List MF20. List of Formulae and Statistical Tables. Cambridge Pre-U Mathematics (9794) and Further Mathematics (9795)

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "List MF20. List of Formulae and Statistical Tables. Cambridge Pre-U Mathematics (9794) and Further Mathematics (9795)"

Transcript

1 List MF0 List of Formulae and Statistical Tables Cambridge Pre-U Mathematics (979) and Further Mathematics (979) For use from 07 in all aers for the above syllabuses. CST7

2 Mensuration Surface area of shere = πr Area of curved surface of cone = πr slant height Trigonometry a = b + c bc cos A Arithmetic series u n = a + (n )d S n = n(a + l) = n{a + (n )d} Geometric series u n = ar n n a( r ) S n = r S = a r for r < PURE MATHEMATICS Summations n r= n r= r = nn ( + )(n + ) = ( + ) r n n Binomial series n n n+ + = r r+ r+ n n n n n n n n r r n ( a+ b) = a + a b+ a b a b b, (n N), where r n n( n ) n( n )...( n r+ ) r ( + ) = + n ( <, n R).... r n! = n n Cr = r r!( n r)! Logarithms and eonentials e ln a = a Comle numbers {r(cos θ + i sin θ)} n = r n (cos nθ + i sin nθ) e iθ = cos θ + i sin θ The roots of z n = are given by z = e π ki n, for k = 0,,,..., n

3 Maclaurin s series r f() = f(0) + f (0) + f (0) f (r) (0) +...! r! e r = e() = for all! r! ln( + ) = ( ) r + r +... ( < ) r sin = ( ) r r for all!! (r + )! cos = +! tan = sinh = +!... + ( ) r r +... for all! ( r)! + +!... + ( ) r r ( ) r + r for all (r + )! cosh = for all!! ( r)! tanh = + + Hyerbolic functions cosh sinh = sinh = sinh cosh cosh = cosh + sinh r r ( < < ) r + cosh = ln { + } ( ) sinh = ln { + + } tanh = ln + ( < ) Coordinate geometry The erendicular distance from (h, k) to a + by + c = 0 is ah + bk + c a + b The acute angle between lines with gradients m and m is tan m m + mm

4 Trigonometric identities sin(a ± B) = sin A cos B ± cos A sin B cos(a ± B) = cos A cos B sin A sin B tan(a ± B) = tan A± tan B (A ± B (k + tan Atan B )π) For t = tan A : sin A = t t, cos A = + t + t A+ B A B sin A + sin B = sin cos A+ B A B sin A sin B = cos sin A+ B A B cos A + cos B = cos cos A+ B A B cos A cos B = sin sin Vectors The resolved art of a in the direction of b is a.b b The oint dividing AB in the ratio λ : μ is µ a+ λ b λ + µ i a b ab ab Vector roduct: a b = a b sin θ ˆ n= j a b = ab ab k a b ab ab If A is the oint with osition vector a = a i + a j + a k and the direction vector b is given by b = b i + b j + b k, then the straight line through A with direction vector b has cartesian equation a y a z a = = (= λ) b b b The lane through A with normal vector n = n i + n j + n k has cartesian equation n + n y + n z + d = 0 where d = a.n The lane through non-collinear oints A, B and C has vector equation r = a + λ(b a) + μ(c a) = ( λ μ)a + λb + μc The lane through the oint with osition vector a and arallel to b and c has equation r = a + sb + tc The erendicular distance of (α, β, γ) from n + n y + n z + d = 0 is nα + n β + n γ + d + + n n n Matri transformations cosθ sinθ Anticlockwise rotation through θ about O: sinθ cosθ cos θ sin θ Reflection in the line y = (tan θ): sin θ cos θ

5 Differentiation f() f () tan k k sec k sin cos tan + sec sec tan cot cosec cosec cosec cot sinh cosh cosh sinh tanh sech sinh + cosh tanh Integration (+ constant; a > 0 where relevant) f() f( ) d sec k tan k k tan ln sec cot ln sin cosec ln cosec + cot = ln tan( ) sec ln sec + tan = ln tan( + π) sinh cosh cosh sinh tanh ln cosh sin ( < a) a a a + a tan a cosh a a or ln{ + a } ( > a) sinh a + a or ln{ + + a } a+ ln = tanh ( < a) a a a a a a ln a a + a dv du u d = uv v d d d

6 Area of a sector A = r dθ (olar coordinates) A = dy d y dt (arametric form) dt dt Arc length s = s = s = dy + d (cartesian coordinates) d d dy + dt dt dt (arametric form) dr r + dθ (olar form) dθ Surface area of revolution S = π yds S =π y ds Numerical solution of equations The Newton-Rahson iteration for solving f() = 0: n + = n f( n ) f( ) n

7 MECHANICS Motion in a circle Transverse velocity: v= rθ Transverse acceleration: v = rθ v Radial acceleration: r θ = r PROBABILITY Probability P(A B) = P(A) + P(B) P(A B) P(A B) = P(A) P(B A) P(A B) = P( B A)P( A) P( B A)P( A) + P( B A )P( A ) Bayes Theorem: P(A j B) = P( A )P( B A ) j ΣP( A)P( B A) i j i Discrete distributions For a discrete random variable X taking values i with robabilities i Eectation (mean): E(X) = μ = Σ i i Variance: Var(X) = σ = Σ( i μ) i = Σ i i μ For a function g(x) : E(g(X)) = Σ g( i ) i The robability generating function (P.G.F.) of X is G X (t) = E(t X ), and E(X) = G X (), Var(X) = G X() + G X() {G X()} For Z = X + Y, where X and Y are indeendent: G Z (t) = G X (t) G Y (t) The moment generating function (M.G.F.) of X is M X (t) = E(e tx ), and E(X) = M X (0), E(X n ) = M ( n) X (0), Var(X) = M X (0) { M X (0)} For Z = X + Y, where X and Y are indeendent: M Z (t) = M X (t) M Y (t) Standard discrete distributions Distribution of X P(X = ) Mean Variance P.G.F. M.G.F. n Binomial B(n, ) ( ) n n n( ) ( + t) n ( + e t ) n Poisson Po(λ) e λ λ! λ λ e λ(t ) t λ(e ) e Geometric Geo() on,, ( ) t ( t ) e ( )e t t 7

8 Continuous distributions For a continuous random variable X having robability density function (P.D.F.) f Eectation (mean): E(X) = μ = f( )d Variance: Var(X) = σ = ( µ ) f( )d= f( )d µ For a function g(x) : E(g(X)) = g( )f( )d Cumulative distribution function: F() = P(X ) = f( t)dt The moment generating function (M.G.F.) of X is M X (t) = E(e tx ), and E(X) = M X (0), E(X n ) = M ( n) X (0), Var(X) = M X (0) { M X (0)} For Z = X + Y, where X and Y are indeendent: M Z (t) = M X (t) M Y (t) Standard continuous distributions Distribution of X P.D.F Mean Variance M.G.F. Uniform (Rectangular) on [a, b] b a + b a ( a b) bt at ( ) e e ( b at ) Eonential λ e λ λ λ λ λ t Normal N(μ, σ ) e σ π µ σ μ σ e µ t+ σ t Eectation algebra For indeendent random variables X and Y E(XY) = E(X) E(Y), Var (ax ± by) = a Var(X) + b Var (Y) 8

9 Samling distributions For a random samle X, X,, X n of n indeendent observations from a distribution having mean μ and variance σ σ X is an unbiased estimator of μ, with Var( X ) = n S is an unbiased estimator of σ, where S Σ( Xi X) = n For a random samle of n observations from N(μ, σ ) X µ ~ N(0,) σ / n X µ ~ t n (also valid in matched-airs situations) S / n If X is the observed number of successes in n indeendent Bernoulli trials, in each of which the robability of success is, and Y = X n, then E(Y) = and Var(Y) = ( ) n For a random samle of n observations from N(μ, σ ) and, indeendently, a random samle of n y observations from N(μ y, σ y ) ( X Y) ( µ µ y) ~ N(0,) σ σ y + n n If σ = y ( X Y) ( µ ) σ y = σ µ y (unknown) then tn+ ny, where S + n n y Correlation and Regression For a set of n airs of values ( i, y i ) S = Σ( i ) ( Σ ) = Σ i i n S yy = Σ(y i y ) ( Σy ) = Σ y i i n S y = Σ( i )(y i y ) = Σ i y i ( Σi )( Σyi ) n The roduct-moment correlation coefficient is ( Σi)( Σyi) S Σy ( )( ) i i y Σ i yi y r = = = n S Syy { Σ( i ) }{ Σ( yi y) } ( Σi) ( Σyi) Σi Σyi n n Sy Σ( i )( yi y) The regression coefficient of y on is b = = S Σ( i ) Least squares regression line of y on is y = a + b where a = y b + y y ( n ) S ( n ) S S = n + n y 9

10 CUMULATIVE BINOMIAL PROBABILITIES n n r r P( Xø ) = Cr ( ) r= 0 n = / / / / = n = / / / / = n = / / / / = n = / / / / =

11 CUMULATIVE BINOMIAL PROBABILITIES / / / / / / / / / / / / n = 9 = n = 0 = n = =

12 CUMULATIVE BINOMIAL PROBABILITIES / / / / / / / / n = = n = =

13 CUMULATIVE BINOMIAL PROBABILITIES / / / / / / / / n = 8 = n = 0 =

14 CUMULATIVE BINOMIAL PROBABILITIES / / / / n = =

15 CUMULATIVE BINOMIAL PROBABILITIES / / / / n = 0 =

16 CUMULATIVE POISSON PROBABILITIES P( Xø ) = e r= 0 r λ λ λ = λ = λ = λ = λ = r!

17 CUMULATIVE POISSON PROBABILITIES λ = λ =

18 CUMULATIVE POISSON PROBABILITIES λ =

19 If Z has a normal distribution with mean 0 and variance, then, for each value of z, the table gives the value of Φ(z), where Φ(z) = P(Z z). For negative values of z, use Φ( z) = Φ(z). THE NORMAL DISTRIBUTION FUNCTION z ADD If Z has a normal distribution with mean 0 and variance, then, for each value of, the table gives the value of z such that P(Z z) =. Critical values for the normal distribution z

20 CRITICAL VALUES FOR THE t-distribution If T has a t-distribution with ν degrees of freedom, then, for each air of values of and ν, the table gives the value of t such that: P(T t) = ν =

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical

Διαβάστε περισσότερα

Review Exercises for Chapter 7

Review Exercises for Chapter 7 8 Chapter 7 Integration Techniques, L Hôpital s Rule, and Improper Integrals 8. For n, I d b For n >, I n n u n, du n n d, dv (a) d b 6 b 6 (b) (c) n d 5 d b n n b n n n d, v d 6 5 5 6 d 5 5 b d 6. b 6

Διαβάστε περισσότερα

Rectangular Polar Parametric

Rectangular Polar Parametric Harold s Precalculus Rectangular Polar Parametric Cheat Sheet 15 October 2017 Point Line Rectangular Polar Parametric f(x) = y (x, y) (a, b) Slope-Intercept Form: y = mx + b Point-Slope Form: y y 0 = m

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679

APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679 APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 1 Table I Summary of Common Probability Distributions 2 Table II Cumulative Standard Normal Distribution Table III Percentage Points, 2 of the Chi-Squared

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) = Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n

Διαβάστε περισσότερα

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Harvard College Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Tommy MacWilliam, 13 tmacwilliam@college.harvard.edu March 10, 2011 Contents 1 Introduction to Data 5 1.1 Sample

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Appendix B: Mathematical Formulae and Statistical Tables

Appendix B: Mathematical Formulae and Statistical Tables Aedi B: Mathematical Formulae ad Statistical Tables Pure Mathematics Mesuratio Surface area of shere = π r Area of curved surface of coe = π r slat height Trigoometry a = b + c bccosa Arithmetic Series

Διαβάστε περισσότερα

Spherical Coordinates

Spherical Coordinates Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical

Διαβάστε περισσότερα

FORMULAS FOR STATISTICS 1

FORMULAS FOR STATISTICS 1 FORMULAS FOR STATISTICS 1 X = 1 n Sample statistics X i or x = 1 n x i (sample mean) S 2 = 1 n 1 s 2 = 1 n 1 (X i X) 2 = 1 n 1 (x i x) 2 = 1 n 1 Xi 2 n n 1 X 2 x 2 i n n 1 x 2 or (sample variance) E(X)

Διαβάστε περισσότερα

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint 1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P, π, rt) cost, t, sint ). b) 5 points) Find curvature of the curve at the point P. Solution: a) r t) sint,,

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

CBC MATHEMATICS DIVISION MATH 2412-PreCalculus Exam Formula Sheets

CBC MATHEMATICS DIVISION MATH 2412-PreCalculus Exam Formula Sheets System of Equations and Matrices 3 Matrix Row Operations: MATH 41-PreCalculus Switch any two rows. Multiply any row by a nonzero constant. Add any constant-multiple row to another Even and Odd functions

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Probability and Random Processes (Part II)

Probability and Random Processes (Part II) Probability and Random Processes (Part II) 1. If the variance σ x of d(n) = x(n) x(n 1) is one-tenth the variance σ x of a stationary zero-mean discrete-time signal x(n), then the normalized autocorrelation

Διαβάστε περισσότερα

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these 1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x 3] x / y 4] none of these 1. If log x 2 y 2 = a, then x 2 + y 2 Solution : Take y /x = k y = k x dy/dx = k dy/dx = y / x Answer : 2] y / x

Διαβάστε περισσότερα

Differential equations

Differential equations Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

List MF19. List of formulae and statistical tables. Cambridge International AS & A Level Mathematics (9709) and Further Mathematics (9231)

List MF19. List of formulae and statistical tables. Cambridge International AS & A Level Mathematics (9709) and Further Mathematics (9231) List MF9 List of fomulae ad statistical tables Cambidge Iteatioal AS & A Level Mathematics (9709) ad Futhe Mathematics (93) Fo use fom 00 i all papes fo the above syllabuses. CST39 *50870970* PURE MATHEMATICS

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π 2, π 2

If we restrict the domain of y = sin x to [ π 2, π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.

Διαβάστε περισσότερα

Trigonometry 1.TRIGONOMETRIC RATIOS

Trigonometry 1.TRIGONOMETRIC RATIOS Trigonometry.TRIGONOMETRIC RATIOS. If a ray OP makes an angle with the positive direction of X-axis then y x i) Sin ii) cos r r iii) tan x y (x 0) iv) cot y x (y 0) y P v) sec x r (x 0) vi) cosec y r (y

Διαβάστε περισσότερα

Sixth Term Examination Papers MATHEMATICS LIST OF FORMULAE AND STATISTICAL TABLES

Sixth Term Examination Papers MATHEMATICS LIST OF FORMULAE AND STATISTICAL TABLES Sixth Term Examiatio Papers MATHEMATICS LIST OF FORMULAE AND STATISTICAL TABLES Pure Mathematics Mesuratio Surface area of sphere = 4πr Area of curved surface of coe = πr slat height Trigoometry a = b

Διαβάστε περισσότερα

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1 Equations r(t) = x(t) î + y(t) ĵ + z(t) k r = r (t) t s = r = r (t) t r(u, v) = x(u, v) î + y(u, v) ĵ + z(u, v) k S = ( ( ) r r u r v = u

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3. Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (, 1,0). Find a unit vector in the direction of A. Solution: A = ˆx( 1)+ŷ( 1 ( 1))+ẑ(0 ( 3)) = ˆx+ẑ3, A = 1+9 = 3.16, â = A A = ˆx+ẑ3 3.16

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Integrals in cylindrical, spherical coordinates (Sect. 15.7) Integrals in clindrical, spherical coordinates (Sect. 5.7 Integration in spherical coordinates. Review: Clindrical coordinates. Spherical coordinates in space. Triple integral in spherical coordinates.

Διαβάστε περισσότερα

CORDIC Background (2A)

CORDIC Background (2A) CORDIC Background 2A Copyright c 20-202 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version.2 or any later

Διαβάστε περισσότερα

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Review Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the exact value of the expression. 1) sin - 11π 1 1) + - + - - ) sin 11π 1 ) ( -

Διαβάστε περισσότερα

Biostatistics for Health Sciences Review Sheet

Biostatistics for Health Sciences Review Sheet Biostatistics for Health Sciences Review Sheet http://mathvault.ca June 1, 2017 Contents 1 Descriptive Statistics 2 1.1 Variables.............................................. 2 1.1.1 Qualitative........................................

Διαβάστε περισσότερα

5.4 The Poisson Distribution.

5.4 The Poisson Distribution. The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable

Διαβάστε περισσότερα

*H31123A0228* 1. (a) Find the value of at the point where x = 2 on the curve with equation. y = x 2 (5x 1). (6)

*H31123A0228* 1. (a) Find the value of at the point where x = 2 on the curve with equation. y = x 2 (5x 1). (6) C3 past papers 009 to 01 physicsandmathstutor.comthis paper: January 009 If you don't find enough space in this booklet for your working for a question, then pleasecuse some loose-leaf paper and glue it

Διαβάστε περισσότερα

MathCity.org Merging man and maths

MathCity.org Merging man and maths MathCity.org Merging man and maths Exercise 10. (s) Page Textbook of Algebra and Trigonometry for Class XI Available online @, Version:.0 Question # 1 Find the values of sin, and tan when: 1 π (i) (ii)

Διαβάστε περισσότερα

TRIGONOMETRIC FUNCTIONS

TRIGONOMETRIC FUNCTIONS Chapter TRIGONOMETRIC FUNCTIONS. Overview.. The word trigonometry is derived from the Greek words trigon and metron which means measuring the sides of a triangle. An angle is the amount of rotation of

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

Lifting Entry (continued)

Lifting Entry (continued) ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

Differentiation exercise show differential equation

Differentiation exercise show differential equation Differentiation exercise show differential equation 1. If y x sin 2x, prove that x d2 y 2 2 + 2y x + 4xy 0 y x sin 2x sin 2x + 2x cos 2x 2 2cos 2x + (2 cos 2x 4x sin 2x) x d2 y 2 2 + 2y x + 4xy (2x cos

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations //.: Measures of Angles and Rotations I. Vocabulary A A. Angle the union of two rays with a common endpoint B. BA and BC C. B is the vertex. B C D. You can think of BA as the rotation of (clockwise) with

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

is like multiplying by the conversion factor of. Dividing by 2π gives you the

is like multiplying by the conversion factor of. Dividing by 2π gives you the Chapter Graphs of Trigonometric Functions Answer Ke. Radian Measure Answers. π. π. π. π. 7π. π 7. 70 8. 9. 0 0. 0. 00. 80. Multipling b π π is like multipling b the conversion factor of. Dividing b 0 gives

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

Lecture 26: Circular domains

Lecture 26: Circular domains Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. 1 Lecture 6: Circular domains

Διαβάστε περισσότερα

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science. Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist

Διαβάστε περισσότερα

The Normal and Lognormal Distributions

The Normal and Lognormal Distributions The Normal and Lognormal Distributions John Norstad j-norstad@northwestern.edu http://www.norstad.org February, 999 Updated: November 3, Abstract The basic properties of the normal and lognormal distributions,

Διαβάστε περισσότερα

Section 8.2 Graphs of Polar Equations

Section 8.2 Graphs of Polar Equations Section 8. Graphs of Polar Equations Graphing Polar Equations The graph of a polar equation r = f(θ), or more generally F(r,θ) = 0, consists of all points P that have at least one polar representation

Διαβάστε περισσότερα

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l = C ALGEBRA Answers - Worksheet A a 7 b c d e 0. f 0. g h 0 i j k 6 8 or 0. l or 8 a 7 b 0 c 7 d 6 e f g 6 h 8 8 i 6 j k 6 l a 9 b c d 9 7 e 00 0 f 8 9 a b 7 7 c 6 d 9 e 6 6 f 6 8 g 9 h 0 0 i j 6 7 7 k 9

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

CORDIC Background (4A)

CORDIC Background (4A) CORDIC Background (4A Copyright (c 20-202 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version.2 or any later

Διαβάστε περισσότερα

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 2

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 2 ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 5.4: Στατιστικοί Μέσοι Όροι 5.5 Στοχαστικές Ανελίξεις (Stochastic Processes)

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

Problem 3.16 Given B = ˆx(z 3y) +ŷ(2x 3z) ẑ(x+y), find a unit vector parallel. Solution: At P = (1,0, 1), ˆb = B

Problem 3.16 Given B = ˆx(z 3y) +ŷ(2x 3z) ẑ(x+y), find a unit vector parallel. Solution: At P = (1,0, 1), ˆb = B Problem 3.6 Given B = ˆxz 3y) +ŷx 3z) ẑx+y), find a unit vector parallel to B at point P =,0, ). Solution: At P =,0, ), B = ˆx )+ŷ+3) ẑ) = ˆx+ŷ5 ẑ, ˆb = B B = ˆx+ŷ5 ẑ = ˆx+ŷ5 ẑ. +5+ 7 Problem 3.4 Convert

Διαβάστε περισσότερα

Stationary Stochastic Processes Table of Formulas, 2017

Stationary Stochastic Processes Table of Formulas, 2017 Stationary Stochastic Processes, 07 Stationary Stochastic Processes Table of Formulas, 07 Basics of probability theory The following is valid for probabilities: P(Ω), where Ω is all possible outcomes 0

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

Geodesic Equations for the Wormhole Metric

Geodesic Equations for the Wormhole Metric Geodesic Equations for the Wormhole Metric Dr R Herman Physics & Physical Oceanography, UNCW February 14, 2018 The Wormhole Metric Morris and Thorne wormhole metric: [M S Morris, K S Thorne, Wormholes

Διαβάστε περισσότερα

Core Mathematics C12

Core Mathematics C12 Write your name here Surname Other names Pearson Edexcel International Advanced Level Centre Number Candidate Number Core Mathematics C12 Advanced Subsidiary Wednesday 25 May 2016 Morning Time: 2 hours

Διαβάστε περισσότερα

Chapter 5, 6 Multiple Random Variables ENCS Probability and Stochastic Processes

Chapter 5, 6 Multiple Random Variables ENCS Probability and Stochastic Processes Chapter 5, 6 Multiple Random Variables ENCS6161 - Probability and Stochastic Processes Concordia University ENCS6161 p.1/47 Vector Random Variables A vector r.v. X is a function X : S R n, where S is the

Διαβάστε περισσότερα

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King Ole Warnaar Department of Mathematics g-selberg integrals The Selberg integral corresponds to the following k-dimensional generalisation of the beta integral: D Here and k t α 1 i (1 t i ) β 1 1 i

Διαβάστε περισσότερα

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F ifting Entry Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYAN 1 010 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu ifting Atmospheric

Διαβάστε περισσότερα

Paper Reference. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced. Thursday 11 June 2009 Morning Time: 1 hour 30 minutes

Paper Reference. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced. Thursday 11 June 2009 Morning Time: 1 hour 30 minutes Centre No. Candidate No. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced Thursday 11 June 2009 Morning Time: 1 hour 30 minutes Materials required for examination Mathematical Formulae

Διαβάστε περισσότερα

Solution to Review Problems for Midterm III

Solution to Review Problems for Midterm III Solution to Review Problems for Mierm III Mierm III: Friday, November 19 in class Topics:.8-.11, 4.1,4. 1. Find the derivative of the following functions and simplify your answers. (a) x(ln(4x)) +ln(5

Διαβάστε περισσότερα

CURVILINEAR COORDINATES

CURVILINEAR COORDINATES CURVILINEAR COORDINATES Cartesian Co-ordinate System A Cartesian coordinate system is a coordinate system that specifies each point uniquely in a plane by a pair of numerical coordinates, which are the

Διαβάστε περισσότερα

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is Pg. 9. The perimeter is P = The area of a triangle is A = bh where b is the base, h is the height 0 h= btan 60 = b = b In our case b =, then the area is A = = 0. By Pythagorean theorem a + a = d a a =

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

LIST OF FORMULAE STATISTICAL TABLES MATHEMATICS. (List MF1) AND

LIST OF FORMULAE STATISTICAL TABLES MATHEMATICS. (List MF1) AND ADVANCED SUBSIDIARY GENERAL CERTIFICATE OF EDUCATION ADVANCED GENERAL CERTIFICATE OF EDUCATION MATHEMATICS LIST OF FORMULAE AND STATISTICAL TABLES (List MF) MF CST5 Jauary 007 Pure Mathematics Mesuratio

Διαβάστε περισσότερα

SPECIAL FUNCTIONS and POLYNOMIALS

SPECIAL FUNCTIONS and POLYNOMIALS SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195

Διαβάστε περισσότερα

An Inventory of Continuous Distributions

An Inventory of Continuous Distributions Appendi A An Inventory of Continuous Distributions A.1 Introduction The incomplete gamma function is given by Also, define Γ(α; ) = 1 with = G(α; ) = Z 0 Z 0 Z t α 1 e t dt, α > 0, >0 t α 1 e t dt, α >

Διαβάστε περισσότερα

HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer:

HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer: HOMEWORK# 52258 李亞晟 Eercise 2. The lifetime of light bulbs follows an eponential distribution with a hazard rate of. failures per hour of use (a) Find the mean lifetime of a randomly selected light bulb.

Διαβάστε περισσότερα

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola Universit of Hperbolic Functions The trigonometric functions cos α an cos α are efine using the unit circle + b measuring the istance α in the counter-clockwise irection along the circumference of the

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Core Mathematics C34

Core Mathematics C34 Write your name here Surname Other names Pearson Edexcel International Advanced Level Centre Number Candidate Number Core Mathematics C34 Advanced Tuesday 21 June 2016 Morning Time: 2 hours 30 minutes

Διαβάστε περισσότερα

Fundamentals of Probability: A First Course. Anirban DasGupta

Fundamentals of Probability: A First Course. Anirban DasGupta Fundamentals of Probability: A First Course Anirban DasGupta Contents 1 Introducing Probability 5 1.1 ExperimentsandSampleSpaces... 6 1.2 Set Theory Notation and Axioms of Probability........... 7 1.3

Διαβάστε περισσότερα

Notations. Primary definition. Specific values. General characteristics. Series representations. Traditional name. Traditional notation

Notations. Primary definition. Specific values. General characteristics. Series representations. Traditional name. Traditional notation Pi Notations Traditional name Π Traditional notation Π Mathematica StandardForm notation Pi Primary definition.3... Π Specific values.3.3.. Π 3.5965358979338663383795889769399375589795937866868998683853

Διαβάστε περισσότερα

Stationary Stochastic Processes Table of Formulas, 2016

Stationary Stochastic Processes Table of Formulas, 2016 Stationary Stochastic Processes, 06 Stationary Stochastic Processes Table of Formulas, 06 Basics of probability theory The following is valid for probabilities: P(Ω), where Ω is all possible outcomes 0

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3 Appendix A Curvilinear coordinates A. Lamé coefficients Consider set of equations ξ i = ξ i x,x 2,x 3, i =,2,3 where ξ,ξ 2,ξ 3 independent, single-valued and continuous x,x 2,x 3 : coordinates of point

Διαβάστε περισσότερα

TABLES AND FORMULAS FOR MOORE Basic Practice of Statistics

TABLES AND FORMULAS FOR MOORE Basic Practice of Statistics TABLES AND FORMULAS FOR MOORE Basic Practice of Statistics Exploring Data: Distributions Look for overall pattern (shape, center, spread) and deviations (outliers). Mean (use a calculator): x = x 1 + x

Διαβάστε περισσότερα

ON NEGATIVE MOMENTS OF CERTAIN DISCRETE DISTRIBUTIONS

ON NEGATIVE MOMENTS OF CERTAIN DISCRETE DISTRIBUTIONS Pa J Statist 2009 Vol 25(2), 135-140 ON NEGTIVE MOMENTS OF CERTIN DISCRETE DISTRIBUTIONS Masood nwar 1 and Munir hmad 2 1 Department of Maematics, COMSTS Institute of Information Technology, Islamabad,

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

6. MAXIMUM LIKELIHOOD ESTIMATION

6. MAXIMUM LIKELIHOOD ESTIMATION 6 MAXIMUM LIKELIHOOD ESIMAION [1] Maximum Likelihood Estimator (1) Cases in which θ (unknown parameter) is scalar Notational Clarification: From now on, we denote the true value of θ as θ o hen, view θ

Διαβάστε περισσότερα

physicsandmathstutor.com Paper Reference Core Mathematics C4 Advanced Level Tuesday 23 January 2007 Afternoon Time: 1 hour 30 minutes

physicsandmathstutor.com Paper Reference Core Mathematics C4 Advanced Level Tuesday 23 January 2007 Afternoon Time: 1 hour 30 minutes Centre No. Candidate No. Paper Reference(s) 6666/01 Edexcel GCE Core Mathematics C4 Advanced Level Tuesday 23 January 2007 Afternoon Time: 1 hour 30 minutes Materials required for examination Mathematical

Διαβάστε περισσότερα

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset

Διαβάστε περισσότερα