arxiv: v2 [math.dg] 14 Oct 2017

Σχετικά έγγραφα
arxiv: v1 [math.dg] 11 Oct 2017

On Integrability Conditions of Derivation Equations in a Subspace of Asymmetric Affine Connection Space

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities

Journal of Theoretics Vol.4-5

On Curvature Tensors in Absolute Parallelism Geometry

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

8.324 Relativistic Quantum Field Theory II

Multi-dimensional Central Limit Theorem

α & β spatial orbitals in

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

Multi-dimensional Central Limit Theorem

A Class of Orthohomological Triangles

Extended Absolute Parallelism Geometry

Congruence Classes of Invertible Matrices of Order 3 over F 2

Some generalization of Cauchy s and Wilson s functional equations on abelian groups

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population

Solutions for Mathematical Physics 1 (Dated: April 19, 2015)

MABUCHI AND AUBIN-YAU FUNCTIONALS OVER COMPLEX THREE-FOLDS arxiv: v1 [math.dg] 27 Mar 2010

8.323 Relativistic Quantum Field Theory I

Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) Frank-Wolfe [7],. Frank-Wolfe, ( ).

5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [,

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

A summation formula ramified with hypergeometric function and involving recurrence relation

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

1 Complete Set of Grassmann States

Homomorphism in Intuitionistic Fuzzy Automata

Quantum ElectroDynamics II

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Estimators when the Correlation Coefficient. is Negative

2 Composition. Invertible Mappings

V. Finite Element Method. 5.1 Introduction to Finite Element Method

Other Test Constructions: Likelihood Ratio & Bayes Tests

Non polynomial spline solutions for special linear tenth-order boundary value problems

Every set of first-order formulas is equivalent to an independent set

2 Lagrangian and Green functions in d dimensions

THE SECOND WEIGHTED MOMENT OF ζ. S. Bettin & J.B. Conrey

A Two Sample Test for Mean Vectors with Unequal Covariance Matrices

Nonlinear problem with subcritical exponent in Sobolev space

Neutralino contributions to Dark Matter, LHC and future Linear Collider searches

Reminders: linear functions

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.

N. P. Mozhey Belarusian State University of Informatics and Radioelectronics NORMAL CONNECTIONS ON SYMMETRIC MANIFOLDS

Geometry of Parallelizable Manifolds in the Context of Generalized Lagrange Spaces

Constant Elasticity of Substitution in Applied General Equilibrium

Finite Field Problems: Solutions

EE512: Error Control Coding

Homomorphism of Intuitionistic Fuzzy Groups

THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS. Daniel A. Romano

LECTURE 4 : ARMA PROCESSES

Commutative Monoids in Intuitionistic Fuzzy Sets

Fractional Colorings and Zykov Products of graphs

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Section 7.6 Double and Half Angle Formulas

On the conformal change of five-dimensional Finsler spaces

A General Note on δ-quasi Monotone and Increasing Sequence

On geodesic mappings of Riemannian spaces with cyclic Ricci tensor

Duals of the QCQP and SDP Sparse SVM. Antoni B. Chan, Nuno Vasconcelos, and Gert R. G. Lanckriet

Statistical Inference I Locally most powerful tests

A Lie Symmetry Analysis of the Black-Scholes Merton Finance Model through modified Local one-parameter transformations

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

CAPM. VaR Value at Risk. VaR. RAROC Risk-Adjusted Return on Capital

Symplecticity of the Störmer-Verlet algorithm for coupling between the shallow water equations and horizontal vehicle motion

Some Theorems on Multiple. A-Function Transform

A Method for Determining Service Level of Road Network Based on Improved Capacity Model

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Geometry of parallelizable manifolds in the context of generalized Lagrange spaces

Higher spin gauge field cubic interactions.

IF(Ingerchange Format) [7] IF C-STAR(Consortium for speech translation advanced research ) [8] IF 2 IF

Uniform Convergence of Fourier Series Michael Taylor

Example Sheet 3 Solutions

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

6.3 Forecasting ARMA processes

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

CRASH COURSE IN PRECALCULUS

Quantum annealing inversion and its implementation

Lecture 34 Bootstrap confidence intervals

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

4.6 Autoregressive Moving Average Model ARMA(1,1)

Section 8.3 Trigonometric Equations

Supporting information for: Functional Mixed Effects Model for Small Area Estimation

1. Introduction and Preliminaries.

Power allocation under per-antenna power constraints in multiuser MIMO systems

Space-Time Symmetries

ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα,

On Inclusion Relation of Absolute Summability

Jordan Form of a Square Matrix

On a four-dimensional hyperbolic manifold with finite volume

Higher Derivative Gravity Theories

arxiv:q-alg/ v1 21 Jul 1997

Asymptotically Confirmed Hypotheses Method for the Construction of Micropolar and Classical Theories of Elastic Thin Shells

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

35 90% %

On homeomorphisms and C 1 maps

Roman Witu la 1. Let ξ = exp(i2π/5). Then, the following formulas hold true [6]:

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΠΑΝΑΣΧΕΔΙΑΣΜΟΣ ΓΡΑΜΜΗΣ ΣΥΝΑΡΜΟΛΟΓΗΣΗΣ ΜΕ ΧΡΗΣΗ ΕΡΓΑΛΕΙΩΝ ΛΙΤΗΣ ΠΑΡΑΓΩΓΗΣ REDESIGNING AN ASSEMBLY LINE WITH LEAN PRODUCTION TOOLS

Transcript:

Invarants of Thrd Type Almost Geodesc Mappngs of Generalzed Remannan Space arxv:1710.04504v2 [math.dg] 14 Oct 2017 Nenad O. Vesć Abstract e studed rules of transformatons of Chrstoffel symbols under thrd type almost geodesc mappngs n ths paper. From ths research, we obtaned some new nvarants of these mappngs. These nvarants are analoges of Thomas projectve parameter and eyl projectve tensor. Key words: almost geodesc mappng, dfference, nvarant 2010 Math. Subj. Classfcaton: 53C15, 47A15, 58C30, 55C99, 53A55, 35R01 1 Introducton Followng the Esenhart s work [6 8], t s started the research about Remannan spaces endowed wth non-symmetrc metrcs [26,27]. An N-dmensonal manfold endowed wth metrc tensor g j non-symmetrc by ndces and j s the generalzed Remannan space GR N. Affne connecton coeffcents of the space GR N are Chrstoffel symbols of the second knd jk wth respect to the connecton of the metrc g j. Because jk kj, the symmetrc and antsymmetrc parts of the Chrstoffel symbol jk are defned as jk = 1 2 jk + kj and jk = 1 2 jk kj. 1.1 The ant-symmetrc part jk of the coeffcent jk s called the torson tensor of the space GR N. The Remannan space R N, endowed wth affne connecton coeffcents jk s the assocated space of the space GR N [2,23 25,28,29]. th regard to the affne connecton of Remannan space, t s defned one knd of covarant dervaton a j;k = a j,k + k a j jk a, 1.2 for a tensor a j of the type 1,1 and partal dervaton denoted by comma. Curvature tensor Rjmn of the assocated space R N s R jmn = jm,n jn,m + jm n jn m. 1.3 Ths paper s fnancally supported by Serban Mnstry of Educaton, Scence and Technologcal Development, Grant No. 174012 1

Four knds of covarant dfferentaton wth regard to affne connecton of the space GR N are [15]: a j 1 a j 3 k = a j,k + k a j jk a a j k = a j,k + k a j kj a, 1.4 2 k = a j,k + k a j kj a a j k = a j,k + k a j kj a. 1.5 There are twelve curvature tensors of the space GR N [15]. They are elements of the famly Kjmn = Rjmn +u jm;n +u jn 4 ;m +v jm n +v jn m +w mn j, 1.6 for real constants u,u,v,v,w. Fve of these curvature tensors are lnearly ndependent [16]. 1.1 Mappngs of generalzed Remannan spaces Remannan and generalzed Remannan spaces are specal affne connected spaces. e are gong to pay attenton on mappngs between generalzed Remannan spaces n ths paper. Dfferent mappngs of Remannan and generalzed Remannan spaces as well as ther nvarants have been nvestgated see [1,2,6,9 25,28,29,31]. N. S. Snyukov started the research about almost geodesc mappngs [19]. Hs work has been contnued by by J. Mkeš and hs research group see [12 14]. Snyukov [19] generalzed the term of geodescs. He nvolved the terms of almost geodesc lnes and almost geodesc mappngs of symmetrc affne connecton spaces. He founded that are three types π 1,π 2,π 3 of almost geodesc of a symmetrc affne connecton space. The terms of almost geodesc lnes and almost geodesc mappngs are generalzed n [20 22]. It s founded that there are three types and two knds of almost geodesc mappngs of a nonsymmetrc affne connecton space. Because generalzed Remannan spaces are specal nonsymmetrc affne connecton spaces, the basc equatons of an almost geodesc mappng f : GR N GR N of the thrd type and s-th knd, s = 1,2, are: jk = jk π3 : +ψ jk +ψ kj +2σ jkϕ +ξjk, s ϕ j + 1s 1 ξj ϕ = ν j ϕ +µj, 1.7 s for tensor ξ jk ant-symmetrc by ndces j and k, covarant vectors ψ j,ν j, contravarant vector ϕ and scalar functon µ. Thrd type almost geodesc mappng f has the property of recprocty f ts nverse mappng s thrd type almost geodesc mappng. In ths paper, we wll pay attenton to nvarants of equtorson thrd type almost geodesc mappngs whch satsfy the property of recprocty. 1.2 Motvaton A. Ensten was the frst scentst who appled the non-symmetrc affne connecton n the theory of gravtaton [3 5]. In hs theory, eyl projectve tensor s related to gravty. In ths paper, we wsh to generalze eyl projectve tensor as an nvarant of equtorson thrd type almost geodesc mappngs. It wll be obtaned transformaton rules of covarantly 2

dfferentated torson tensor jk under equtorson thrd type almost geodesc mappngs whch have the property of recprocty. In the next, we wll fnd famles of nvarants of these mappngs wth regard to the changes of curvature tensors Kjmn gven by the equaton 1.6. 2 Man results Let f : GR N GR N be an equtorson almost geodesc mappng of the thrd type and s-th knd s = 1,2, whch satsfes the property of recprocty. Basc equatons of ths mappng are jk π3 : = jk +ψ jk +ψ kj +2σ jkϕ, s ϕ j = ν jϕ +µj, 2.1 s for scalar functon µ, covarant vectors ψ j,ν j, contravarant vector ϕ and tensor σ jk of the type 0,2 symmetrc by ndces j and k. It s obtaned n [30] that the geometrcal objects jmn = Rjmn + j 1 1 [mn] m j;n jn +µσ jn 1 n j;m jm +µσ jm 1 σ jm;n σ jn;m σ jm σ n σ jn σ m ϕ ϕ +σ jm nϕ σ jn mϕ, jmn = Rjmn + j 2 2 [mn] m j;n jn +µσ jn 2 n j;m jm +µσ jm 2 σ jm;n σ jn;m σ jm σ n σ jn σ m ϕ ϕ σ jm n ϕ +σ jn m ϕ, for j and j gven by the followng equatons: 1 2 jk = 1 jk = 2 1 2 ϕ σ jk β β +σ βϕ β j +σ j ϕ β kβ +σ kβϕ β σj;k ϕ +σ jk µ+σ j ν k ϕ βkϕ β, 1 2 ϕ σ jk β β +σ βϕ β j +σ jϕ β kβ +σ kβϕ β σj;k ϕ +σ jk µ+σ j ν k ϕ + βkϕ β, 2.2 2.3 2.4 2.5 scalar functon µ and antsymmetrzaton wthout dvson denoted by square brackets, are nvarants of the mappng f. 3

2.1 Transformatons of covarant dervatve of torson tensor Let f : GR N GR N be an equtorson thrd type almost geodesc mappng of an s-th knd, s = 1,2, whch has the property of recprocty. Based on the equaton 1.2 and the nvarance jk = jk, we obtan that s jm;n jm;n = n jm = jm jn m mn j n jm n n m jn jn j + jn m + mn j 2.6 mn mn Because the mappng f has the property of recprocty, t s got n [30] that s.e. ψ j = ψ j and σ jk ϕ = σ jk ϕ, 2.7 jk jk = 1 j +σ j ϕ k + k +σ k ϕ j σjk ϕ j +σ j ϕ k + k +σ kϕ j +σjk ϕ. th regard to the expressons 2.6, 2.8, we obtan that t holds 2.8 p = 1,...,8, for jm;n jm ;n = σ jmn σ jmn, 2.9 p p σ jmn = 1 jm σ jmn = 2 jm n m jn j mn, 2.10 n + mϕ σ jn + jϕ σ mn 2 jm ϕ σ n + jn σ jmn = jm n m jn + jϕ σ mn 3 σ jmn = 4 jm jm n + jn n j mn + mϕ σ jn jm n mn σ jmn = jmϕ σ n m jn j 5 n jm β β + jm 2 jm n + jn m mn j ϕ σ m mn ϕ σ j, 2.11 m + jmϕ σ n + jnϕ 2.12 σ m, j + jmϕ σ n mnϕ 2.13 σ j, mn n + n jmϕ β σ β + jmϕ 2.14 σ n, 4

σ jmn = jmϕ σ n + mϕ σ jn + jϕ σ mn 6 n jm n jm β β jm ϕ β σ β jm n jn σ jmn = jmϕ σ n m jn + jϕ σ mn 7 n jm β β jn m + mn j ϕ σ n jnϕ σ m + mnϕ σ j, m 1 + σ jmn = jmϕ σ n j mn + mϕ σ jn 8 n jm β β + mn 1 j + and the correspondng σ p jmn. Let be n jm ϕ β σ β jn 2.15 ϕ σ m, 2.16 n jmϕ β σ β + mnϕ 2.17 σ j, U = jm 1 n, U = jn 2 m, U = m 3 jn, U = n 4 jm, U = j 5 mn, U = jm n, U = 6 7 jn m, U = 8 mn j, U = 9 mϕ σ jn, U = nϕ σ jm, 10 U = jϕ σ mn, U = jmϕ σ n, U = jnϕ σ m, U = mnϕ σ j, 11 12 13 14 U = 15 n jm β β, U = 16 m jn β β,u = 17 n jmϕ β σ β, U = 18 m jnϕ β σ β, U = jmϕ σ n, U = jnϕ σ m. 19 20 2.18 It holds the followng lemma: Lemma 1. Let f : GR N GR N be an equtorson thrd type almost geodesc mappng whch has the property of recprocty. a Covarant dervatves jm satsfy the equatons ;n and jm ;n of the torson tensor of the spaces GR N and GR N jm ;n = jm;n + σ jmn σ jmn = jm p p 8 20 ;n + ρ=1 θ=1 p = 1,...,8, for the correspondng real constants u ρ θ, geometrcal objects σ u ρ θ Uθ U θ, 2.19 jmn,u p θ gven by the equatons 2.10 2.18. b The rank of matrx [ u ρ ] θ,ρ = 1,...,8, s 4,.e. there are four lnearly ndependent 8 20 transformatons of the transformatons from 2.19. 5

Corollary 1. Geometrcal objects ρ T jm;n = jm;n 20 θ=1 u ρ θ U θ jmn, 2.20 ρ {1,...,8}, for the correspondng real constants u ρ θ, are nvarants of an equtorson almost geodesc mappng f : GR N GR N whch has the property of recprocty. Four of these nvarants are lnearly ndependent. 2.2 Transformatons of curvature tensors under almost geodesc mappngs Let f : GR N GR N be an equtorson almost geodesc mappng of the thrd type and s-th knd, s = 1,2, whch has the property of recprocty. From the nvarance of the geometrcal objects 1 jmn and 2 jmn gven by the equatons 2.2, 2.3, we drectly obtan that s R jmn = R jmn j 1 [mn] n m j;n 1 j;m jm +µσ jm 1 jn +µσ jn + σ jm;n σ jn;m σ jm σ n σ jn σ m ϕ ϕ σ jm nϕ +σ jn mϕ +j 1 [mn] m j;n jn +µσ jn 1 n j;m jm +µσ jm 1 σ jm;n σ jn;m σ jm σ n σ jn σ m ϕ ϕ +σ jm nϕ σ jn mϕ, R jmn = Rjmn j 2 [mn] m j;n jn +µσ jn 2 n j;m jm +µσ jm 2 + σ jm;n σ jn;m σ jm σ n σ jn σ m ϕ ϕ +σ jm nϕ σ jn mϕ +j 2 [mn] m j;n jn +µσ jn 2 n j;m jm +µσ jm 2 σ jm;n σ jn;m σ jm σ n σ jn σ m ϕ ϕ σ jm n ϕ +σ jn m ϕ. 3.1.1 3.1.2 Hence, based on these transformatons and the equaton 2.19 we establsh the followng equatons: 6

K jmn = Kjmn j 1 [mn] n m j;n 1 j;m jm +µσ jm 1 jn +µσ jn + σ jm;n σ jn;m σ jm σ n σ jn σ m ϕ ϕ σ jm nϕ +σ jn mϕ +j 1 [mn] m j;n jn +µσ jn n 1 j;m jm +µσ jm 1 σ jm;n σ jn;m σ jm σ n σ jn σ m ϕ ϕ +σ jm nϕ σ jn mϕ +uσ jmn +u σ jnm uσ jmn u σ jnm, p q p q K jmn = Kjmn j 2 [mn] m n j;m jm +µσ jm 2 j;n jn +µσ jn 2 + σ jm;n σ jn;m σ jm σ n σ jn σ m ϕ ϕ +σ jm nϕ σ jn mϕ +j 2 [mn] m j;n jn +µσ jn n 2 j;m jm +µσ jm 2 σ jm;n σ jn;m σ jm σ n σ jn σ m ϕ ϕ σ jm nϕ +σ jn mϕ +uσ jmn +u σ jnm uσ jmn u σ jnm. p q p q Based on these transformatons, we obtan that s 2.21 2.22 for p,q {1,...,8} 2 and p,q 1 jmn = jmn and p,q 1 p,q 2 jmn = jmn, p,q 2 p,q 1 jmn = K jmn + j 1 [mn] m j;n n j;m jm +µσ jm 1 1 jn +µσ jn σ jm;n σ jn;m σ jm σ n σ jn σ m ϕ ϕ +σ jm nϕ σ jn mϕ uσ jmn u σ jnm, p q 2.23 7

p,q 2 jmn = K jmn + j 2 [mn] m j;n n j;m jm +µσ jm 2 2 jn +µσ jn σ jm;n σ jn;m σ jm σ n σ jn σ m ϕ ϕ σ jm nϕ +σ jn mϕ uσ jmn u σ jnm. p q 2.24 Theorem 1. Let f : GR N GR N be an equtorson almost geodesc mappng of the thrd type and s-th knd, s = 1,2, whch has the property of recprocty. Famles p,q 1 jmn and jmn gven by the equatons 2.23, 2.24 are famles of nvarants of mappng of the correspondng knd. Corollary 2. The famles jmn p,q s p,q 2,s = 1,2, of nvarants of an equtorson almost geodesc mappng f : GR N GR N whch has the property of recprocty and the nvarants s jmn gven by the equatons 2.2, 2.3 satsfy the equatons p,q s for p,q {1,...,8} 2. jmn = jmn uσ jmn u σ s p +u jm;n +u jn q jnm ;m +v jm n +v jn m +w mn j, 2.25 Corollary 3. The rank of matrx = [ 1 u ρ 1... u ρ 20 u u v v w ] 2.26 of the type 64 26 s equal 6,.e. there are sx lnearly ndependent famles p,q {1,...,8} 2, of nvarants gven by the equatons 2.23, 2.24. References jmn p,q s,s {1,2}, [1] V. Berezovsk, J. Mkeš, On a Classfcaton of Almost Geodesc Mappngs of Affne Connecton Spaces, Acta Unv. Palack. Olomuc, Fac. rer. nat., Mathematca 35 1996 21 24. [2] M. S. Ćrć, M. Lj. Zlatanovć, M. S. Stankovć, Lj. S. Velmrovć, On geodesc mappngs of equdstant generalzed Remannan spaces, Appled Mathematcs and Computaton 21812, 2012, 6648 6655. [3] A. Ensten, A generalzaton of the relatvstc theory of gravtaton, Ann. of. Math., 45 1945, No. 2, 576 584. 8

[4] A. Ensten, Banch denttes n the generalzed theory of gravtaton, Can. J. Math., 1950, No. 2, 120 128. [5] A. Ensten, Relatvstc Theory of the Non-symmetrc Feld, Prnceton Unversty Press, New Jersey, 1954, 5th edton. [6] L. P. Esenhart, Non-Remannan Geometry, vol 8, Amer. Math. Soc. Colloq. Publ., New York, 1927. [7] L. P. Esenhart, Generalzed Remannan spaces, Proc. Natl. Acad. Sc. USA 37 1951 311 315. [8] L. P. Esenhart, Generalzed Remannan spaces, II, Proc. Natl. Acad. Sc. USA 38 1952 505 508. [9] G. Hall, Projectve relatedness and conformal flatness, Cent. Eur. J. Math., 10 2012, 1763 1770. [10] G. Hall, On the converse of eyl s conformal and projectve theorems, Publ. Inst. Math. Beograd N.S., 108 2013, No. 94, 55 65. [11] S. Ivanov, M. Lj. Zlatanovć, Connectons on a non-symmetrc generalzed Remannan manfold and gravty, Class. Quantum Grav., 33 2016, No. 7. [12] J. Mkeš, V. Kosak, A. Vanžurová, Geodesc Mappngs of Manfolds wth Affne Connecton, Palacký Unversty, Olomouc, 2008. [13] J. Mkeš, E. Stepanova, A. Vanžurová, et all, Dfferental Geometry of Specal Mappngs, Palacký Unversty, Olomouc, 2015. [14] J. Mkeš, A. Vanžurova, I. Hnterletner, Geodesc Mappngs and Some Generalzatons, Palacký Unversty, Olomouc, 2009. [15] S. M. Mnčć, On curvature tensors and pseudotensors of the spaces wth non-symmetrc affne connecton, Math. Balkanca N.S., 76 1974, No. 4,427 430. [16] S. M. Mnčć, Independent curvature tensors and pseudotensors of spaces wth nonsymmetrc affne connexon, Colloqua Mathematca Socetats János Bolaya, 31 1979, 445 460. [17] S. M. Mnčć, M. S. Stankovć, On geodesc mappngs of general affne connexon spaces and of generalzed Remannan spaces, Mat. Vesn., 49 1997, No. 2, 27 33. [18] S. M. Mnčć, M. S. Stankovć, Equtorson geodesc mappngs of generalzed Remannan spaces, Publ. Inst. Math. Beograd N. S 61 75 1997, 97-104. [19] N. S. Snyukov, Geodesc Mappngs of Remannan Spaces n Russan, Nauka, Moscow, 1979. [20] Mća S. Stankovc, Frst type almost geodesc mappngs of general affne connecton spaces, Nov Sad J. Math. 29, No. 3 1999, 313-323. 9

[21] Mća S. Stankovć, On a canonc almost geodesc mappngs of the second type of affne spaces, FILOMAT 13, 1999, 105-114. [22] M. S. Stankovć On a Specal Almost Geodesc Mappngs of Thrd TYpe of Affne Spaces, Nov Sad J. Math. Vol. 31, No. 2, 2001, 125 135. [23] M. S. Stankovć, S. M. Mnčć, New specal geodesc mappngs of generalzed Remannan space, Publ. Inst. Math. Beograd N. S 6781 2000, 92 102. [24] M. S. Stankovć, S. M. Mnčć, Lj. S. Velmrovć, On Holomorphcally Projectve Mappngs of Generalzed Kahleran Spaces, Matematck vesnk 542002, 195 202. [25] M. S. Stankovć, S. M. Mnčć, Lj. S. Velmrovć, On equtorson holomorphcally projectve mappngs of generalsed Kahleran spaces, Czechoslovak Mathematcal Journal, 54 129 2004, No. 3, 701-715. [26] M. Prvanovć, On Two Tensors n a Locally Decomposable Remannan Space, Revew of Research of Scence, Unversty of Nov Sad, Volume 6 1976. [27] M. Prvanovć, Product Sem-Symmetrc Connectons of the Locally Decomposable Remannan Spaces, Bulletn Académe serbe des scences et des arts. Classe des scences mathmatques et naturelles. Scences mathématques No. 10 1979, pp. 17 27. [28] M. S. Stankovć, Lj. S. Velmrovć, S. M. Mnčć, M. Lj. Zlatanovć, Equtorson conform mappngs of generalzed Remannan spaces, Matematck vesnk, 61 2009, 119 129. [29] M. S. Stankovć, M. Lj. Zlatanovć, Lj. S. Velmrovć, Equtorson holomorphcally projectve mappngs of generalzed Kahleran space of the second knd, Internatonal Electronc Journal of Geometry, Vol. 3, No. 2 2010, 26 39. [30] N. O. Vesć, Invarants of Thrd Type Almost Geodesc Mappngs of Generalzed Remannan Space, submtted. [31] N. O. Vesć, Lj. S. Velmrovć, M. S. Stankovć, Some Invarants of Equtorson Thrd Type Almost Geodesc Mappngs, Medterranean Journal of Mathematcs, Vol. 13, 6 2016, 4581 4590. 10