Pairs of Random Variables

Σχετικά έγγραφα
Solutions to Exercise Sheet 5

Solution Series 9. i=1 x i and i=1 x i.

Chapter 5, 6 Multiple Random Variables ENCS Probability and Stochastic Processes

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Homework #6. A circular cylinder of radius R rotates about the long axis with angular velocity

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Homework 8 Model Solution Section

An Inventory of Continuous Distributions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Calculus and Differential Equations page 1 of 17 CALCULUS and DIFFERENTIAL EQUATIONS

2 Composition. Invertible Mappings

Other Test Constructions: Likelihood Ratio & Bayes Tests

Finite Field Problems: Solutions

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 2

ST5224: Advanced Statistical Theory II

Section 8.3 Trigonometric Equations

Additional Results for the Pareto/NBD Model

CHAPTER 5. p(x,y) x

1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1

Theorem 8 Let φ be the most powerful size α test of H

Areas and Lengths in Polar Coordinates

General theorems of Optical Imaging systems

Probability and Random Processes (Part II)

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 1

α A G C T 國立交通大學生物資訊及系統生物研究所林勇欣老師

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Example Sheet 3 Solutions

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Areas and Lengths in Polar Coordinates

Section 7.6 Double and Half Angle Formulas

derivation of the Laplacian from rectangular to spherical coordinates

Fractional Colorings and Zykov Products of graphs

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

C.S. 430 Assignment 6, Sample Solutions

Mean-Variance Analysis

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y

TMA4115 Matematikk 3

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

The Simply Typed Lambda Calculus

If we restrict the domain of y = sin x to [ π 2, π 2

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

12xy(1 x)dx = 12y. = 12 y. = 12 y( ) = 12 y 1 6 = 2y. x 6x(1 x)dx = 6. dx = 6 3 x4

Lecture 34 Bootstrap confidence intervals

Quadratic Expressions

CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES,

ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Ι (ΝΠΣ) ΠΙΘΑΝΟΤΗΤΕΣ Ι (ΠΠΣ) Φεβρουάριος 2010

4. Απαγορεύεται η χρήση υπολογιστή χειρός. Απαγορεύεται η χρήση κινητού, και ως υπολογιστή χειρός.

Concrete Mathematics Exercises from 30 September 2016

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ

HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer:

Solve the difference equation

MathCity.org Merging man and maths

Problem Set 3: Solutions

Homework for 1/27 Due 2/5

Second Order Partial Differential Equations

Sequential Bayesian Search Appendices

Reminders: linear functions

CRASH COURSE IN PRECALCULUS

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Introduction to the ML Estimation of ARMA processes

ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια)

A Note on Intuitionistic Fuzzy. Equivalence Relation

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

5.4 The Poisson Distribution.

List MF20. List of Formulae and Statistical Tables. Cambridge Pre-U Mathematics (9794) and Further Mathematics (9795)

Section 9.2 Polar Equations and Graphs

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Math 6 SL Probability Distributions Practice Test Mark Scheme

6. MAXIMUM LIKELIHOOD ESTIMATION

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Approximation of distance between locations on earth given by latitude and longitude

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Matrices and Determinants

70. Let Y be a metrizable topological space and let A Ď Y. Show that Cl Y A scl Y A.

P(Ο Χρήστος κερδίζει) = 1 P(Ο Χρήστος χάνει) = 1 P(X > Y ) = 1 2. P(Ο Χρήστος νικά σε 7 από τους 10 αγώνες) = 7

Distances in Sierpiński Triangle Graphs

Every set of first-order formulas is equivalent to an independent set

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

A Lambda Model Characterizing Computational Behaviours of Terms

ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

( y) Partial Differential Equations

Homework 3 Solutions

New bounds for spherical two-distance sets and equiangular lines

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

PULLEYS 1. GROOVE SPECIFICATIONS FOR V-BELT PULLEYS. Groove dimensions and tolerances for Hi-Power PowerBand according to RMA engineering standards

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών

Transcript:

Pairs of Random Variabls Rading: Chaptr 4. 4. Homwork: (do at last 5 out of th following problms 4..4, 4..6, 4.., 4.3.4, 4.3.5, 4.4., 4.4.4, 4.5.3, 4.6.3, 4.6.7, 4.6., 4.7.9, 4.7., 4.8.3, 4.8.7, 4.9., 4.9.3, 4.9., 4..3, 4..8, 4.., 4.., 4..6. Joint Cumulativ Distri. Function For r.v. s X and Y, th joint CDF is F X,Y (,y = P[X, Y y] Proprtis of joint CDF F X,Y (,y F X,Y (, = F X (, F X,Y (,y = F Y (y F X,Y (,- = F X,Y (-, = F X,Y (, = F X,Y (,y F X,Y (,y if and y y G. Qu ENEE 34 Enginring Probability

Joint Probability Mass Function For two discrt r.v. s X and Y, th joint PMF is P X,Y (,y = P[X=, Y=y] Eampl 4.*: Flip twic a biasd coin, whr had coms out with.9. X: th numbr of hads; Y: th numbr of hads bfor th first tail. Draw th tr diagram. Find th joint PMF in function form, points in th X-Y plan, 3 matri form. G. Qu ENEE 34 Enginring Probability 3 Evnt Probability For two discrt r.v. s X and Y and any st B in th X-Y plan, vnt {(,y S X,y S y, (,y B} happns with P[B] = (,y B P X,Y (,y Eampls: G. Qu ENEE 34 Enginring Probability 4

Marginal Prob. Mass Function For two discrt r.v. s X and Y, thir PMFs P X ( and P Y (y ar also calld marginal PMFs: P X (= y Sy P X,Y (,y, P Y (y= S P X,Y (,y for any S X, vnt {X= }={(,y =,y S y } Eampl 4.3: P X,Y (,y X= X= X= P Y (y Y=..9. Y=.9.9 Y=.8.8.8.8 G. Qu ENEE 34 Enginring Probability 5 P X (. Evnt Probability and Joint PDF For two continuous r.v. s X and Y and any st A in th X-Y plan, vnt {(,y S X,y S y, (,y A} happns with P[A] = A f X,Y (,yddy f X,Y (,y=( / yf X,Y (,y is th joint PDF. f X,Y (,y y X, Y (, y = f X, Y F ( u, v dvdu P[ <X, y <Y y ] = F X,Y (,y - F X,Y (,y - F X,Y (,y + F X,Y (,y G. Qu ENEE 34 Enginring Probability 6 3

Eampls Random variabls X and Y hav joint PDF f X,Y (,y = c if y and o.w. (E. 4.4* What is c? (E. 4.5 (E. 4.6* What is joint CDF? What is P[A] = P[ X+Y ]? G. Qu ENEE 34 Enginring Probability 7 Marginal Prob. Dnsity Function f For two continuous r.v. s X and Y with joint PDF f X,Y (,y, th marginal PDFs f X ( and f Y (y ar th PDFs of X and Y, and w hav X ( f X, Y (, y dy fy ( y = f X, Y (, y = d Eampl 4.7: Find th marginal PDFs for th following joint PDF of X and Y: f X, Y 5y / 4 (, y =, othrwis y G. Qu ENEE 34 Enginring Probability 8 4

Functions of Two Discrt R.V. s For two discrt r.v. s X and Y, th random variabl W=g(X,Y has PMF P W (w= g(,y=w P X,Y (,y Eampl (Problm 4.6.4: Joint PMF: P X,Y (,y =. for,y, and othrwis. W=min(X,Y P W (w=? G. Qu ENEE 34 Enginring Probability 9 Functions of Two Continuous R.V. s For two continuous r.v. s X and Y, th random variabl W=g(X,Y has CDF F W (w=p[w w] = g(,y w f X,Y (,yddy Eampl 4.9: Joint PDF: f X,Y (,y = /5 for 5, y 3 and othrwis. W=ma(X,Y f W (w=? G. Qu ENEE 34 Enginring Probability 5

Epctd Valus of Drivd R.V. s For two r.v. s X and Y, th drivd random variabl W=g(X,Y has pctd valu: E[W] = g(,yp X,Y (,y E[W] = g(,yf X,Y (,yddy E[X+Y] = E[X] +E[Y] Eampl: X and Y discrt X and Y continuous Joint PDF: f X,Y (,y = /5 for 5, y 3 and othrwis. W=ma(X,Y E[W] = ma(,yf X,Y (,yddy = 4/5 E[W] = wf W (wdw = 4/5 G. Qu ENEE 34 Enginring Probability Covarianc of Two R.V. s Covarianc: Cov[X,Y] = E[(X- X (Y- Y ] Also known as σ XY X and Y ar uncorrlatd if Cov[X,Y]=. Corrlation Cofficint: X,Y =Cov[X,Y]/σ X σ Y Whn Y=X, Cov[X,Y]=Var[X], X,Y =. If Y=aX+b, X,Y =- if a<; if a=; if a>. Thorm 4.7: - X,Y G. Qu ENEE 34 Enginring Probability 6

Covarianc and Corrlation Corrlation: r X,Y =E[XY] X and Y ar orthogonal if r X,Y =. Whn Y=X, r X,Y =E[X ], th nd momnt Proprtis: Cov[X,Y] = r X,Y - X Y If X and Y ar orthogonal, Cov[X,Y]=- X Y Var[X+Y]=Var[X]+Var[Y]+Cov[X,Y] G. Qu ENEE 34 Enginring Probability 3 Conditioning on an Evnt: Discrt PMF: P X ( = P[X=] Conditional PMF: P X B ( = P[X= B] P X B ( = P X (/P[B] for B; othrwis. E[X B]= P X B ( E[W B]= g( P X B ( for W=g(X Joint PMF: P X,Y (,y = P[X=,Y=y] Conditional joint PMF: P X,Y B (,y = P[(X=,Y=y B] P X,Y B (,y = P X,Y (,y/p[b] for (,y B; othrwis. E[W B]= g(,y P X,Y B (,y for W=g(X,Y G. Qu ENEE 34 Enginring Probability 4 7

Conditioning on Evnt {Y=y} Joint PMF: P X,Y (,y = P[X=,Y=y] Conditional joint PMF: P X,Y B (,y = P[(X=,Y=y B] P X,Y B (,y = P X,Y (,y/p[b] for (,y B; othrwis. E[W B]= g(,y P X,Y B (,y for W=g(X,Y Whn B={Y=y} P[(X=,Y=y B] = P[X= B] = P[X= Y=y] P X Y ( y P X,Y (,y = P X Y ( yp Y (y = P Y X (y P X ( P[X= Y=y]=P[X=,Y=y]/P[Y=y] E[g(X,Y Y=y]= g(,y P X Y ( y G. Qu ENEE 34 Enginring Probability 5 Eampls R.V. s X and Y hav joint PMF P X,Y (,y=.5/ for Y X 4; and othrwis. B: X+Y 4. W=X+Y. (E. 4.3 find P X,Y B (,y (E. 4.5 find Var[W B] (E. 4.7 find P Y X (y (E. 4.8 find E[Y X=] G. Qu ENEE 34 Enginring Probability 6 8

Conditioning on an Evnt: Continuous CDF: F X ( = P[X ] PDF: f X ( = (d/d F X ( Conditional PDF: f X B ( = f X (/P[B] for B; othrwis. E[X B] = f X B (d E[W B] = g( f X B (d for W=g(X Joint PDF: f X,Y (,y =( / y F X,Y (,y Conditional joint PDF: f X,Y B (,y = f X,Y (,y/p[b] for (,y B with P[B]>; othrwis. E[W B]= g(,y f X,Y B (,yddy for W=g(X,Y G. Qu ENEE 34 Enginring Probability 7 Conditioning on Evnt {Y=y} Joint PDF: f X,Y (,y =( / y F X,Y (,y Conditional joint PDF: f X,Y B (,y = f X,Y (,y/p[b] for (,y B with P[B]>; othrwis. E[W B]= g(,y f X,Y B (,yddy Whn B={Y=y} for W=g(X,Y P[B] = P[Y=y] =, so cannot us th abov formula f X Y ( y f X,Y (,y/f Y (y, f X Y ( y f X,Y (,y/f X ( for f Y (y > and f X ( >. E[g(X,Y Y=y]= g(,y f X Y ( yd G. Qu ENEE 34 Enginring Probability 8 9

Eampl: Problm 4.9. Random variabls X and Y hav joint PDF f X,Y (,y =.5 if - y and o.w. What is marginal PDF f Y (y? f Y (y = f X,Y (,yd = (y+/ What is conditional PDF f X Y ( y? f X Y ( y=f X,Y (,y/f Y (y=/(y+ What is E[X Y=y]? E[X Y=y]= f X Y ( yd = (y-/ if - y if - y G. Qu ENEE 34 Enginring Probability 9 Conditional Varianc and Eampl For drivd r.v. W=g(X,Y and vnt B with P[B] >, Var[W B] = E[(W- W B B] = E[W B]- ( W B Eampls: Joint PDF: f X,Y (,y = /5 for 5, y 3 and othrwis. W=XY. B: X+Y 4. (E. 4.4 find f X,Y B (,y (E. 4.6 find E[W B] and Var[W B] G. Qu ENEE 34 Enginring Probability

Itratd Epctation E[X Y=y] = f X Y ( yd is a function of Y, dnot it as E[X Y]. In Problm 4.9., E[X Y](y = E[X Y=y] = (y-/ Itratd pctation: E[E[X Y]]=E[X] Proof: E[E[X Y]] = E[X Y=y] f Y (y dy = ( f X Y ( yd f Y (ydy = f X Y ( y f Y (y d dy = ( f X Y ( y f Y (y dy d = f X (d In gnral, E[E[g(X Y]]=E[g(X] G. Qu ENEE 34 Enginring Probability Indpndnt Random Variabls Rcall: two vnts ar indpndnt iff P[AB] = P[A]P[B]. Also P[A B]=P[A] Two r.v. s X and Y ar indpndnt iff P X,Y (,y = P X (P Y (y f X,Y (,y = f X (f Y (y discrt Whn X and Y ar indpndnt, continuous P X Y ( y= P X,Y (,y/p Y (y=p X (, P Y X (y = P Y (y f X Y ( y= f X,Y (,y/f Y (y=f X (, f Y X (y = f Y (y G. Qu ENEE 34 Enginring Probability

Proprtis of Indpndnt R.V. s E[g(Xh(Y] = E[g(X]E[h(Y] r X,Y =E[XY]=E[X]E[Y] Cov[X.Y] = X,Y = indpndnt uncorrlatd but not vic vrsa (s. 4.5 Var[X+Y] = Var[] + Var[Y] E[X Y=y] = E[X] for all y S Y E[Y X=] = E[Y] for all X S G. Qu ENEE 34 Enginring Probability 3 Quiz 4. R.V. s X and Y hav th following joint PMF, ar thy indpndnt? P X,Y (,y X= X= X= Y=..9 Y=.9 Y=.8 P X (..8.8 P Y (y..9.8 R.V. s X and Y ar indpndnt and idntically distributd with PDF as follows. What is th joint PDF? f X ( = What is th CDF of Z=ma(X,Y? othrwis G. Qu ENEE 34 Enginring Probability 4

3 G. Qu ENEE 34 Enginring Probability 5 Bivariat Gaussian R.V. s Rcall Gaussian (,σ X: E[X]=, Var[X]=σ Bivariat Gaussian Random Variabls X and Y hav PDF f X,Y (,y with 5 paramtrs,, σ >, σ > and -<< dfind as: ( ( σ πσ = X f ( ( ( ( ( ( ( σ σ σ πσ σ πσ y y G. Qu ENEE 34 Enginring Probability 6 Bivariat Gaussian PDF: impact of = : circular symmtric < : ridg ovr lin =-y > : ridg ovr lin =y : masurs th pak of th ridg at (=, y= ( ( ( ( ( ( ( σ σ σ πσ σ πσ y y

Bivariat Gaussian PDF is a PDF πσ ( σ ( f X,Y (,y f X,Y (,y= πσ ( y σ ( Dfin: ( = +σ (- /σ, σ= σ (- / ( ( y σ σ ( f X,Y (,y can b rwrittn as th product of PDFs of Gaussian(,σ and Gaussian((,σ: ( ( y ( σ σ πσ πσ G. Qu ENEE 34 Enginring Probability 7 R.V. s X and Y in Bivariat Gaussian For bivariat Gaussian R.V. s X and Y, X is Gaussian (,σ Y is Gaussian (,σ. X,Y = Y X is Gaussian (,σ. X Y is also Gaussian. X,Y = iff X and Y ar indpndnt. G. Qu ENEE 34 Enginring Probability 8 4