), 354(4)

t R Mass spectra data Peak #. Assignment (min) Characteristic ion (70 ev), m/z, (%) 17 ctadecanoic acid (stearic acid), TMS 24.48 43(30), 55(22), 73(89), 117(100), 129(50), 132(479, ester a 145(37), 201(7), 297(4), 341(99), 356(8) 18 1,2-dihydroxyanthraquinone (alizarin), di- 27.11 73(20), 177(6), 296(5), 339(2), 369(100), 384(6) TMS ether b 19 1,4-dihydroxyanthraquinone (quinizarin), 28.23 73(20), 105(20), 147(16), 161(15), 177(10), 225(10), di-tms ether b 295814), 324(16), 354(100), 369(12) 20 1,3-dihydroxyanthraquinone 29.66 73(41), 149(10), 177(4), 238(3), 296(3), 369(100), 384(1) (xanthopurpurin), di-tms ether b 21 1,2-benzenedicarboxylic acid, bis(2-29.33 41(10), 57(18), 83(4), 104(5), 149(100), 167(27), 279(8) ethylhexyl) ester a 22 1,4,5-trihydroxyanthraquinone, tri-tms 29.93 73(38), 149(8), 207(7), 339(5), 369(28), 399(3), 457(100), ether? b 472(4) 23 1,2,4-trihydroxyanthraquinone (purpurin), 30.56 73(39), 149(6), 207(6), 339(13), 369(6), 427(5), 442(100) tri-tms ether b 24 Isomer of 1,2,4- trihydroxyanthraquinone 31.70 73(5), 206(8), 311(3), 341(6), 370(4),412(7), 427(2), (purpurin), tri-tms ether b 442(100) 25 1,4,5-trihydroxy-3-methylanthraquinone, 32.86 73(22), 149(199, 207(17), 355(7), 384(4), 426(6), 456(100) tri-tms ether b a : Structure assigned on the basis of the comparison of MS data with those from the Wiley Library of Mass Spectra. b : Assignment is based on the interpretation of MS data.

Table 2S.- Retention time, m/z and abundance values of characteristic ion (70 ev) of the principal derivatised compounds from saffron obtained by pyrolysis-gc/ms using HMDS with and without extraction and TMAH. Peak #. Assignment t R (min) Mass spectra data Characteristic ion (70 ev), m/z, (%) 1 3,4-dimethylbenzaldehyde a 13.16 39(15), 44(27), 51(15), 63(12), 77(30), 91(29), 105(68), 133(92), 134(100) 2 3,5,5-trimethyl-2-cyclohexen-1-one (α-isophorone) a 11.32 39(22), 54(15), 67(8), 82(100), 95(10), 138(23) 3 5,5-dimethyl-2-methylene-3-cyclohexene-1-carboxaldehyde a 10.86 39(27), 44(24), 65(13), 19(36), 91(65), 105(32), 107(49), 121(100), 135(28), 150(7) 4 2,6,6-trimethyl-1,3-cyclohexadiene-1-carboxaldehyde (safranal) a 13.56 39(17), 51(9), 65(15), 75(25), 79(26), 91(85), 105(49), 107(100), 121(59), 135(9), 150(44) 5 2,6,6-trimethyl-2,4-cycloheptadien-1-one (eucarvone) a 14.08 39(36), 53(12), 66(38), 79(29), 91(49), 107(100), 122(13), 135(32), 150(73) 6 3,5,5-trimethyl-2-cyclohexen-1,4-dione (ketoisophorone) a 11.99 39(31), 68(100), 96(69), 109(13), 137(6), 152(35) 7 4-hydroxy-3,5,5-trimethyl-2-cyclohexen-1-one a 16.61 41(31), 55(18), 70(38), 82(9), 98(100), 112(45), 154(3) 8 2-hydroxy-3,5,5-trimethyl-2-cyclohexen-1-one a 12.10 32(18), 43(100), 55(55), 70(90), 83(31), 98(46), 111(26), 126(14), 139(35), 154(87) 9 2,2,6-trimethyl-1,4-cyclohexanedione a 12.67 42(97), 56(100), 69(51), 83(20), 95(22), 110(26), 139(70), 154(45) 10 2-(2-butenyl)-4-hydroxy-3-methyl-2-cyclopenten-1-one a 16.52 41(32), 55(24), 67(43), 81(33), 95(41), 109(39), 123(52), 137(47), 151(14), 166(100) 11 2-[(TMS)oxy]phenol a 13.63 45(19), 73(28), 75(85), 91(21), 107(7), 136(28), 151(100), 166(80), 182(48) 12 Benzoic acid, TMS ester a 14.89 45(11), 73(37), 77(40), 105(58), 135(46), 179(100), 194(5) 13 3,3,-dimethyl-1-[(TMS)oxy]cyclohexene a 13.86 43(23), 73(33), 85(6), 127(5), 147(2), 155(2), 183(100), 198(22) 14 Benzeneacetic acid, TMS ester a 16.61 45(11), 73(100), 75(31), 91(19), 16416), 194(14), 15 ctanoic acid, TMS ester a 15.75 55(18), 73(100), 117(55), 129(30), 147(13), 157(9), 173(4), 201(77) 16 1,2-benzenedicarboxylic acid, diethyl ester (Diethyl phthalate) a 23.97 65(8), 76(8), 105(8), 121(5), 149(100), 177(21), 193(3), 222(2) 17 2,2,9,9-tetramethyl-3,8-dioxa-2,9-disiladecane a 12.24 45(9), 73(32), 87(2), 101(5), 116(5), 133(6), 147(100), 177(14), 219(18) 18 2-[(TMS)oxy] propanoic acid, TMS ester a 14.43 45(13), 73(75), 117(64), 147(100), 190(16), 219(5) 19 2,2,8,8,-tetramethyl-3,7-dioxa-2,8-disilanonan-5-one a 14.47 45(12), 59(5), 73(100), 87(5), 103(53), 129(7), 147(15), 189(28), 219(10) 20 3-[(TMS)oxy]-3-butenoic acid, TMS ester a 16.71 45(14), 73(86), 129(12), 147(100), 156(16), 213(15), 246(2) 21 Butanedioic acid, di-tms ester (succinic acid) a 16.93 73(51), 129(8), 147(100), 247(12) 22 Dihydro-3,4-bis-[(TMS)oxy]-2(3H)-furanone a 18.54 45(14), 73(69), 101(18), 116(12), 131(10), 147(100), 217(7), 247(20), 262(6) 23 Dodecanoic acid, TMS ester a 25.04 73(100), 117(79), 129(37), 145(18), 257(87), 272(3) 24 2-methyl, 2-butenedioic acid, bis-tms ester (methylmaleic acid, 19.48 73(100), 97(12), 147(76), 184(60), 225(30), 259(62), bis-tms ester) a 25 1,2-benzenedicarboxylic acid, di-(2-methylpropyl) ester 29.85 57(13), 76(5), 104(13), 149(100), 167(3), 223(6) (Isobutyl phthalate) a 26 1,2-benzenedicarboxylic, dibutyl ester (Dibutyl phthalate) a 31.66 41(5), 76(4), 104(4), 149(100), 205(3), 223(4)

Peak #. Assignment t R (min) Mass spectra data Characteristic ion (70 ev), m/z, (%) 27 Glycerol, TMS ether a 16.09 45(10), 73(100), 103(25), 117(34), 133(21), 147(70), 175(2), 191(5), 205(58), 218(20), 299(3) 28 Trimethylsilylphosphate (3:1) a 16.04 45(5), 73(24), 133(8), 211(9), 283(5), 299(100), 314(15) 29 2,3-bis[(TMS)oxy]propanoic acid, TMS ester a 17.60 45(13), 73(100), 103(18), 117(12), 133(24), 147(74), 175(4), 189(46), 205(15), 292(40), 307(6) 30 Hexadecanoic acid (palmitic acid), TMS ester a 33.01 43(26), 57(11), 73(88), 75(66), 117(99), 129(48), 132(45), 145(32), 313(100), 328(6) 31 Nonanedioic acid (azelaic acid), di-tms ester a 28.56 45(12), 55(27), 73(100), 75(84), 97(10), 117(23), 129(34), 147(25), 152(20), 201(34), 204(17), 217(12)317(43) 32 1,2-benzenedicarboxylic acid, dihexyl ester a 38.42 43(11), 76(3), 104(3), 121(1), 149(100), 233(1), 251(6) 33 3,4-bis-[(TMS)oxy]butanoic acid, TMS ester a 20.24 73(100), 101(8), 117(9), 133(13), 147(38), 189(24), 233(26), 246(6), 321(7) 34 9,12-octadecadienoic acid (linoleic acid), TMS ester a 35.95 41(31), 55(42), 67(62), 73(100), 75(99), 95(40), 109(20), 117(35), 129(45), 150(20), 220(10), 262(18), 337(65), 352(3) 35 9-cis-octadecenoic acid (oleic acid), TMS ester a 36.06 40(92), 55(48), 73(100), 96(19), 117(63), 129(59), 145(25), 185(11), 339(57), 357(5) 36 9-trans-octadecenoic acid (oleic acid), TMS ester a 36.16 40(30), 55(40), 73(100), 95(37), 117(54), 129(55), 145(22), 339(38), 354(3) 37 ctadecanoic acid (stearic acid), TMS ester a 36.51 40(71), 55(24), 73(92), 75(69), 117(100), 129(50), 132(47), 145(37), 201(8), 341(94), 356(5) 38 1,2-benzenedicarboxylic acid, diheptyl ester a 41.51 43(8), 57(49, 76(2), 104(2), 149(100), 176(1) 39 2,3,5-tris--(TMS)-xylonic acid, gamma, lactone a 24.94 73(100), 102(7%), 117(27), 147(23), 189(13), 204(13), 217(20), 246(8), 349(1), 364(3) 40 1,6-anhydro-ß-D-glucopyranose, tri-tms ether (Levoglucosan, 26.92 45(10), 73(100), 129(13), 147(25), 191(11), 204(62), 217(55), 333(11) tris-tms ether) a 41 1,2-benzenedicarboxylic acid, diisootyl ester a 41.63 43(129, 57(21), 71(14), 83(5), 104(7), 132(3), 149(100), 167(29), 279(8) 42 1,2-benzenedicarboxylic acid, decyl octyl ester a 44.43 43(10), 55(6), 104(2), 149(100), 167(1), 251(4), 307(1) 43 2,3,5,6-tetrakis--gulonic acid, TMS ester a 30.73 73(100), 103(15), 129(43), 147(36), 191(29), 204(44), 217(57), 305(6), 466(1) 44 Crocetin b 40.88 43(58), 57(81), 73(100), 85(36), 115(8), 147(15), 170(15), 211(18), 249(8), 277(7), 457(4), 472(5) 45 Glucofuranose, penta-tms a 29.69 73(91), 103(12), 119817), 129(40), 147(29), 191(26), 204(24), 217(100), 273(2) 46 Glucopyranose, 1,2,3,4,6-pentakis--TMS (Glucopyranose, penta-tms) a a : Structure assigned on the basis of the comparison of MS data with those from the Wiley Library of Mass Spectra. b : Assignment is based on the interpretation of MS data.

Table 3S.- Retention time, m/z and abundance values of characteristic ion (70 ev) of the principal derivatised compounds from curcuma obtained by pyrolysis-gc/ms using HMDS with and without extraction and TMAH. t R (min) Mass spectra data Characteristic ion (70 ev), m/z, (%) Peak Assignment #. 1 3-methylphenol a 2.85 39(30), 43(36), 51(16), 55(22), 63(6), 67(8), 77(32), 79(32), 91(13), 107(100), 108(88) 2 2-hydroxy-3-methyl-2-cyclopenten-1-one a 2.47 41(44), 55(50), 69(49), 83(31), 85(25), 97(10), 112(100) 3 Tetrahydropyran-2-carbinol a 2.65 31837), 39(29), 43(32), 53(10), 57(33), 69(21), 79(12), 85(100), 108(20) 4 2,3-dihydrobenzofuran a 4.59 39(14), 51(7), 65(15), 77(3), 91(48), 110(5), 120(100) 5 3-ethylphenol a 3.85 31(30), 39(32), 43(62), 51(13), 65(8), 77(24), 91(14), 107(100), 122(32) 6 2-methoxyphenol a 3.04 39(13), 53(19), 63(7), 81(69), 95(8), 109(100), 124(84) 7 3-ethyl-2-hydroxy-2-cyclopenten-1-one a 3.34 31(12), 43(92), 55(84), 69(37), 83(49), 99(38), 111(15), 114(37), 126(100) 8 2-ethoxyphenol a 4.35 39(17), 53(15), 64(28), 81(18), 92(9), 110(100), 123(5), 138(7) 9 1,4:3,6-dianhydro-α-D-glucopyranose a 4.49 31(23), 41(34), 57(41), 69(100), 85(17), 98(20), 110(26), 125(4), 144(6) 10 Butanoic acid, TMS ester a 10.10 45(22), 57(13), 73(100), 75(55), 89(8), 117(38), 132(23), 145(37) 11 2-methoxy-4-vinylphenol a 6.25 39(9), 51(10), 63(7), 77(36), 89(6), 107(36), 121(2), 135(81), 150(100) 12 4-ethyl-2-methoxyphenol a 5.62 39(19), 55(20), 65(8), 77(12), 81(22), 91(12), 110(32), 122(10), 137(100), 152(50) 13 4-hydroxy-3-methoxybenzaldehyde a 7.93 39(23), 53(22), 65(14), 73(10), 81(33), 95(13), 109(25), 123(28), 136(18), 151(93), 152(100) 14 1,6-anhydro-β-D-glucopyranose (levoglucosan) a 9.61 43(24), 56(41), 60(100), 73(32), 85(3), 98(9), 119(10), 145(4), 162(1) 15 2-[(TMS)oxy]phenol a 4.44 39(25), 45(36), 65(23), 73(100), 75(95), 91(66), 136(21), 151(68), 169(51), 182(27) 16 β-[(tms)oxy]styrene; [(2-phenylethenyl)oxy] trimethylsilyl a 8.66 73(10), 162(10), 177(9), 192(100) 17 4-(4-hydroxy-3-methoxyphenyl)-3-buten-2-one a 16.59 43(34), 51(16), 63(11), 73(26), 77(27), 89(35), 105(18), 117(45), 134(19), 145(83), 150(21), 161(16), 177(100), 192(97) 18 4-(4-hydroxy-3-methoxyphenyl)-2-butanone a 13.13 43(52), 55(35), 77(38), 91(34), 107(5), 119(32), 137(100), 151(14), 161(9), 194(42) 19 ar-turmerone a 13.45 55(21), 83(100), 91(21), 119(71), 105(13),132(20), 201(17), 216(23) 20 β-turmerone a 13.53 41(12), 55(31), 77(30), 83(100), 91(39), 93(20), 105(87), 111(27), 119(39), 120(38), 135(5), 218(4) 21 α-turmerone a 14.24 39(8), 55(17), 77(14), 83(35), 91(20), 105(19), 120(100), 132(9), 217(5) 22 3-methoxy-4-[(TMS)oxy]benzaldehide a 10.73 45(9), 73(19), 104(5), 137(5), 163(7), 179(7), 193(52), 194(100), 209(43), 224(27)

t R (min) Mass spectra data Characteristic ion (70 ev), m/z, (%) Peak Assignment #. 23 [2-methoxy-4-(1-propenyl)phenoxy],TMS; Isoeugenol, TMS ether a 11.44 73(18), 103(9), 147(9), 206(100), 221(7), 236(45) 24 Hexadecanoic acid (palmitic acid), methyl ester a 18.68 43(90), 55(59), 69(35), 74(100), 81(15), 87(76), 98(12), 115(25), 143(30), 171(15), 213(6), 227(17), 239(12), 270(9) 25 ctadecanoic acid (stearic acid), methyl ester a 22.41 43(64), 55(40), 67(13), 74(100), 81(15), 87(65), 129(17), 143(27), 176(13), 199(23), 255(11), 298(7) 26 4-[(TMS)oxy]cinnamic acid, TMS ester a 19.05 45(18), 73(100), 91(6), 115(10), 147(11), 179(17), 219(99), 249(40), 293(83), 308(61) 27 4-[(TMS)oxy]hydrocinnamic acid, TMS ester a 15.55 45(12), 73(57), 147(12), 179(100), 192(61), 216(69, 271(16), 295(9), 310(17) 28 3-methoxy-4-[(TMS)oxy]benzoic acid, TMS ester a 15.60 45(18), 73(86), 89(12), 126(27), 141(8), 165(13), 193(29), 223(60), 253(48), 267(65), 282(30), 297(100), 312(63) 29 Hexadecanoic acid (palmitic acid), TMS ester a 20.94 43(27), 73(91), 75(74), 117(99), 129(47), 132(45), 145(29), 201(6), 269(3), 313(100), 328(6) 30 Nonanedioic acid (azelaic acid), di-tms ester a 16.24 55(28), 73(100), 75(92), 117(31), 129(39), 147(36), 152(24), 201(36), 295(7), 317(51) 31 3-methoxy-4-[(TMS)oxy]cinnamic acid, TMS ester a 21.91 45(18), 73(81), 89(8), 117(10), 191(13), 219(35), 233(9), 249(61), 279(10), 293(33), 308(53), 323(57), 338(100) 32 2-[(TMS)oxy]butanedioic acid (malic acid), TMS ester a 9.89 49(11),73(100), 75(32), 119(34), 133(14), 147(60), 175(5), 191(6), 233(19), 247(3), 336(4) 33 9,12-octadecadienoic acid (linoleic acid), TMS ester a 23.91 41(30), 55(35), 67(47), 73(100), 75(92), 81(41), 95(37), 109(15), 117(25), 129(29), 220(10), 262(9), 337(38), 352(3) 34 9-ctadecenoic acid (oleic acid), TMS ester a 23.96 55(39), 73(100), 75(81), 96(17), 117(68), 129(55), 145(23), 222(8), 339(47) 35 ctadecanoic acid (stearic acid), TMS ester a 24.44 43(35), 73(90), 97(5), 117(100), 129(48), 132(47), 145(35), 201(6), 298(9), 341(83), 356(9) 36 2,5-dihydroxybenzyl alcohol, tri-tms ether a 14.26 45(13), 73(97), 103(4), 147(16), 253(21), 267(8), 341(21), 356(100) 37 2-carboxy-2-hydroxypropanedioic acid (citric acid), tetra-tms ester a 17.08 73(100), 147(64), 183(8), 211(5), 273(70), 305(5), 347(14), 363(13), 375(13), 465(6) a : Structure assigned on the basis of the comparison of MS data with those from the Wiley Library of Mass Spectra.

Table 4S.- Retention time, m/z and abundance values of characteristic ion (70 ev) of the principal derivatised compounds from indigo obtained by pyrolysis-gc/ms using HMDS with and without extraction and TMAH. Peak #. Assignment t R (min) Mass spectra data Characteristic ion (70 ev), m/z, (%) 1 Benzeneamine (aniline) a 4.65 39(13), 66(34), 93(100) 2 Indole a 6.00 39(6), 50(3), 58(6), 63(12), 73(4), 89(28), 90(35), 117(100) 3 2-methylindole a 7.75 39(3), 51(5), 65(6), 77(10), 89(4), 103(9), 130(100), 131(66) 4 2,3-dihydroindol-2-one (indoline-2-one) a 9.40 51(17), 63(5), 78(36), 89(6), 104(81), 133(100) 5 Isomer of compound 4 a 9.94 51(18), 63(4), 78(55), 89(1), 104(100), 133(97) 6 2-methyl-1-hydroindol-3-one? b 9.54 51(20), 65(14), 78(31), 91(34), 104(87), 118(92), 130(54), 133(31), 147(100) 7 3-[(trimethylsilyl)oxy]-1H-indole? b 13.08 45(8), 73(36), 89(5), 104(3), 130(14), 146(3), 162(43), 190(14), 205(100) 8 2-aminobenzoate, TMS ester a 9.68 45(12), 65(30), 73(8), 75(18), 92(47), 104(9), 119(94), 120(96), 134(9), 150(40), 176(24), 194(100), 209(68) 9 unknown 14.30 45(8), 73(40),91(4), 117(5), 130(17), 146(13), 177(6), 188(2), 204(19), 219(100) 10 Product of silylating reactive a 15.31 45(10), 59(4), 73(54), 103(4), 117(6), 130(9), 144(9), 188(2), 202(5), 218(100), 233(82) 11 Dodecanoic acid, TMS ester a 13.48 41(20), 55(18), 73(93), 75(83), 95(4), 117(86), 129(44), 132(26), 145(19), 213(4), 257(100), 258(21), 272(2) 12 1,2-benzenedicarboxylic acid, bis(2-methylpropyl) ester a 17.87 41(7), 57(13), 76(5), 104(7), 132(2), 149(100), 150(10), 167(3), 205(1), 223(5) 13 1,2-benzenedicarboxylic acid, mono(2-ethylhexyl) ester a 29.63 43(12), 57(20), 70(12), 71(13), 83(5), 104(7), 113(6), 122(2), 149(100), 167(29), 279(8) 14 Tetradecanoic acid (myristic acid),tms ester a 17.23 43(26), 59(15), 73(100), 75(63), 117(71), 129(42), 132(27), 145(27), 159(4), 201(4), 285(62), 300(2) 15 9-hexadecenoic acid (palmitoleic acid), TMS ester a 20.64 41(35), 55(46), 73(99), 75(100), 96(19), 117(84), 129(72), 145(28), 194(13), 236(5), 311(80), 326(4) 16 Hexadecanoic acid (palmitic acid), TMS ester a 21.01 43(31), 55(23), 73(93), 75(72), 117(100), 130(51), 132(42), 145(31), 159(3), 201(6), 269(5), 313(92), 328(5) 17 1,2-benzenedicarboxylic acid, dihexyl ester a 26.42 43(11), 76(3), 104(3), 122(1), 149(100), 150(10), 167(1), 233(1), 251(6) 18 Heptadecanoic acid, TMS ester a 23.08 43(30), 55(22), 73(93), 75(63), 117(100), 129(48), 132(45), 145(26), 185(2),.201(6), 241(2), 283(3), 299(3), 327(78), 342(4)

Peak #. Assignment t R (min) Mass spectra data Characteristic ion (70 ev), m/z, (%) 19 9,12-octadecadienoic acid (linoleic acid), TMS ester a 23.96 55(42), 67(55), 73(100), 75(69), 81(30), 95(24), 101(8), 109(16), 117(26), 129(30), 135(17), 262(9), 337(27)u 20 9-octadecenoic acid (oleic acid), TMS ester a 24.05 55(36), 73(91), 75(100), 95(36), 108(21), 117(43), 129(45), 145(18), 222(5), 264(4), 339(28), 354(2) 21 ctadecanoic acid (stearic acid), TMS ester a 24.51 43(28), 55(28), 73(100), 75(71), 91(10), 117(88), 129(44), 132(42), 145(29), 185(6), 313(3), 341(64), 356(7) 22 1,2-benzenedicarboxylic acid, dioctyl ester a 32.35 43(7), 57(6), 71(4), 104(2), 121(1), 149(100), 167(1), 261(1), 279(6) 23 1,2-benzenedicarboxylic acid, decyl hexyl ester a 32.43 43(11), 57(4), 69(2), 104(2), 121(1), 149(100), 167(1), 233(1), 251(5), 307(2) 24 1,2-benzenedicarboxylic acid, decyl octyl ester a 35.10 43(8), 57(7), 85(1), 104(2), 121(1), 149(100), 167(2), 261(1), 279(3), 307(2) a : Structure assigned on the basis of the comparison of MS data with those from the Wiley Library of Mass Spectra. b : Assignment is based on the interpretation of MS data.