Part 3 REFLECTION AND TRANSMISSION

Σχετικά έγγραφα
Part 4 RAYLEIGH AND LAMB WAVES

Physics 401 Final Exam Cheat Sheet, 17 April t = 0 = 1 c 2 ε 0. = 4π 10 7 c = SI (mks) units. = SI (mks) units H + M

Homework 8 Model Solution Section

Note: Please use the actual date you accessed this material in your citation.


Finite Field Problems: Solutions

Second Order RLC Filters

D Alembert s Solution to the Wave Equation

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Second Order Partial Differential Equations

Chap. 6 Pushdown Automata

Areas and Lengths in Polar Coordinates

ADVANCED STRUCTURAL MECHANICS

Chapter 2. Stress, Principal Stresses, Strain Energy

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Finite difference method for 2-D heat equation

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Dr. D. Dinev, Department of Structural Mechanics, UACEG

Inverse trigonometric functions & General Solution of Trigonometric Equations

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

EE512: Error Control Coding

Matrices and Determinants

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Chapter 7 Transformations of Stress and Strain

Lecture 26: Circular domains

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Areas and Lengths in Polar Coordinates

CRASH COURSE IN PRECALCULUS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Mechanics of Materials Lab

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Tridiagonal matrices. Gérard MEURANT. October, 2008

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

6.4 Superposition of Linear Plane Progressive Waves

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,

Example Sheet 3 Solutions

PARTIAL NOTES for 6.1 Trigonometric Identities

Section 7.6 Double and Half Angle Formulas

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

derivation of the Laplacian from rectangular to spherical coordinates

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

Trigonometric Formula Sheet

Affine Weyl Groups. Gabriele Nebe. Summerschool GRK 1632, September Lehrstuhl D für Mathematik

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

2 Composition. Invertible Mappings

3.5 - Boundary Conditions for Potential Flow

C.S. 430 Assignment 6, Sample Solutions

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

Strain gauge and rosettes

Homework 3 Solutions

Calculating the propagation delay of coaxial cable

Section 8.3 Trigonometric Equations

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

F19MC2 Solutions 9 Complex Analysis

Section 8.2 Graphs of Polar Equations

1 String with massive end-points

ST5224: Advanced Statistical Theory II

If we restrict the domain of y = sin x to [ π 2, π 2

[1] P Q. Fig. 3.1

LTI Systems (1A) Young Won Lim 3/21/15

Macromechanics of a Laminate. Textbook: Mechanics of Composite Materials Author: Autar Kaw

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Bounding Nonsplitting Enumeration Degrees

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

( y) Partial Differential Equations

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

Empirical best prediction under area-level Poisson mixed models

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Derivation of Optical-Bloch Equations

EXPERIMENTAL AND NUMERICAL STUDY OF A STEEL-TO-COMPOSITE ADHESIVE JOINT UNDER BENDING MOMENTS

Math221: HW# 1 solutions

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Spherical Coordinates

ITU-R P (2012/02) &' (

Reminders: linear functions

Approximation of distance between locations on earth given by latitude and longitude

Every set of first-order formulas is equivalent to an independent set

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

ITU-R BT ITU-R BT ( ) ITU-T J.61 (

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

2. Laser Specifications 2 1 Specifications IK4301R D IK4401R D IK4601R E IK4101R F. Linear Linear Linear Linear

DuPont Suva 95 Refrigerant

Monolithic Crystal Filters (M.C.F.)

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

COMPLEX NUMBERS. 1. A number of the form.

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Linearized Lifting Surface Theory Thin-Wing Theory

DuPont Suva 95 Refrigerant

Transcript:

Part 3 REFLECTION AND TRANSMISSION

Normal Inidene Inident Wave Refletion ρ, 1 1 ρ, Transmission u e i ( k1 x t ) i A ω ( 1 ) i τ 1 1 ei k i uz i iωaz i x ω t u e i ( k 1 x t ) r A ω ( 1 ) r τ r u r Z1 iωar Z1 ei k x ω t t e i ( k x t ) ( ) t τ ei k t uz t iωaz t x ω t u A ω ( physial sign onvention) Boundary Conditions: for any value of t at x ui + ur ut τ i +τ r τ t Ai Ar At A Z + A Z A Z i 1 r 1 t

Refletion/Transmission Coeffiients Rd Ar Ai Td At Ai Z 1 + R d Td 1 Rd Td Z 1 displaement: stress: Rd Td Rs Ts Ar Z Z 1 Ai Z + Z1 At Ai Z1 Z1 + Z τr Z Z 1 τi Z + Z1 τ t τi Z Z1 + Z steel-water interfae ( ρ 46.5 16kg/m ss s, 6 ρ 1.5 1 kg/m s ) w w a) p i steel water p t p r b) water steel p i p t p r

Power Coeffiients: Pr + Pt Pi (Instantaneous) Intensity: Ir + It Ii τ Zv I τ v Zv ωzu Z Z1 Z1 Z1 + Z Z1 Z + Z1 Z1 + Z Speial ases: solid/vauum ( Z ) Rd solid/rigid ( Z R 1, T, R 1, T s ) d s s Rd R 1, T, T s d s Shear wave at normal inidene: displaement: Ar Zs Z R s1 d Ai Zs + Zs1 Td t Z A s1 Ai Zs1 + Zs stress: Rs τr Zs Z s1 τi Zs + Zs1 Ts τt Z s τi Zs1 + Zs

Impedane-Translation Theorem Z 1 inident wave refleted wave Z input A + d Z o,k o A_ x Z load Z transmitted wave τ ( x) A exp( ik x) + A exp( ik x) + o o τ/ x 1 v ( x) [ A+ exp( ikox) A exp( ikox)] iωρ Z The input impedane of the layer: o o Zinput τ () A A Z + + o v() A+ A Zload ik d τ ( d ) o Z A + e + A e v( d) A e o A e ik d o ik d ikod + o A Z o o load e ik d Z ik d o e + + A Z ikod ikod load e Zo e

Translation Formula: os( ) sin( ) os( ) sin( ) Zload kd o izo kd Z o input Zo Z o kd o iz load kd o Refletion Coeffiient: R Zinput Z1 Zinput + Z1 Z Z load Immersed/Embedded Layer: Z Z 1 R itan( k od)( Zo Z 1 ) itan( k )( od Zo + Z1 ) ZoZ1 T (1 R ) R ξsin( kd o ) ξ sin ( kd o ) + 1 T 1 ξ sin ( kd o ) + 1 impedane ontrast: ξ ½ Zo/ Z1 Z1/ Zo

Refletion/Transmission at a Layered Interfae Inident Wave Refletion ρ, 1 1 ρ o, o ρ, 1 1 Transmission T 1 ξ sin ( kd o ) + 1 Transmission Coeffiient 1.8.6.4. in water Plexiglas Steel.5.5.75 1 1.5 Thikness / Wavelength

Refletivity of Thin Craks in Solids R ξsin( kd o ) ξ sin ( kd o ) + 1 lim d R ξ k d o 1 Refletion Coeffiient.8.6.4. air gap in steel water-filled rak in steel -1-8 -6-4 - log {Frequeny x Thikness [MHz mm]}

Impedane Mathing Z os( kd) iz sin( kd) os( ) sin( ) Z load o o o input Zo Z o kd o iz load kd o d (n+ 1) λ / 4 o ko d π (n+ 1) Zinput Z o Zload Perfet mathing by quarter-wavelength layer: enter frequeny fo d Zo Z1Z λo o 4 4 fo Bandwidth: R( f) Zinput ( f) Z1 Zinput ( f) + Z1 Zinput ( f) Zo π f π f Zload os( d) izo sin( d) o o π f π f Zo os( d) izload sin( d) o o

Zo Z1Z and Zload Z Zinput ( f) Z1 Z π f π f Zos( d) i Z1Zsin( d) o o π f π f Z1Zos( d) izsin( d) o o R R R( fo) + ( f fo) f f f o Z ( f ) Z input o 1 R( f o) r Z/ Z1 π f π f ros( d) i rsin( d) input ( ) o Z f Z o 1 π f π f os( d) i rsin( d) o o sin( kd o ) 1, and os( kd o ) Δ π fo fo f Z ( f) Z input 1 rδ i r Δ i r

R( f) rδ i r Z1 Z1 Δ i r Δ( r 1) rδ i r Δ ( r + 1) i r Z1 + Z1 Δ i r R( f) r r 1 r 1π i r r 4 + 1 i Δ fo fo f Tenergy ( r 1) ( r 1) π f 1 1 o f Δ 4r 4r fo Br 1 f f1 4 r 1.8 r Q fo π( r 1) r 1 f 1 and f are the half-power (-3 db) points

Quarter-Wavelength Mathing Layer quarter-wavelength mathing layer between quartz and water 1 Energy Transmission.8.6.4. exat unmathed approximate.5.5 Thikness / Wavelength quarter-wavelength mathing layer between steel and water 1 Energy Transmission.8.6.4. exat unmathed approximate.5.5 Thikness / Wavelength

Continuous Transition ultrasoni transduer inident wave eho from the bottom j N lear water ρ, 1 1 mud ρ oj, oj j 1 solid rok ρ, For the jth layer: Zoj ρ oj oj, koj π f, (j 1,,... N) oj Reursive relationship: d N Zload1 Z ρ Zinp j Zoj Zload j os( kojd) izoj sin( kojd) Zoj os( kojd) izload j sin( kojd) Refletion oeffiient: Z load j+ 1 Zinp j R Zinp N Z1, where Z1 ρ 11 Zinp N + Z1

Imperfet Interfae, Finite Interfaial Stiffness u e i ( k1 x t ) i A ω ( 1 ) i τ 1 1 ei k i uz i iωaz i x ω t u e i ( k 1 x t ) r A ω ( 1 ) r τ r u r Z1 iωar Z1 ei k x ω t u e i ( k x t ) t A ω ( ) t τ ei k t uz t iωaz t x ω t x ρ 1, 1 Inident Wave Refletion K ρ, Transmission Boundary Conditions: ui + ur +Δ u ut τ i +τ r τ t τ +τ Δ u K τ K i r t K denotes the normal K n or transverse K t interfaial stiffness Slip boundary onditions: Kn/ Kt Low-density interphase layer: K / K 3 6 Kissing bond: K / K 3 Partial bond: K / K.5 1 n n n t t t

Refletion and Transmission Coeffiients Continuity of displaement: A A A i r t τt K Ai Ar At 1 iωz K Continuity of stress: A Z + A Z A Z i 1 r 1 t Stress refletion and transmission oeffiients: Imperfet interfae: R τr At Z Z1 + iωz1z/ K τi Ai Z + Z1 iωz1z/ K T τt At Z Z τi Ai Z1 Z1 + Z iωz1z/ K Ideal interfae (K ): R T τ r τi τ t τi Z Z Z + Z 1 1 Z Z + Z 1 lim R ω R and lim T T ω lim R 1 and lim T ω ω

Frequeny Dependene Moduli of the refletion and transmission oeffiients of an imperfet steelaluminum bond of K 114 N/ m3 for longitudinal wave at normal inidene Refletion and Transmission Coeffiients 1.9.8.7.6.5.4.3..1 Refletion Transmission 4 6 8 1 Frequeny [MHz] For similar materials ( Z 1 Z Z): R T iωz/ K iωω / 1 iωz/ K 1 iω/ Ω 1 1 1 iωz/ K 1 iω/ Ω Ω K/ Z is the harateristi transition frequeny

Oblique Inidene, Snell s Law 1 θ 1 λ 1 Λ λ θ λ Λ sin θ λ sin θ 1 1 f sinθ f sinθ 1 1 sinθ sinθ 1 1

Refletion and Transmission y y θ s1 R s I s θ si θ s1 R s I d θ di θd1 R d θd1 R d solid 1 z solid 1 z solid solid θ s θ s θ d T s T d θ d T s T d Snell's Law: sin θ sin θ sinθ sin θ sin θ sinθ Constitutive relationships: di si d1 s1 d s d1 s1 d1 s1 d s u u z y τ yy λ + ( λ + μ) z y uy u τ ( z zy μ + ) z y μ 1 ρ1s 1, λ 1 + μ 1 ρ1d 1, μ ρs, and λ + μ ρ d

Boundary Conditions both normal and transverse veloity and stress omponents must be ontinuous at the interfae () (1) uy u y () (1) uz u z () (1) τ yy τ yy () (1) τzy τzy longitudinal inidene: ( d1) ( d) ( s1) ( s) ( i) uy + uy uy + u y u y ( d1) ( d) ( s1) ( s) ( i) uz + uz uz + u z u z ( d1) ( d) ( s1) ( s) ( i) τ yy +τyy τ yy +τ yy τ yy ( d1) ( d) ( s1) ( s) ( i) τ zy +τzy τ zy +τzy τzy shear inidene Id 1, Is Is 1, Id a11 a1 a13 a14 Rd b1 1 a1 a a3 a 4 T d b or a31 a3 a33 a34 Rs b3 3 a41 a4 a43 a44 Ts b4 4 longitudinal [b] or shear wave inidene []

The matrix elements aij, bi, and i an be easily alulated from simple geometrial onsiderations: a osθd1 osθd sinθs1 sinθs sin θd1 sin θd osθs1 osθ s Zd1osθs1 Zdosθs Zs1sin θs1 Zssin θs s1 Z 1 sin s s θd1 Zs sin θd Zs1osθs1 Zsosθ s d1 d (the ommon -iω fator was omitted in the last two rows) Cramer's rule: os θdi sinθsi sinθ di osθ si b Zd1osθsi and Zs1 sin θsi Z s1 s1 sin θ di Zs1 osθ si d1 a(1) a() a(3) a(4) d, d, s, s a a a a det[ ] det[ ] det[ ] det[ ] R T R T det[ ] det[ ] det[ ] det[ ]

Speial Cases a) fluid-vauum b) fluid-fluid ( d > d1 ) I d R dd I d R dd θ i θ r θ i θ r fluid vauum fluid 1 fluid θ d T dd ) solid-vauum d) solid-vauum (longitudinal inidene) (shear inidene) R ds I s R ss I d θ i θ s θr R dd θ i θ r θ d R sd solid solid vauum vauum

e) fluid-solid I d R dd θ i θ r fluid solid θ d T dd θ s T ds f) solid-fluid g) solid-fluid (longitudinal inidene) (shear inidene) θs1 R ds I s θ i θ r θ s1 R ss I d solid θ i θ r θd1 R dd solid θd1 R sd fluid fluid θ d T dd θ d T sd

h) solid-solid i) solid-solid (longitudinal inidene) (shear inidene) θ s1 R ds I s θ i θ r θ s1 R ss I d θ i θ r θd1 R dd θd1 R sd solid 1 solid 1 solid solid θ s θ s θ d T ds T dd θ d T ss T sd Fluid-vauum: R 1, θ dd r θ i Fluid-fluid: sin sin θ, d θi θr θ i d d1 sin θd d d1 sin θ i then d < d1 θd < θ i then d > d1 θd > θ i There exists one ritial angle ( sin θd 1, θ d 9 ) sin θ r1 d1 d

Solid-Vauum Interfae, Mode Conversion P-wave inident (no ritial angle): sin θ sin ( ), s θi θr θd θ i s d S-wave inident: sin θ sin ( ), d θi θr θs θ i There exists one ritial angle (sin θd 1 or θd 9 ) d s sin θ r1 s d The boundary onditions require that both normal and transverse stress disappear at the surfae. Zd osθs Zssin θs Zd osθs Rdd s Z sin os s s θd Zs θs R ds Zs sin θd d d Rdd os θ s s sin θ sin s θd d os θ s s + sin θ sin s θd d depends on the Poisson ratio of the solid R dd ( ) R (9 ) 1 dd

Longitudinal and Shear Wave Refletion Coeffiients ν.3 (solid) and ν.35 (dashed) Refletion Coeffiient 1. 1.8.6.4. longitudinal-tolongitudinal longitudinal-toshear 1 3 4 5 6 7 8 9 Angle of Inidene [deg] 1. 1 shear-to-shear Refletion Coeffiient.8.6.4. shear-to-longitudinal 5 1 15 5 3 35 Angle of Inidene [deg]

Polar diagrams longitudinal inidene o 3 45 o 15 o o 15 o 3 o longitudinal shear 45 o 75 o 9 o 6 o 6 o 75 o 9 o shear inidene o 3 45 o 15 o o 15 o 3 o longitudinal shear 45 o 75 o 9 o 6 o 6 o 75 o 9 o

Fluid-Solid Interfae ( d1) ( d) ( s) ( i) uy + uy + u y u y ( d1) ( d) ( s) ( i) τ yy +τ yy +τ yy τ yy ( d) ( s) +τ zy +τ zy a11 a1 a14 Rdd b1 a31 a3 a 34 T dd b 3 a4 a44 Tds osθ osθ sin θ R osθ i d s dd i Zd1 Zdos s Zssin s T dd Z θ θ d1 s T sin os ds Zs θd Zs θ s d Rdd det[ a (1)] det[ a] osθi osθd sin θs Zd1 Zdosθs Zssin θs Z s s sinθd d Zsosθs osθi osθd sin θs Zd1 Zdosθs Zssin θs Z s s sinθd d Zsosθs

Rdd osθi osθd sin θs ρf d osθs ssin θs ssinθd d osθs osθi osθd sin θs ρf d osθs ssin θs ssinθd d osθs ρ ρ1/ ρ f d1, d d, s s, i di d1 θ θ θ, θ d θ d, and θ s θ s R dd i d s s d s f d s d s d s i d s s d s f d s d s d s os θ ( os θ + sin θ sin θ ) ρ ( os θ osθ + sin θ sin θ ) os θ ( os θ + sin θ sin θ ) + ρ ( os θ osθ + sin θ sin θ )

Displaement, Stress, Intensity, and Power Coeffiients ( stress) ( displaement) Zβj αβ αβ Zα1 Γ Γ ( stress) Z Γ αβ Γ αβ Z βj α1 Γ stands for either R (j 1) or T (j ) α and β are either d or s ( intensity) ( displaement) ( stress) Z βj Γ αβ Γαβ Γ αβ Γ αβ Z α 1 os Z os ( power) ( intensity) θβj βj θβj Γ αβ Γ αβ Γ osθ αβ α1 Zα1 osθα1 R ( power) ( power) ( power) ( power) αd + R αs + T αd + T αs 1 Law of reiproity: ( power) ( power) αβ βα Γ Γ

Energy Refletion and Transmission Coeffiients aluminum in water Energy Refletion and Transmission Coeffiients 1.8.6.4. refletion longitudinal transmission 5 1 15 5 3 Angle of Inidene [deg] shear transmission Energy Refletion and Transmission Coeffiients 1.8.6.4. refletion longitudinal transmission steel in water 5 1 15 5 3 Angle of Inidene [deg] shear transmission

Energy Refletion and Transmission Coeffiients 1 Plexiglas/aluminum interfae Energy Refletion Coeffiients.9.8.7.6.5.4.3..1 longitudinal refletion shear refletion 1 3 4 5 6 7 8 9 Angle of Inidene [deg].6 Energy Transmission Coeffiients.5.4.3..1 longitudinal transmission shear transmission 1 3 4 5 6 7 8 9 Angle of Inidene [deg]

Slip Boundary Conditions ( d1) ( d) ( s1) ( s) uy + uy uy + u () i y u normal displaement y ( d1) ( d) ( s1) ( s) tangential displaement uz + uz uz + u () i z u z normal tration ( d1) ( d) ( s1) ( s) () τ yy +τyy τ yy +τ i yy τ yy tangential tration ( d1) ( d) ( s1) ( s) ( i) τ zy +τzy τ zy +τzy τzy a11 a1 a13 a14 Rd b1 1 a1 a a3 a 4 T d b or a31 a3 a33 a34 Rs b3 3 a41 a4 a43 a44 Ts b4 4 Slip boundary onditions: ontinuity of the normal displaement and tration vanishing tangential tration on both sides a11 a1 a13 a14 Rd b1 1 a31 a3 a33 a 34 T d b or a41 a43 Rs b4 4 a4 a44 Ts

Angle-Beam Transduers wedge θ i transduer ouplant θ s speimen s i sin θ sin θ s i Plexiglas/Aluminum, longitudinal-to-shear transmission Energy Transmission.7.6 "slip" boundary.5.4.3 "rigid" boundary..1 3 4 5 6 7 8 9 Angle of Refration [deg]

SH Wave Refletion and Transmission at a Solid-Solid Interfae I θ i y θ s1 θ i R solid 1 solid z θ s T () i ( r) () t ux + ux ux and () i ( r) () t τ xy +τ xy τ xy ( r) ( t) ( i) x x x ( r) ( t) ( i) xy xy xy u + u u τ + τ τ or a11 a1 R 1 a13 a 14 T All displaements are in the x diretion only (without the ommon i t e ω term): () i i( os i ks1 y sin i ks1z) x u e θ + θ () i i( os i ks1 y sin i ks1z) x u e θ + θ () t i( os t ks y sin t ks z) x u Te θ + θ θ t θ s, sin θ t s/ s1sin θi

Stress omponents: xy xy s x/ τ με ρ u y () i ( os 1 sin 1 ) 1 os i i k s y i k s xy i Zs i e θ + θ z τ ω θ ( r ) (os 1 sin 1 ) 1 os i i k s y i k s xy i Zs i Re θ + θ z τ ω θ () t ( os sin ) os i t k s y t k s xy i Zs t Te θ + θ z τ ω θ Z s sρ is the speifi aousti impedane of the medium 1 1 R 1 Z osθ Z osθ T Z osθ s1 i s t s1 i (the seond row was divided by -iω) (Displaement) refletion and transmission oeffiients: R T 1 1 Zs1osθi Zsosθt Zs1osθi Zsosθ t 1 1 Zs1osθ i + Zsosθt Zs1osθi Zsosθt 1 1 Zs1osθi Zs1osθi Zs1 osθ i 1 1 Zs1osθ i + Zsosθt Zs1osθi Zsosθt Normal omponent of the aousti impedane Z' s Zsosθ R Z ' ' s1 Zs Z ' ' s1 + Zs and T Z ' s1 Z ' ' s1 + Zs

Solid-vauum interfae (free surfae): Rayleigh Wave Zd osθs Zssin θs Rd Z s s sin θd Zsosθs R s d Nontrivial solution exists if: os θ s s + sinθ sin s θ d d sin θs sin θd 1 s d R Relative veloities: s 1 ν ξ ( ) d (1 ν) Exat Rayleigh equation: η R s η6 8η 4+ 8(3 ξ) η 16(1 ξ ) Approximate expression: η.87+ 1.1ν 1+ν