Computable error bounds for asymptotic expansions formulas of distributions related to gamma functions

Σχετικά έγγραφα
Other Test Constructions: Likelihood Ratio & Bayes Tests

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Statistical Inference I Locally most powerful tests

ST5224: Advanced Statistical Theory II

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Homework 3 Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

FORMULAS FOR STATISTICS 1

Additional Results for the Pareto/NBD Model

2 Composition. Invertible Mappings

Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation. Mathematica StandardForm notation

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

Theorem 8 Let φ be the most powerful size α test of H

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data

Uniform Convergence of Fourier Series Michael Taylor

Math221: HW# 1 solutions

Supplementary Material For Testing Homogeneity of. High-dimensional Covariance Matrices

Durbin-Levinson recursive method

w o = R 1 p. (1) R = p =. = 1

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

6. MAXIMUM LIKELIHOOD ESTIMATION

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates

Solution Series 9. i=1 x i and i=1 x i.

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

A General Note on δ-quasi Monotone and Increasing Sequence

Example Sheet 3 Solutions

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Abstract Storage Devices

Congruence Classes of Invertible Matrices of Order 3 over F 2

Matrices and Determinants

Tridiagonal matrices. Gérard MEURANT. October, 2008

Reminders: linear functions

STAT200C: Hypothesis Testing

On the Galois Group of Linear Difference-Differential Equations

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

ExpIntegralE. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Divergence for log concave functions

CRASH COURSE IN PRECALCULUS

Lecture 21: Properties and robustness of LSE

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Second Order Partial Differential Equations

Lanczos and biorthogonalization methods for eigenvalues and eigenvectors of matrices

EE512: Error Control Coding

Homework for 1/27 Due 2/5

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

D Alembert s Solution to the Wave Equation

The Jordan Form of Complex Tridiagonal Matrices

Trigonometric Formula Sheet

The ε-pseudospectrum of a Matrix

Heisenberg Uniqueness pairs

A Hierarchy of Theta Bodies for Polynomial Systems

The Pohozaev identity for the fractional Laplacian

Notations. Primary definition. Specific values. General characteristics. Series representations. Traditional name. Traditional notation

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Inverse trigonometric functions & General Solution of Trigonometric Equations

Second Order RLC Filters

Fractional Colorings and Zykov Products of graphs

An Inventory of Continuous Distributions

Problem Set 3: Solutions

Approximation of distance between locations on earth given by latitude and longitude

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Biostatistics for Health Sciences Review Sheet

Wishart α-determinant, α-hafnian

Wavelet based matrix compression for boundary integral equations on complex geometries

557: MATHEMATICAL STATISTICS II RESULTS FROM CLASSICAL HYPOTHESIS TESTING

Supplementary Appendix

Solutions to Exercise Sheet 5

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

5. Choice under Uncertainty

4.6 Autoregressive Moving Average Model ARMA(1,1)

Local Approximation with Kernels

New bounds for spherical two-distance sets and equiangular lines

Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Exercises to Statistics of Material Fatigue No. 5

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Lecture 34 Bootstrap confidence intervals

Supplementary Materials: Proofs

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Forced Pendulum Numerical approach

Μηχανική Μάθηση Hypothesis Testing

Every set of first-order formulas is equivalent to an independent set

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS

Transcript:

Computable error bounds for asymptotic expansions formulas of distributions related to gamma functions Hirofumi Wakaki (Math. of Department, Hiroshima Univ.) 20.7. Hiroshima Statistical Group Meeting at RERF

. Introduction Examples of moment formulas which consist of gamma functions 2. General formulas of asymptotic expansions Two types of asymptotic expansion formulas of distributions 3. Uniform error bounds 3.. Previous results Expansion formulas under a high dimensional framework 3.2. Error bounds for large sample approximation Some lemmas and theorems for deriving error bounds 3.3. Wilks lambda distribution (MANOVA test) An error bound for large sample approximation 3.4. Comparison of error bounds between two types of expansions Numerical examples 2

. Introduction. Testing equality of r covariance matrices X ij, i =,..., n j H 0 : Σ = = Σ r i.i.d. N p (µ j, Σ j ), j =,..., r The modified likelihood ratio test rejects H 0 for small values of r V = (det A j) n j/2, (det A) n/2 A j : the matrix of sums of squares and products formed from the j nth sample A = A + + A r Moment formula (Under H 0 ) E[V h Γ p [n/2] ] = Γ p [n( + h)/2] p Γ p [a] = π p(p )/4 3 r Γ p [n j ( + h)/2], Γ p [n j /2] Γ[a (j )/2]

2. The sphericity test X i, i =,..., n i.i.d. N p (µ, Σ) H 0 : Σ = λi p, where λ is unspecified The likelihood ratio text rejects H 0 for small values of V = A : ( det A ) p, tra p the matrix of sums of squares and products Moment formula (Under H 0 ) E[V h ] = p ph Γ[pn/2]Γ p[(n + 2h)/2] Γ[p(n + 2h)/2]Γ p [n/2] 4

3. MANOVA test Y i = BX i + ε i, i =,..., N B : p r, X i : r, ε i i =,..., N i.i.d. N p (0, Σ) H 0 : BC = O, C is a known matrix of rank q The likelihood ratio text rejects H 0 for small values of V = A : B : det(b) det(a + B) the matrix of sums of squares and products due to the hypothesis the matrix of sums of squares and products due to the error Moment formula (Under H 0 ) E[V h ] = Γ p[(n + 2h)/2]Γ p [(n + q)/2] Γ p [n/2]γ p [(n + q + 2h)/2], n = N r 5

2. General formulas of asymptotic expansion Classical large sample approximation Box (949, Biometrika) E[V h ] = K [ p y j y j q i= x i x i ] h q i= Γ[x i( + h) + ξ i ] p Γ[y j( + h) + η j ] p y j = q x k, x k = a k M, y j = b j M, M (n ) T = 2ρ log V, ψ T (t) = log E[e itt ] = f 2 log( 2it)+ s [ q f = 2 β k = ( ρ)x k = O(), ϵ j = ( ρ)y j = O() ξ k [ q γ k = ( )k+ k(k + ) i= p η j ], 2 (q p) B k+ (β i + ξ i ) (ρx i ) k 6 γ k M k {( 2it) k } +O(M (s+) ) p ] B k+ (ϵ j + η j ), (ρy j ) k

Expansion of the characteristic function ϕ T (t) = exp{ψ T (t)} = ϕ s (t) + O(M (s+) ), ϕ s (t) = ( 2it) f/2 { s + M k k m= m! l + +l m =k l i Asymptotic expansion of the distribution function m i= } γ li [( 2it) l i ] P(T x) = G s (x) + O(M (s+) ) x { } G s (x) = e itx ψ s (t)dt dx (inverting formula) 2π 7

High dimensional Edgeworth expansion The moment generating function of log V ϕ log V (t) := E[exp(it log V )] = E[V it ] [ p = K y ] j y it j q i= Γ[x i( + it) + ξ i ] q i= x i x i p Γ[y j( + it) + η j ] cumulants κ = E[log V ] = log κ k = p y j y j q i= x i x i q x i ψ (k ) (x i + ξ i ) i= where ψ (k) (a) = dk+ log Γ[a] dak+ + q x i ψ (0) (x i + ξ i ) i= p y j ψ (0) (y j + η j ) p y j ψ (k ) (y j + η j ) (k 2) 8

Formal Edgeworth expansion { ϕ log V (t) φ s (t) := e t2 /2 + γ k,j = κ (j+3k)/2 2 s + +s k =j s k! s k j=0 } γ k,j (it) 3k+j, κ s +3 κ sk +3 (s + 3)! (s k + 3)!, ( log V κ P κ2 ) x Q s (x) := Φ(x) ϕ(x) h j : the j th order Hermite polynomial s k! s k γ k,j h 3k+j (x), j=0 9

3. Uniform error bounds If we find a function such that ϕ log V (t) φ s (t) G(t) and G(t) dt is computable t Then ( sup log V P κ x κ2 ) x Q s (x) 2π ϕ log V (t) φ s (t) dt t G(t) dt t 0

3.. Previous results We have found computable error bounds of the following statistics under a framework MANOVA test p, n i, with p n i c i (0, ) The modified likelihood ratio test testing Σ = I p The likelihood ratio test testing the sphericity The modified likelihood ratio test testing Σ = Σ 2 = = Σ r

Numerical examples Error bounds for testing H 0 : Σ = Σ 2 in the case of s = 2 n = n 2 = 8 n = 8, n 2 = 36 p BOUND p BOUND 3 0.0037 (0.55) 3 0.0035 (0.65) 6 0.003 (0.55) 6 0.003 (0.65) 9 0.0009 (0.60) 9 0.000 (0.65) 2 0.000 (0.70) 2 0.002 (0.80) 5 0.0037 (0.95) 5 0.0097 (0.95) 2

Error bounds for testing H 0 : Σ = λi p in the case of s = 2 n = 30 n = 60 p BOUND p BOUND 5 0.47 (0.75) 0 0.0255 (0.55) 0 0.0276 (0.60) 20 0.003 (0.40) 5 0.0093 (0.60) 30 0.0008 (0.40) 20 0.0052 (0.65) 40 0.0004 (0.45) 25 0.0067 (0.90) 50 0.0004 (0.60) 3

Error bounds for testing H 0 : Σ = I p in the case of s = 2 n = 30 n = 60 p BOUND p BOUND 5 0.0886 (0.70) 0 0.086 (0.50) 0 0.096 (0.60) 20 0.0026 (0.40) 5 0.0074 (0.60) 30 0.0008 (0.40) 20 0.004 (0.65) 40 0.0004 (0.40) 25 0.0050 (0.85) 50 0.0004 (0.55) 4

3.2. Error bounds for large sample approximation ψ T (t) = where q p {g k (t) g k (0)} {h j (t) h j (0)}, g k (t) = 2itρx k log x k + log Γ[ρx k ( 2it) + β k + ξ k ], h j (t) = 2itρy j log y j + log Γ[ρy j ( 2it) + ϵ j + η j ], and β k = ( ρ)x k = O(), ϵ j = ( ρ)y j = O() Generalized Stirling s theorem due to Barnes (899): log Γ[x + h] = log 2π + (x + h 2 ) log x x s ( ) k B k+ (h) k(k + )x k + R s+ (x), rigorous representation of R s (x) is required. 5

Lemma (from the infinite product definition due to Euler) log Γ[z + a] = lim n { + (z + a ) log n n } {log k log(z + a + k)} Lemma generalized Euler Maclaurin s formula f(x) : complex valued function of real argument n G n (x) = f(x + l) s k=0 G (k) l= n (0) a k = k! + n n f(x)dx + s k=0 B k+ (a) (k + )! {f (k) (n) f (k) ()} B s+ (a) + ( ) s B s+ (x [x] a) f (s+) (x)dx (s + )! 6

Lemma n log(z + a + l) = l= + + s m= n n ( ) m+ B m+ (a) { m(m + ) C s+ (x; a) s + log(z + x)dx + B (a) log z + n z + (z + n) } m (z + ) m (z + x) s+ dx + R s,n(z, a), where C k (x; a) = B k (x [x] a) B k ( a), n ( a ) k R s,n (z, a) = k z + l l= k=s+ 7

Lemma g k (t) g k (0) = B (β k + ξ k ) log( 2it) s ( ) m+ B m+ (β k + ξ k ) { } + m(m + )(ρx k ) m ( 2it) s + m= + l=0 C s+ (x; β k + ξ k ) 0 s + { } (ρx k + x) dx s+ (ρx k ( 2it) + x) s+ { ( βk ξ ) m ( k β k ξ ) } m k m ρx k + l ρx k ( 2il) + l m=s+ 8

Theorem ψ T (t) = f s 2 log( 2it)+ [ q f = 2 ξ k m= p η j ], 2 (q p) [ q γ m = ( )m+ m(m + ) B m+ (β k + ξ k ) (ρx k ) m γ m M m { ( 2it) m } +Rem s, p ] B m+ (ϵ j + η j ), (ρy j ) m 9

Rem s = q + p q p 0 0 l=0 l=0 { C s+ (x; β k + ξ k ) s + (ρx k + x) s+ (ρx k ( 2it) + x) s+ { C s+ (x; ϵ j + η j ) s + (ρy j + x) s+ (ρy j ( 2it) + x) s+ { ( βk ξ ) m ( k β k ξ ) } m k m ρx k + l ρx k ( 2it) + l m=s+ m=s+ m { ( ϵj η j ρy j + l ) m ( ϵ j η ) } m j ρy j ( 2it) + l } dx } dx 20

3.3. Wilks lambda distribution (MANOVA test) Moment formula Λ = det{b(w + B) } Λ p (q, n) B W p (q, Σ), W W p (n, Σ) (n > p) E[Λ h ] = q Γ[ n p+j + h]γ[ n+j ] 2 2 Γ[ n p+j ]Γ[ n+j + h]. 2 2 2

High dimensional approximation (Tonda and Fujikoshi (2004), Wakaki (2007)) { } log Λ κ Pr x (κ 2 ) /2 { } κ3 = Φ(x) ϕ(x) 6 h 2(x) + + O(m (s+)/2 ), κ i : cumulants, κ i : standardized cumulant, m = n p 2 (κ 2 ) /2 2 n, (n p) 22

Error bound(wakaki(2007)) F s (x) : Edgeworth expansion with using (s + 2)-th cumulants Table : The error bounds for s = 2 and n = 50. p q error-bound 0 5 0.0272 20 5 0.00 30 5 0.0077 40 5 0.000 p q error-bound 0 0 0.0099 20 0 0.0035 30 0 0.0023 40 0 0.0029 23

Error bound for the large sample approximation Theorem where ψ T (t) log E[exp{ Mit log Λ}] = pq s 2 log( 2it) + γ k M { ( k 2it) k } q + Rem c p+j,s+ (it), γ k = ( 2)k q {B k+( c+j ) B 2 k+( c p+j )} 2, k(k + ) c = (p q + ) 2 24

where C s+ (x; p+a Rem a,s (it) = ) C 2 s+(x; a) 2 s + { ( M( 2it) + x ) 2 s+ ( ) k+ + k l= k=s+ {( ) (p + a) k a k {M( 2it) + 2l} k ( M 2 + x )s+ ( (p + a) k a k (M + 2l) k } dx )}, 25

Note k : odd γ k = 0 (Box (949) : γ = γ 3 = γ 5 = 0) ψ T (t) = pq s 2 log( 2it) + γ 2k M { ( 2k 2it) 2k } + q Rem c p+j,2s+2 (it), 26

The residual of the expansion of the characteristic function ψ(t) = ψ 0 (t) + s u= g u (t) = γ 2u { ( 2it) 2u }, q R s (t) = M 2s Rem c p+j,2s, g u (t) M + R s+(t) (s = 0,, ), 2u M 2(s+) ϕ T (t) = E[exp{ Mit log Λ}] = ϕ s (t) + ( 2it) pq/2 R p,q,s(t) M 2(m+) 27

ϕ s (t) = ( 2it) pq/2 { + s M 2j [ ] R p,q,s (t) = {R (t)} s+ R (t) E,s+ + R s+ + s k=2 + R s k+2 R k { k 2 k! j=0 M 2 l i : k j i= l i s j j ( k j i= k! }, E,s (x) = x s { e x l + +l k =j l i k g li }, i= g li )R s+ j li R j s } x k k! 28

Lemma q Rem c p+j,m (it) M K p,q,m(t), m R s (t) K p,q,2s (t) { } 2t K p,q,m (t) = min A p,q,m, B p,q,m + 4t 2 { } 2t + C p,q,m min, 2 + 4t 2 m + 29

A p,q,m = q { ( c + j ) (c + j) m+ L,m 2 M ( c p + j ) } (c p + j) m+ L,m, M q { ( c + j ) B p,q,m = (c + j) m+ L 2,m M ( c p + j ) } (c p + j) m+ L 2,m, M C p,q,m = 2m m max q ( C m+ x; c + j ) ( C m+ x; c p + j ), 0 x 2 2 L,m (x) = { m log( x) x m L 2,m (x) = x m+ } x k, k { m ( x) log( x) + x 30 } x k+. k(k + )

Theorem sup Pr{ M log Λ x} F s (x) x F s (x) = x { } e itx ϕ s (t)dt dx 2π 2πM 2(s+) [ ] G p,q,s (t) = {K p,q,2 (t)} s+ Kp,q,2 (t) E,s+ + K p,q,2s+2 (t) + s k=2 { k 2 k! j=0 l i : k j i= l i s j k j i= + K p,q,2(s k+2) (t)k p,q,2 (t) k }, M 2 G p,q,s (t) dt, t g li K p,q,2(s+ j li )(t)k p,q,2 (t) j 3

case of s = case of s = 2 F (x) = G f (x) + γ 2 M 2 {G f(x) G f+4 (x)}, G p,q, (t) = ( + 4t 2 ) pq/4 { K p,q,4 (t) + {K p,q,2 (t)} 2 E,2 [ Kp,q,2 (t) M 2 ]} F 2 (x) = G f (x) + γ 2 M 2 {G f(x) G f+4 (x)} + M 4 {( c c 2 )G f (x) + c G f+4 (x) + c 2 G f+8 (x)}. c = γ 2 ( + γ 2 ), c 2 = γ2 2 2 γ 4, γ 4 = pq(59 50p2 + 3p 4 50q 2 + 0p 2 q 2 + 3q 4 ), 920 G p,q,2 (t) = ( + 4t 2 ) pq/4 {K p,q,6 (t)+ γ 2 2 ( 2it) 2 K p,q,4 (t) + {K p,q,2 (t)} 3 E,3 [ Kp,q,2 (t) M 2 ]}. 32

3.4. Comparison of error bounds between two types of expansions Table 2: n = 50.HD(High dimension)(s = 2), LS(Large sample)(s = ) p q HD LS 0 5 0.0272 0.000783 20 5 0.00 0.070 30 5 0.0077 0.25 40 5 0.000 > p q HD LS 0 0 0.0099 0.00235 20 0 0.0035 0.0357 30 0 0.0023 0.57 40 0 0.0029 > 33

Table 3: n = 50, p = 20, q = 5 s HD 0 0.0406 0.08 2 0.00 3 0.0078 4 0.006 s LS 0 0.057 0.070 2 0.0087 34

End of this talk. Thank you. 35