Errata for Introduction to Statistical Signal Processing by R.M. Gray and L.D. Davisson

Σχετικά έγγραφα
Oscillatory integrals

AMS 212B Perturbation Methods Lecture 14 Copyright by Hongyun Wang, UCSC. Example: Eigenvalue problem with a turning point inside the interval

Solutions 3. February 2, Apply composite Simpson s rule with m = 1, 2, 4 panels to approximate the integrals:

Solutions_3. 1 Exercise Exercise January 26, 2017

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du)

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Math221: HW# 1 solutions

Srednicki Chapter 55

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Probability and Random Processes (Part II)

Differentiation exercise show differential equation

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

Areas and Lengths in Polar Coordinates

Solutions to Exercise Sheet 5

C.S. 430 Assignment 6, Sample Solutions

If ABC is any oblique triangle with sides a, b, and c, the following equations are valid. 2bc. (a) a 2 b 2 c 2 2bc cos A or cos A b2 c 2 a 2.

Homework 8 Model Solution Section

( ) 2 and compare to M.

To find the relationships between the coefficients in the original equation and the roots, we have to use a different technique.

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Areas and Lengths in Polar Coordinates

Section 8.3 Trigonometric Equations

Probability theory STATISTICAL METHODS FOR SAFETY ANALYSIS FMS065 TABLE OF FORMULÆ (2016) Basic probability theory. One-dimensional random variables

2 Composition. Invertible Mappings

University of Illinois at Urbana-Champaign ECE 310: Digital Signal Processing

Some definite integrals connected with Gauss s sums

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών. Εθνικό Μετσόβιο Πολυτεχνείο. Thales Workshop, 1-3 July 2015.

Other Test Constructions: Likelihood Ratio & Bayes Tests

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

Section 7.6 Double and Half Angle Formulas

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Tridiagonal matrices. Gérard MEURANT. October, 2008

Example Sheet 3 Solutions

Matrices and Determinants

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Second Order Partial Differential Equations

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

SPECIAL FUNCTIONS and POLYNOMIALS

Fourier Transform. Fourier Transform

Lecture 5: Numerical Integration

LAPLACE TYPE PROBLEMS FOR A DELONE LATTICE AND NON-UNIFORM DISTRIBUTIONS

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

ST5224: Advanced Statistical Theory II

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

CRASH COURSE IN PRECALCULUS

Oscillation of Nonlinear Delay Partial Difference Equations. LIU Guanghui [a],*

Lecture 34 Bootstrap confidence intervals

Problem Set 3: Solutions

INTEGRAL INEQUALITY REGARDING r-convex AND

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

The Simply Typed Lambda Calculus

Econ Spring 2004 Instructor: Prof. Kiefer Solution to Problem set # 5. γ (0)

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Homework 3 Solutions

Second Order RLC Filters

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Notes on Tobin s. Liquidity Preference as Behavior toward Risk

Solution Series 9. i=1 x i and i=1 x i.

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

EE512: Error Control Coding

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Math 6 SL Probability Distributions Practice Test Mark Scheme

An Inventory of Continuous Distributions

1. Αφετηρία από στάση χωρίς κριτή (self start όπου πινακίδα εκκίνησης) 5 λεπτά µετά την αφετηρία σας από το TC1B KALO LIVADI OUT

D Alembert s Solution to the Wave Equation

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Chapter 5, 6 Multiple Random Variables ENCS Probability and Stochastic Processes

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Inverse trigonometric functions & General Solution of Trigonometric Equations

( )( ) La Salle College Form Six Mock Examination 2013 Mathematics Compulsory Part Paper 2 Solution

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Trigonometric Formula Sheet

Corrections to Partial Differential Equations and Boundary-Value Problems with Applications by M. Pinsky, August 2001

Differential equations

Section 9.2 Polar Equations and Graphs

Lecture 26: Circular domains

6. MAXIMUM LIKELIHOOD ESTIMATION

Pairs of Random Variables

( y) Partial Differential Equations

Approximation of distance between locations on earth given by latitude and longitude

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Uniform Convergence of Fourier Series Michael Taylor

6.642, Continuum Electromechanics, Fall 2004 Prof. Markus Zahn Lecture 8: Electrohydrodynamic and Ferrohydrodynamic Instabilities

1 String with massive end-points

derivation of the Laplacian from rectangular to spherical coordinates

Congruence Classes of Invertible Matrices of Order 3 over F 2

Electromagnetic Waves I

Transcript:

Errt for Introduction to Sttisticl Signl Processing by R.M. Gry nd L.D. Dvisson Errors not cught in the corrected 2 edition re noted with n sterisk *. Updted October 2, 24 hnks to In Lee, Michel Gutmnn, Frédéric Vrins, André Isidio de Melo, Philippe Bonnet, Osmn Muso, Alex Rzumko, nd to the chmpion typo finder, Ron Aloysius. p. * prioriprobbility priori probbility p. 2 * generter genertor p. 49: he summtions in (2.42)-(2.43) should run from k to n, not from k to n s stted becuse the pmf is uniform on {,,..., n } nd not on {, 2,..., n}. As result the sum in (2.42) should evlute to (n )/2 nd not (n + )/2 nd the sum in (2.43) should evlute to (2n )(n )/6 nd not (n + )(2n + )/6. p. 5: Eq. (2.49) ( 2 m (2) k 2 p( p) k p p ) 3 p 2 nd not m (2) Eq. (2.5) nd not k k p. 6: In (2.68) m m (2). (2.74) is missing π, it nd not ( 2 k 2 p( p) k p p + ) 3 p 2 σ 2 p p 2 σ 2 2 p 2 2πσ 2 e (x m)2 /2σ 2 dx 2σ 2 e (x m)2 /2σ 2 dx

p. 62 As on the previous pge πs re missing. (2.75) nd not nd (2.76) nd not p. 63 Second line of (2.82): 2πσ 2 xe (x m)2 /2σ 2 dx m 2σ 2 xe (x m)2 /2σ 2 dx m 2πσ 2 (x m)2 e (x m)2 /2σ 2 dx σ 2 2σ 2 (x m)2 e (x m)2 /2σ 2 dx σ 2 (α m)/σ (α m)/σ 2π e u2 /2 dx 2π e u2 /2 du (the differentil du) p. 68: E(g) λ x F g(x)p(x) + ( λ) g(x)f(x) dx x F E(g) λ x Ω g(x)p(x) + ( λ) g(x)f(x) dx x Ω p. 75. In Problem 4 the comment In words: if the probbility of the symmetric difference of two events is smll, then the two events must hve pproximtely the sme probbility. belongs with Problem 2.5, not with 2.3. p. 94 In cption of Figure 3. Pr(f F ) P ({ω : ω F }) P (f (F )) Pr(f F ) P ({ω : f(ω) F }) P (f (F )) p. 3* he boldfce nottion is still found, but it is fr less common then it used to be. he boldfce nottion is still found, but it is fr less common thn it used to be. p. 25: P (X (F ) Y (F 2 ) P (X (F )) Y (F 2 )). 2

P (X (F ) Y (F 2 ) P (X (F ))P (Y (F 2 )). p. 3 Eq. (3.55) [ Λ σ 2 X ρσ X σ Y ρσ X σ Y σ 2 Y ], not [ σx Λ 2 ρσ X σ Y he second line of (3.58) nd not 2π det Λ e ρσ X σ Y σ Y 2 (x m X,y m Y )Λ (x m X,y m Y ) t 2π det Λ e 2 (x m X,y m Y )Λ (x m X,y m Y ) t p. 32 Second line, the men m Y X m Y + ρ(σ Y /σ X )(x m X ) nd not m Y X y m Y + ρ(σ Y /σ X )(x m X ) he finl line of (3.62) nd not n f X (x ) f Xl X,...,X l (x l x,..., x l ) l k f X (x ) f Xl X,...,X l (x l x,..., x l ) l (he upper limit of the sum n not k) p. 44 Eq. (3.99) P e ( ( ) (.5 Φ + Φ.5 )) ( Φ ). 2 σ W σ W 2σ W ] nd not P e 2 ( ( Φ (.5 ) ( + Φ.5 )) ( ) Φ. σ W σ W 2σ W 3

(remove extr left pren nd dd minus sign). p. 45 Just bove Section 3.2, f X Y (x y) f Y X (y x)f Y (y)/f X (x) should be f X Y (x y) f Y X (y x)f X (x)/f Y (y) p. 38, eqution bove (3.82): ( exp 2 (α m ) ) 2. σ 2 ( exp 2 (α m ) ) 2. σ p. 49 In line eqution following (3.5) M X (ju) F u/2π (f X ) L ju (f X ), tht is, the subscript of L needs minus sign. p. 5 Penultimte line of (3.2) { } ))2/2σ2 (2πσ 2 e (x (m+juσ2 dx e jum u2 σ 2 /2 ) /2 nd not { (the y 2 u 2 p. 62 Eq. (3.39) p Yn Y n,...,y (y n y n,..., y ) } ))2/2σ2 (2πσ 2 e (x (m+juσ2 dx e jum y2 σ 2 /2 ) /2 Pr(Y n y n Y l y l ; l,..., y n ) Pr(X n y n y n Y l y l ; l,..., y n ) Pr(X n y n y n X y, X i y i y i ; i 2, 3,..., n ), should red p Yn Y n,...,y (y n y n,..., y ) Pr(Y n y n Y l y l ; l,..., y n ) Pr(X n y n y n Y l y l ; l,..., n ) Pr(X n y n y n X y, X i y i y i ; i 2, 3,..., n ), tht is, the finl index in the penultimte line is n nd not y n. 4

p. 65 he sentence he discrete time, continuous lphbet cse of summing iid rndom vribles is hndled in virtully the sme mnner s the discrete time cse, with conditionl pdfs replcing conditionl pmfs. should red he discrete time, continuous lphbet cse of summing iid rndom vribles is hndled in virtully the sme mnner s the discrete time, discrete lphbet cse, with conditionl pdfs replcing conditionl pmfs. Eq. (3.49) k f Y,...,Y n (y,..., y n ) f Yl Y,...,Y l (y l y,..., y l ). l should red f Y,...,Y n (y,..., y n ) n f Yl Y,...,Y l (y l y,..., y l ). l ht is, the upper limit of the product n. Eq. (3.52) f Y,...,Y n (y,..., y n ) n f X (y i y i ) i should red f Y,...,Y n (y,..., y n ) n f X (y i y i ) tht is, the finl index on the left is n, not n. p. 68 Problem : X(r) r 2 X(r) r 2 Y (r) r /2 Y (r) r /2 p. 76, problem 43, lst line. B t β t. p. 84 Eighth line following (4.), r n (n) r (n) p. 85 Eq. (4.4) E(X) p X (x) x A i. E(X) x A xp X (x) 5

p. 28 Note tht if we tke g(x) x nd h(x, y), this generl form reduces to the previous form. Note tht if we tke g(x) nd h(x, y) y, this generl form reduces to the previous form. p. 2: f Y X (y x) f XY (x, y) f Y (y) ( ( )) x exp (/2)((x m X ) t (y m Y ) t )K mx U y m Y (2π) (k+m) det K U (2π)k det K X exp ( (x m X ) t K X (x m X)/2 ) (2π)m det K X / det K U ( exp (/2)((x m X ) t (y m Y ) t )K U ) + (x m X ) t K X (x m X) ( x mx y m Y ) f Y X (y x) f XY (x, y) f X (x) ( ( x exp (/2)((x m X ) t (y m Y ) t )K mx U y m Y (2π) (k+m) det K U )) (2π)k det K X exp ( (x m X ) t K X (x m X)/2 ) (2π)m det K U / det K X ( ( x exp (/2)((x m X ) t (y m Y ) t )K mx U y m Y ) + (/2)(x m X ) t K X (x m X) ) 6

Lst line: N k N n. p. 23 In the first displyed eqution following A direct proof of this result, E[(Y g(x)) 2 ] E[(Y E(Y X) + E(Y X) g(x)) 2 ] E[(Y E(Y X)) 2 ] 2E[(Y E(Y X))(E(Y X) g(x))] +E[(E(Y X) g(x)) 2 ]. E[(Y g(x)) 2 ] E[(Y E(Y X) + E(Y X) g(x)) 2 ] E[(Y E(Y X)) 2 ] +2E[(Y E(Y X))(E(Y X) g(x))] +E[(E(Y X) g(x)) 2 ]. tht is, the sign in front of the 2 on the penultimte line positive. p. 25 Second line from the bottom of the pge, K (X,Y ) E[((X t, Y t ) (m t X mt Y ))t ((X t, Y t ) (m t X mt Y ))] K (X,Y ) E[((X t, Y t ) (m t X, mt Y ))t ((X t, Y t ) (m t X, mt Y ))], tht is, the minus signs seprting the mens comms. p. 26 op line, K Y X E[(Y m Y )(Y m Y ) t ] K Y X E[(Y m Y )(X m X ) t ] p. 27 MMSE det(k(n) X ) det(k (n ) X ), () should red MMSE det(k(n+) X ) det(k (n) X ), (2) p. 28, four lines bove (2.64) nd one line below (4.64) b E(Y ) + AE(X) b E(Y ) AE(X) Eq. (4.64) MSE(A, b) r ( (Y AX b)(y AX b) t) r(k Y K Y X K X K XY ) 7

MSE(A, b) E [ r ( (Y AX b)(y AX b) t)] p. 29 op of the pge. r(k Y K Y X K X K XY ) MMSE(A, b) r ( (Y AX b)(y AX b) t) r ((Y m Y + A(X m X ) b + m Y + Am X ) (Y m Y + A(X m X ) b + m Y + Am X ) t) r ( K Y AK XY K Y X A t + AK X A t) + (b m Y Am X ) t (b m Y Am X ) MMSE(A, b) E [ r ( (Y AX b)(y AX b) t)] E [r ((Y m Y A(X m X ) b + m Y Am X ) (Y m Y A(X m X ) b + m Y Am X ) t)] r ( K Y AK XY K Y X A t + AK X A t) + (b m Y + Am X ) t (b m Y + Am X ) (4.65) b m Y + Am X. b m Y Am X. In heorem 4.6, K Y X E[(Y m Y )(Y m Y ) t ] K Y X E[(Y m Y )(X m X ) t ]. p. 22, first line, b E(Y ) + AE(X) b E(Y ) AE(X) p. 242. In proof of Lemm 4.4, finl eqution on pge: F Yn (y) F Y (y + ɛ) Pr(Y y + ɛ nd Y n > y) Pr(Y n y nd Y > y + ɛ) Pr(Y y + ɛ nd Y n > y) Pr( Y Y n ɛ). 8

F Yn (y) F Y (y + ɛ) Pr(Y n y nd Y > y + ɛ) Pr(Y y + ɛ nd Y n > y) Pr(Y n y nd Y > y + ɛ) Pr( Y Y n ɛ). p. 26, Problem 9. his problem considers some useful properties of utocorreltion or covrince function. his problem considers some useful properties of utocorreltion or covrince functions for rel-vlued rndom processes. E(X 2 t R X (t, t) R X (, ) E(X 2 t ) R X (t, t) R X (, ) ( right pren is missing) p. 262, problem2: Given two rndom processes {X t ; t } nd {X t ; t } should red Given two rndom processes {X t ; t } nd {Y t ; t } p. 267, Problem 4.37, the upper cse G k lower cse g k. p. 27, Problem 47. wo other rndom processes wo other rndom processes p. 273, Problem 4.57(c), E[X n ] E[X N ]. p. 289, the K Y (k, j)e should red σ 2 k j r2(min(k,j)+) r. r 2 p. 3 In severl formuls the index k n: N R X (k) < X n Xn k > lim X n Xn k N N k N R X (k) < X n Xn k > lim X n Xn k N N n N R X (k) lim X n (ω)x N N n k(ω), k 9

N R X (k) lim X n (ω)x N N n k(ω), n N P X R X () lim X n 2, N N k N P X R X () lim X n 2, N N n p. 33, the lst line in the top eqution should red nd not lim N N k (N ) lim N N N k (N ) ( k N )R X(k)e i2πfk tht is, the extr /N removed. p. 38 In Lemm 5., item 3, Eq. (5.6.2), ( k N )R X(k)e i2πfk E( X ) X. E(X) X. p. 39 Continuing the corrections of p. 38: in the proof of item 3 of the lemm, E( X ) E( X ) X X. E(X) E(X ) X X.

A relted error in the proof of item 5 is the presence of superfluous line in the sequence of inequlities. In prticulr, E[X n Y m XY ] E[X n Y m XY m + XY m XY ] E[(X n X)Y m] + E[X(Y m Y ) ] E[(X n X)Y m] + E[X(Y m Y ) ] E[ (X n X)Y m ] + E[ X(Y m Y ) ] X n X Y m + X Y m Y X n X Y m Y + Y + X Y m Y X n X ( Y m Y + Y ) + X Y m Y E[X n Y m XY ] E[X n Y m XY m + XY m XY ] p. 324: Replce E[(X n X)Y m] + E[X(Y m Y ) ] E[(X n X)Y m] + E[X(Y m Y ) ] X n X Y m + X Y m Y X n X Y m Y + Y + X Y m Y n X n X ( Y m Y + Y ) + X Y m Y ( n ) sin(π(t n )/ ) 2W x 2W π(t n )/ by n p. 325: Replce (5.) x (n ) sin(π(t n )/ ) π(t n )/ R X (t τ) n ( n ) sin(π(t n )/ ) R X 2W τ. π(t n )/ by R X (t τ) n R X (n τ) sin(π(t n )/ ). π(t n )/

by by p. 326: Replce the first eqution R X () R X () n n ( n ) sin(π(t n )/ ) R X 2W t. π(t n )/ R X (n t) Replce the penultimte eqution in the proof n,m:n mk n sin(π(t n )/ ). π(t n )/ sin(π(t n )/ ) sin(π(t m )/ ) π(t n )/ π(t m )/ sin(π(t n )/ ) sin(π( t (n k))) π(t n )/ π( t (n k)) sin(π( t k)) π( t k), n,m:n mk n sin(π(t n )/ ) sin(π(t m )/ ) π(t n )/ π(t m )/ sin(π(t n )/ ) sin(π(t + k n )/ ) π(t n )/ π(t + k n )/ sin(πk), πk Replce the finl eqution in the proof (just bove section 5.8.7) by lim N n N m N lim N n N m N sin(π(t n )/ ) R X ((n m) ) π(t n )/ sin(π(t n )/ ) R X ((n m) ) π(t n )/ 2 sin(π(t m )/ ) π(t m )/ R X (k) sin(π( t k)) π( t k) R X () sin(π(t m )/ ) π(t m )/ R X (k) sin(πk) πk R X ()

p. 327 In the equtions for R XN (t, s), the s severl times is incorrectly replced by t nd in the eqution preceeding (5.7), the subscript n should be m. hese re fixed by replcing [ N ] R XN (t, s) E[X N (t)xn(s)] E X n φ n (t) Xmφ m(t) so tht n m n E[X n Xm]φ n (t)φ m(t)] R X (t, s) lim N R X N (t, s) m λ N φ n (t)φ n(t) n λ n φ n (t)φ n(t). n Multiplying by φ-function nd integrting then yields by so tht R X (t, s)φ m (s) ds λ n φ n (t) n λ n φ n (t). [ N R XN (t, s) E[X N (t)xn(s)] E X n φ n (t) n m n E[X n Xm]φ n (t)φ m(s)] R X (t, s) lim N R X N (t, s) φ m (s)φ n(s) ds ] Xmφ m(s) m λ N φ n (t)φ n(s) n λ n φ n (t)φ n(s). n Multiplying by φ-function nd integrting then yields R X (t, s)φ m (s) ds λ n φ n (t) n λ m φ m (t). 3 φ m (s)φ n(s) ds

p. 328 In the middle of the pge, so tht λ n φ m(t)φ n (t) dt (λ n λ m) λ n φ m(t)φ n (t) dt λ m φ m(t)r X (t, s)φ n (s) ds dt ( ) φ n (s) R X (t, s)φ m(t) ds ( φ n (s) R X (s, t)φ m (t)) ds λ m φ n (t)φ m(t) dt φ n (t)φ m(t) dt. φ m(t)r X (t, s)φ n (s) ds dt ( ) φ n (s) R X (t, s)φ m(t)dt ds ( φ n (s) R X (s, t)φ m (t)dt) ds φ n (s)φ m(s) ds so tht replcing the dummy vrible s by t yields (λ n λ m) φ n (t)φ m(t) dt. p. 329 In the first eqution, first line, complex conjugte is missing: [( ) ( )] E[X n Xm] E X(t)φ n(t) dt X(s)φ m (s) ds [( E[X n Xm] E ) ( )] X(t)φ n(t) dt X (s)φ m (s) ds 4

In the lst eqution on the pge λ n is missing, should red φ n(t) n φ n(t) n R X (t, s)φ n (s) ds R X (t, s)φ n (s) ds φ n(t)φ n(t). n λ n φ n(t)φ n(t). p. 33: he missing λ n of p. 329 crries to this pge. he first eqution E[X N (t)x(t) ] E[X N (t)x(t) ] Ner the middle of the pge, chnge If R X hs Fourier series expnsion R X (τ) to If R X hs Fourier series expnsion R X (τ) n φ n(t)φ n(t), n λ n φ n(t)φ n(t), n n n b n e j2πnt/ b n e j2πnτ/ nd just below it chnge then the integrl eqution to be solved for the Krhunen Loeve expnsion is λφ(t) n b n e j2πnt/ φ(s) ds b n e j2πn(t s)/ φ(s) ds. n to 5

then the integrl eqution (5.7) to be solved for the Krhunen Loeve expnsion is λφ(t) n b n e j2πn(t s)/ φ(s) ds b n e j2πn(t s)/ φ(s) ds. n he subscripts in the text nd eqution t the bottom of the pge need repir, s do the relted subscripts t the top of p. 33. Chnge Guessing solution φ n (t) c n e j2πnt/ where c n is normlizing constnt, then c n e j2πnt/ c m e j2πmt/ dt c n c m so tht c n /. hen with the integrl eqution becomes λ ej2πnt/ φ n (t) ej2πnt/ n n b n b n e j2πnt/ b m ej2πnt/ t c n 2 δ N M j2πn(t s)/ ej2πns/ e e j2π(m n)s bm φ m (t), e j2π(n m)t/ dt which we lredy knew ws solution from the development for Fourier series. to Guessing solution φ m (t) c n e j2πmt/ where c m is normlizing constnt, then c n e j2πnt/ c me j2πmt/ dt c n c m t c n 2 δ n m ds ds e j2π(n m)t/ dt 6

so tht c n /. hen with the integrl eqution becomes λ ej2πmt/ φ m (t) ej2πmt/ n n b n b n e j2πnt/ b m ej2πmt/ j2πn(t s)/ ej2πms/ e e j2π(m n)s b m φ m (t), which we lredy knew ws solution from the development for Fourier series. p.334 he lst eqution on the pge, E( ɛ 2 n) E(ɛ 2 n) + { (h i g i ) E(X n Y n i ) } h j E(Y n j Y n i, i: n i K is missing right pren, it E( ɛ 2 n) E(ɛ 2 n) + { (h i g i ) E(X n Y n i ) i: n i K j: n j K j: n j K ds ds h j E(Y n j Y n i ) p. 35 A new problem begins t the top of the pge, it is missing number 5. he remining problems should ll be dvnced by one. p. 48, Problem 28 Find the power spectrl densities S X (f) nd S Y (f)? Find the power spectrl densities S X (f) nd S Y (f). p. 435, Problem A.23 (b) hs typo nd s result the integrl blows up. It replced by x dxe x dye y. p. 439 (B.7) k 2 q k k 2q ( q) 3 + ( q) 2 7 },

insted of k 2 q k k 2 ( q) + 3 ( q) 2 he second line of the next eqution insted of q q k 2 q k q k k 2 q k q k kq k q k kq k q k k 2 q k ( q) 2 q k k 2 q k ( q) 2 k he finl eqution of the proof insted of k 2 q k k k 2 q k k p. 442 (B.3) chnged from 2q ( q) + 3 ( q), 2 2 ( q) + 3 ( q), 2 2σ 2 e (x m)2 /2σ 2 dx e r2 σ dr 2σ 2 2π. 2π to 2πσ 2 e (x m)2 /2σ 2 dx e r2 /2 σ dr 2πσ 2 2πσ. 2πσ 2 p. 446: Uniform pmf. Ω Z n {,,..., n } nd p(k) /n; k Z n. men: (n + )/2 8

vrince: (2n + )(n + )n/6 ((n + )/2) 2. Uniform pmf. Ω Z n {,,..., n } nd p(k) /n; k Z n. men: (n )/2 vrince: (2n )(n )/6 [(n )/2] 2 (n 2 )/2. he vrince of the geometric pmf ( p)/p 2, not 2/p 2. p. 447, the men of the Uniform pdf (b+)/2 nd not (b )/2. he vrince of the Gmm pdf is 2 b nd not b. 9