παίγνια και δίκτυα Παύλος Στ. Εφραιµίδης Τοµέας Λογισµικού και Ανάπτυξης Εφαρµογών Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών



Σχετικά έγγραφα
ΑΛΓΟΡΙΘΜΙΚΗ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Πανεπιστήµιο Αθηνών Εαρινό Εξάµηνο 2007 ιδάσκων : Ηλίας Κουτσουπιάς

Ανταγωνιστική Ανάθεση Πόρων και Παίγνια Συμφόρησης

Αλγοριθμική Θεωρία Παιγνίων

Μοντέλα των Cournotκαι Bertrand

Ανταγωνιστική Ανάθεση Πόρων και Παίγνια Συμφόρησης

Παίγνια Συμφόρησης. ημήτρης Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο

Αλγοριθμική Θεωρία Παιγνίων: Εισαγωγή και Βασικές Έννοιες

Παίγνια Συμφόρησης και Ανταγωνιστική Ανάθεση Πόρων

Ορισμένες Κατηγορίες Αλγορίθμων

Θεωρία Παιγνίων και Αποφάσεων. Ενότητα 5: Εύρεση σημείων ισορροπίας σε παίγνια μηδενικού αθροίσματος. Ε. Μαρκάκης. Επικ. Καθηγητής

Εκτεταμένα Παίγνια (Extensive Games)

Θεωρία Παιγνίων και Αποφάσεων. Ενότητα 4: Μεικτές Στρατηγικές. Ε. Μαρκάκης. Επικ. Καθηγητής

Μικτές Στρατηγικές σε Παίγνια και σημεία Ισορροπίας Nash. Τµήµα Μηχανικών Πληροφορικής και Υπολογιστών 1

Υπολογιστικό Πρόβληµα

Θεωρία Παιγνίων και Αποφάσεων. Ενότητα 2: Έννοιες λύσεων σε παίγνια κανονικής μορφής. Ε. Μαρκάκης. Επικ. Καθηγητής

Evolutionary Equilibrium

Βασικές Έννοιες Θεωρίας Παιγνίων

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2015

Θεωρία Παιγνίων Δρ. Τασσόπουλος Ιωάννης

Βασικές Έννοιες Θεωρίας Παιγνίων

Παιγνιακά Μοντέλα Σύγκρουσης και Συνεργασίας

Βασικές Έννοιες Θεωρίας Παιγνίων

Το Διαδίκτυο ως ερευνητικό αντικείμενο

Θεωρία Παιγνίων και Αποφάσεων. Ενότητα 3: Παίγνια με περισσότερους παίκτες και μέθοδοι απλοποίησης παιγνίων. Ε. Μαρκάκης. Επικ.

Θεωρία Παιγνίων Δρ. Τασσόπουλος Ιωάννης

John Nash. Παύλος Στ. Εφραιµίδης. Τοµέας Λογισµικού και Ανάπτυξης Εφαρµογών Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Κεφάλαιο 29 Θεωρία παιγνίων

ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ

Αλγοριθµική Θεωρία Παιγνίων

Κεφάλαιο 2ο (α) Αµιγείς Στρατηγικές (β) Μεικτές Στρατηγικές (α) Αµιγείς Στρατηγικές. Επαναλαµβάνουµε:

ιαδίκτυα & Ενδοδίκτυα Η/Υ

3. Ανταγωνισμός ως προς τις Τιμές: Το Υπόδειγμα Bertrand

Εισαγωγικές Έννοιες. ημήτρης Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο

ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες

Αλγόριθμοι και Πολυπλοκότητα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

Πρόλογος. 1 Εισαγωγή Θεωρία Παιγνίων υό Λόγια για το Αντικείµενο Μερικά Ιστορικά Στοιχεία Ενα Παράδοξο Παιχνίδι...

Δίκτυα Υπολογιστών ΙΙ (Ασκήσεις Πράξης)

Επαναληπτικές Ασκήσεις Μαθήματος

Το Υπόδειγμα της Οριακής Τιμολόγησης

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

Αποτροπή Εισόδου: Το Υπόδειγμα των Spence-Dixit

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΕΙ ΠΑΤΡΑΣ ΤΕΙ ΠΑΤΡΑΣ ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΏΝ ΠΑΙΓΝΙΩΝ- ΠΡΟΓΡΑΜΜΑ GAMBIT

- Παράδειγμα 2. Εκτέλεση Πέναλτι ή Κορώνα-Γράμματα (Heads or Tails) - Ένας ποδοσφαιριστής ετοιμάζεται να εκτελέσει ένα πέναλτι, το οποίο προσπαθεί να

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΚΕΦΑΛΑΙΟ 1: Τα είδη των Δικτύων Εισαγωγή

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α

2. Διαφήμιση σε Αγορές όπου υπάρχουν πολλές Επιχειρήσεις

Ολοκληρωμένη Λύση Δρομολόγησης και Προγραμματισμού Στόλου Οχημάτων «Route Planner»

Extensive Games with Imperfect Information

Θεωρία Παιγνίων Δρ. Τασσόπουλος Ιωάννης

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

Fermat, 1638, Newton Euler, Lagrange, 1807

Αλγόριθμοι και Πολυπλοκότητα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Άσκηση Προσομοίωσης Στατιστικές Εξόδου Ουράς Μ/Μ/1 - Θεώρημα Burke Ανοικτά Δίκτυα Ουρών Μ/Μ/1 - Θεώρημα Jackson

10/3/17. Μικροοικονομική. Κεφάλαιο 29 Θεωρία παιγνίων. Μια σύγχρονη προσέγγιση. Εφαρµογές της θεωρίας παιγνίων. Τι είναι τα παίγνια;

Κυριαρχία και μεικτές στρατηγικές Μεικτές στρατηγικές και κυριαρχία Είδαμε ότι μια στρατηγική του παίκτη i είναι κυριαρχούμενη, αν υπάρχει κάποια άλλη

ΠΑΡΑΛΛΗΛΗ ΕΠΕΞΕΡΓΑΣΙΑ

Ισορροπία σε Αγορές Διαφοροποιημένων Προϊόντων

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 9: Απείρως επαναλαμβανόμενα παίγνια. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

Ασκήσεις. Ιωάννα Καντζάβελου. Τµήµα Μηχανικών Πληροφορικής και Υπολογιστών 1

Μέγιστη ροή. Κατευθυνόμενο γράφημα. Συνάρτηση χωρητικότητας. αφετηρίακός κόμβος. τερματικός κόμβος. Ροή δικτύου. με τις ακόλουθες ιδιότητες

Κεφάλαιο 3.3: Δίκτυα. Επιστήμη ΗΥ Κεφ. 3.3 Καραμαούνας Πολύκαρπος

Τα Βασικά Μεγέθη της Κυκλοφοριακής Ροής Φόρτος Πυκνότητα - Ταχύτητα

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 8: Πεπερασμένα επαναλαμβανόμενα παίγνια. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

Είναι η διαδικασία εύρεσης της διαδρομής που πρέπει να ακολουθήσει ένα πακέτο για να φτάσει στον προορισμό του. Η διαδικασία αυτή δεν είναι πάντα

Θεωρία Παιγνίων και Αποφάσεων

ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες

Προβλήµατα Μεταφορών (Transportation)

Notes. Notes. Notes. Notes

Ενημερωτική Διαφοροποίηση Προϊόντος: Ο Ρόλος της Διαφήμισης

Σχεδιασμός συγκοινωνιακών έργωνοικονομικά

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

Τμήμα Διεθνών και Ευρωπαϊκών Σπουδών. Ιωάννης Παραβάντης. Επίκουρος Καθηγητής. Απρίλιος 2016

Κοινωνικά Δίκτυα Θεωρία Παιγνίων

Γ. Κορίλη Αλγόριθµοι ροµολόγησης

7.6 ιευθυνσιοδότηση. Ερωτήσεις

Περίληψη. Ethernet Δίκτυα Δακτυλίου, (Token Ring) Άλλα Δίκτυα Σύνδεση Τοπικών Δικτύων.

Συνδυαστικά Παίγνια. ιαµόρφωση Παιγνίων. Θέµατα σε Πάιγνια Μηδενικού Αθροίσµατος

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α

HAL R. VARIAN. Μικροοικονομική. Μια σύγχρονη προσέγγιση. 3 η έκδοση

(2) Χωροθετικά Υποδείγματα Διαφοροποιημένου Προϊόντος

Σύγχρονα συστήµατα προβλέψεων και µοντελοποίησης. Τµήµα Στατιστικής και Αναλογιστικών Χρηµατοοικονοµικών Μαθηµατικών

Σ 1, Σ 2... Σ N p 1, p 2,... p N k 1, k 2... k n

Τηλεπικοινωνιακά Δίκτυα Ευρείας Ζώνης Ενότητα 8: MPLS και Τηλεπικοινωνιακή Κίνηση

Κεφάλαιο 4ο: Δικτυωτή Ανάλυση

ΚΕΦΑΛΑΙΟ 8 ΣΥΜΠΕΡΑΣΜΑΤΑ. 8.1 Εισαγωγή

Δίκτυα Υπολογιστών II Εργασία 1 η

Σηματοδοτικά Παίγνια και Τέλεια Μπεϊζιανή Ισορροπία

«Πρόβλημα μέγιστης ροής» Maximum flow problem. Κηρυττόπουλος Κωνσταντίνος PhD, Dipl. Eng., PMP

Κεφάλαιο 7ο. max(p 1 c)(α bp 1 +dp 2 )

Εργαστήριο 4 Πρωτόκολλα Δρομολόγησης

Βασικές Αρχές της Θεωρίας Παιγνίων

4.1.1 Πρωτόκολλο TCP - Δομή πακέτου

ΔΙΚΤΥΑ Η/Υ ΙΙ. Αρχές δρομολόγησης

Το μοντέλο DeGroot και το Παίγνιο Επιρροής

Προβλήματα Ελάχιστου Κόστους Ροής σε Δίκτυο. Δίκτυα Ροής Ελάχιστου Κόστους (Minimum Cost Flow Networks)

Βασική Εφικτή Λύση. Βασική Εφικτή Λύση

Transcript:

παίγνια και δίκτυα Παύλος Στ. Εφραιµίδης Τοµέας Λογισµικού και Ανάπτυξης Εφαρµογών Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών 1

Διαδίκτυο (1) Είναι µάλλον αποδεκτό ότι το Διαδίκτυο έχει ξεπεράσει πλέον τον υπολογιστή von Neumann ως το πιο σύνθετο υπολογιστικό δηµιούργηµα (εάν µπορούµε να το αποκαλέσουµε έτσι) της εποχής µας. Από όλα τα τροµερά χαρακτηριστικά του Διαδικτύου το µέγεθος και η αύξησή του, η σχεδόν αυθόρµητη εµφάνισή του, η ανοικτή αρχιτεκτονική του, η πρωτοφανής διαθεσιµότητα και η καθολικότητά του ως αποθήκη πληροφοριών, κ.λπ.), πιστεύω ότι το πιο καινοτόµο και πιο καθοριστικό χαρακτηριστικό του είναι η... 2

Διαδίκτυο (2)... το πιο καινοτόµο και πιο καθοριστικό χαρακτηριστικό του είναι η κοινωνικοοικονοµική πολυπλοκότητά του: Το Διαδίκτυο είναι µοναδικό µεταξύ όλων των συγκροτηµάτων ηλεκτρονικών υπολογιστών δεδοµένου ότι το δηµιουργούν, το διαχειρίζονται και το χρησιµοποιούν ένα πλήθος διαφορετικών οικονοµικών συµφερόντων, στα πλαίσια ποικίλων σχέσεων συνεργασίας και ανταγωνισµού µεταξύ τους. Αυτό προτείνει ότι οι κατάλληλες µαθηµατικές έννοιες και εργαλεία για την κατανόηση του Διαδικτύου µπορούν να προέλθουν από µια τήξη των αλγοριθµικών ιδεών µε τις έννοιες και τις τεχνικές από τα οικονοµικά µαθηµατικά και τη θεωρία παιγνίων (Η παράγραφος αυτή είναι από εργασία του καθ. του Berkeley, κ. Χ. Παπαδηµητρίου στο ACM STOC 2001) 3

Διαδίκτυο (3) Είναι πράγµατι εντυπωσιακά τα χαρακτηριστικά και τις δυνατότητες του Διαδικτύου Υπάρχουν παραδείγµατα εφαρµογών που θα µπορούσε να αναφέρει κανείς Θα αναφέρω ενδεικτικά µία, όχι επειδή είναι η πιο σηµαντική, αλλά επειδή είναι πρόσφατο πραγµατικό γεγονός 4

Selfish Routing in Noncooperative Networks 5

Υπόβαθρο Ορισµένα δίκτυα ευρείας κλίµακας, πχ. Δίκτυα Υπολογιστών Δίκτυα Επικοινωνιών Κυκλοφοριακά δίκτυα λειτουργούν χωρίς ένα κεντρικό έλεγχο/συντονισµό 6

Γιατί δεν υπάρχει συντονισµός; Για διάφορους λόγους: Το δίκτυο µπορεί να είναι πολύ µεγάλο Το δίκτυο µπορεί να µεταβάλλεται δυναµικά ή Αυτόνοµοι χρήστες του δικτύου µπορεί να να κάνουν τις επιλογές τους µε γνώµονα τα δικά τους κριτήρια και όχι τη βέλτιστη λειτουργία ολόκληρου του δικτύου 7

Μη-Συνεργασία Χρηστών Οι χρήστες δεν είναι απαραίτητα εγωιστές: µπορεί να υποχρεώνονται συµπεριφέρονται ατοµιστικά selfishly εάν δεν γνωρίζουν τους άλλους χρήστες Δίκτυα αυτού του είδους έχουν µελετηθεί ήδη από τη δεκαετία του 50 (του προηγούµενου αιώνα... ) : Συστήµατα οδικής κυκλοφορίας 8

επιστήµη υπολογιστών Τα τελευταία χρόνια δίκτυα µε αυτόνοµους χρήστες έχουν γίνει πολύ σηµαντικά για την επιστήµη υπολογιστών: Πιο χαρακτηριστικό παράδειγµα είναι το ΔΙΑΔΙΚΤΥΟ 9

διαδίκτυο και θεωρία παιγνίων... 10

Διαδίκτυο Όπως αναφέραµε, µια συναρπαστική πλευρά του διαδικτύου είναι η κοινωνικοοικονοµική πολυπλοκότητά του: Το Διαδίκτυο βασίζεται σε ένα πλήθος διαφορετικών οικονοµικών συµφερόντων, στα πλαίσια ποικίλων σχέσεων συνεργασίας και ανταγωνισµού µεταξύ τους. Αυτή την πλευρά του διαδικτύου µπορούµε να την µελετήσουµε µε έννοιες της θεωρίας παιγνίων σε συνδυασµό µε αλγοριθµικές τεχνικές 11

Διαδίκτυο και Θεωρία Παιγνίων 12 Η λειτουργία του διαδικτύου ή γενικότερα ενός δικτύου βασίζεται στη συνεργασία όλων των κόµβων που απαρτίζουν το δίκτυο. Ταυτόχρονα όµως κάθε κόµβος του δικτύου είναι µια αυτόνοµη οντότητα που µπορεί να συµπεριφέρεται (να στέλνει δεδοµένα, να επιτρέπει τη διέλευση δεδοµένα άλλων κόµβων, κτλ.) µε βάση τα δικά του κριτήρια και τις δικές του προτεραιότητες. Θεωρώντας ότι το δίκτυο απαρτίζεται από ένα πλήθος ανεξάρτητων κόµβων που συνεργάζονται αλλά ταυτόχρονα ανταγωνίζονται κιόλας για τους πόρους του δικτύου, το συνολικό δίκτυο µπορεί να µοντελοποιηθεί ως ένα παίγνιο.

Διαδίκτυο και Θεωρία Παιγνίων (2) Η θεωρία παιγνίων (game theory) µας επιτρέπει να µελετήσουµε τη συµπεριφορά ενός δικτύου όπως το διαδίκτυο, και να κατανοήσουµε τις επιπτώσεις από την απουσία κεντρικού ελέγχου για λειτουργία του δικτύου. Πόσο επιβαρύνονται χαρακτηριστικά του δικτύου, όπως είναι η συµφόρηση (congestion), από την απουσία κεντρικού ρυθµιστή του δικτύου (price of anarchy) ; 13

Μοντελοποίηση του προβλήµατος.. 14

Το πρόβληµα n πηγές-χρήστες θα στείλουν δεδοµένα/κίνηση µέσω ενός κοινού διαµοιραζόµενου δικτύου οι ταχύτητες των συνδέσεων (links) καθορίζονται από το δίκτυο κάθε χρήστης µπορεί να έχει δικά του κριτήρια, ταχύτητα, QoS 15

Το πρόβληµα (συνέχεια) Κάθε χρήστης επιλέγει τη δική του διαδροµή (route) µε γνώµονα τη βελτιστοποίηση των δικών του κριτηρίων Οι χρήστες δε συνεννοούνται / συνεργάζονται Τα δίκτυα αυτά ονοµάζονται non-cooperative networks Χαρακτηριστικό παράδειγµα τέτοιου δικτύου είναι το διαδίκτυο (internet) 16

Θεωρία Παιγνίων Με αφορµή εφαρµογές όπως τα Non-cooperative δίκτυα, υπάρχει µια σύγκλιση/συνεργασία της θεωρίας παιγνίων µε την επιστήµη υπολογιστών. 17

Non-cooperative games Κάθε παίκτης/χρήστης επιλέγει το µονοπάτι του ή µια πιθανο-θεωρητική κατανοµή για το µονοπάτι του Κάθε χρήστης µετά θα έχει ένα expected latency µε βάση τις επιλογές όλων των χρηστών 18

Non-cooperative games (2) Κάθε παίκτης/χρήστης προσπαθεί να βελτιστοποίηση το δικό του κόστος, στην προκειµένη περίπτωση το δικό του latency Οι ατοµικοί στόχοι ενός παίκτη δεν συµβαδίζουν πάντοτε µε το συνολικό καλό Η µείωση της συνολικής απόδοσης ως συνέπεια των ατοµικών επιλογών των παικτών ονοµάζεται «price of anarchy» (Koutsoupias-Papadimitriou) Συγκεκριµένα η µείωση της απόδοσης µετριέται µε το «coordination ratio». 19

Λύσεις Ποια είναι η λύση σε ένα τέτοιο σύστηµα µε ατοµικούς παίκτες; Η πιο διαδεδοµένη έννοια είναι η ισορροπία Nash (Nash Equilibrium) 20

Ισορροπία Nash (NE) Μια κατάσταση του συστήµατος - παιγνίου στην οποία κανένας παίκτης µόνος του δεν µπορεί να µπορεί να κερδίσει κάτι εάν αλλάξει την επιλογή στρατηγική του. Για µια µεγάλη κατηγορία παιγνίων υπάρχει πάντοτε µία τουλάχιστον ισορροπία Nash (John Nash, 1951). 21

Μοντέλα KP και Wardrop 22

KP model Koutsoupias-Papadimitriou (STACS 1999) Το µοντέλο: Μία πηγή (source) Ένας προορισµός (destination) m παράλληλες συνδέσεις (links) µε χωρητικότητες c 1,c 2,..,c m n χρήστες µε ροή-κίνηση w 1,w 2,..,w n ο καθένας η κίνηση κάθε παίκτη εξυπηρετείται ενιαία από ένα µονοπάτι (unsplittable flow) 23

KP model (2) s n players/flows m παράλληλες συνδέσεις t 24

KP model (3) Οι χρήστες παίκτες επιτρέπεται να έχουν µεικτές στρατηγικές (µε χρήση τυχαιότητας) Το ατοµικό κόστος κάθε παίκτη είναι ο µέγιστος µέσος φόρτος στις συνδέσεις που έχει επιλέξει Πρέπει να ορίσουµε το γενικό «καλό». Αυτό γίνεται µε την έννοια του social cost. Στο KP µοντέλο το social cost είναι το µέγιστη µέσο latency µιας σύνδεσης για όλες τις τυχαίες επιλογές στρατηγικών των χρηστών 25

KP model (4) Τρεις διαφοροποιήσεις του µοντέλου KP µε βάση το πως υπολογίζεται το latency σε µια σύνδεση Identical Links: Όλες οι συνδέσεις έχουν την ίδια χωρητικότητα Related Links: Το latency µιας σύνδεσης είναι αντιστρόφως ανάλογο της χωρητικότητας της σύνδεσης Στη γενικής περίπτωση ο παίκτης i προκαλεί φόρτο w ij στη σύνδεση j 26

Wardrop model Έχει µελετηθεί από τη δεκαετία του 50 στα πλαίσια συστηµάτων οδικής κυκλοφορίας Το µοντέλο: Ένα αυθαίρετο δίκτυο και ένα σύνολο από k ροές (s i,t i ) από τον κόµβο s i στον κόµβο t i. Η κίνηση (traffic) µπορεί να διασπάται σε αυθαίρετα µικρά κοµµάτια Το traffic µοντελοποιείται ως network flow 27

Ισορροπία στο µοντέλο Wardrop Η κίνηση ενός παίκτη i µπορεί να µοιράζεται σε διάφορα µονοπάτια από το s i στο t i. Στην κατάσταση ισορροπίας NE όλα τα διαφορετικά µονοπάτια που χρησιµοποιεί ο παίκτης έχουν ακριβώς το ίδιο κόστος για τον παίκτη διαφορετικά θα µπορούσε να µεταφέρει λίγη κίνηση από ένα κακό µονοπάτι σε ένα πιο καλό. 28

Χαρακτηριστικά των µοντέλων Τοπολογία Δικτύου Ροές µε κοινά άκρα s,t ή ανεξάρτητες ροές Ροές splittable ή unsplittable Ίδιες ή όχι Συνδέσεις Ίδιοι ή όχι Παίκτες Συνάρτηση Φόρτου Δείκτης/Συνάρτηση κοινωνικού κόστους (social cost) 29

Convex Latency Functions Εάν οι συναρτήσεις latency των συνδέσεων είναι κυρτές (convex) τότε τα σηµεία ισορροπίας είναι λύσεις ενός convex program. 30

Wardrop Η ισορροπία σε ένα µοντέλο Wardrop αντιστοιχεί σε ισορροπία NE σε δίκτυο µε ένα άπειρα µεγάλο πλήθος απείρως µικρών παικτών Ένα χαρακτηριστικό του µοντέλου Wardrop που ονοµάστηκε Braess Paradox προκάλεσε το ενδιαφέρον και µελετήθηκε 31

Κόστος στο µοντέλο Wardrop Το κόστος κάθε παίκτη είναι το άθροισµα των latencies όλων των ακµών κατά µήκος του µονοπατιού του (απείρως µικρού) παίκτη. Το κοινωνικό κόστος (social cost) είναι το άθροισµα των latencies όλων των ακµών του δικτύου Με αφορµή την εργασία των KP οι Roughgarden και Tardos µελέτησαν ξανά το µοντέλο Wardrop 32

Wardrop Η εφαρµογή του µοντέλου Wardrop από traffic engineers (συγκοινωνιολόγους ;) ενισχύει την πρακτική σηµασία του µοντέλου Πρόσφατες εργασίες επέκτειναν τη µελέτη του µοντέλου Schulz, Stier Moses, MIT Sloan Jahn et al., MIT Sloan 33

Social Cost Μοντέλο KP Το social cost ισοδυναµεί µε scheduling n εργασίες (jobs) σε m παράλληλες µηχανές Το (µέσο) µέγιστο latency ισούται µε το µέσο makespan του schedule Διαφορετικά NE µπορεί να έχουν διαφορετικό social cost Μοντέλο Wardrop Το social cost είναι το άθροισµα του latency όλων των συνδέσεων-ακµών Όλα τα NE έχουν το ίδιο social cost 34

Price of Anarchy και Coordination Ratio 35

Price of Anarchy Σε non-cooperative δίκτυα µπορεί το social cost ενός ΝΕ να είναι υποδεέστερο του βέλτιστου social cost Αιτία είναι η έλλειψη συντονισµού ή αλλιώς το price of anarchy. Ένα µέτρο του price of anarchy είναι το coordination ratio ο λόγος του social cost του χειρότερου ΝΕ και του social cost της βέλτιστης λύσης (όχι απαραίτητα ΝΕ) 36

Το παράδοξο του Braess.. 37

Το παράδοξο του Braess Ανακαλύφθηκε από τον Braess το 1968 Μελετήθηκε εκτενώς στη συνέχεια Παρουσίαση του παράδοξου πάνω στο παρακάτω δίκτυο: l(x)=x v l(x)=1 s t 38 Ζητούµενο: Δροµολόγηση συνολικού flow 1 από το s στο t. l(x)=1 w l(x)=x

Το δίκτυο σε ΝΕ Ροή 1/2 στο µονοπάτι s->v->t και 1/2 στο µονοπάτι s->w->t s l(x)=x l(x)=1 v flow 1/2 flow 1/2 w l(x)=1 l(x)=x t Κόστος Παικτών: 1/2 + 1 = 3/2 39

Ένας νέος δρόµος... Η πολιτεία θέλοντας να βελτιώσει τη συγκοινωνία κατασκευάζει ένα δρόµο πολύ µεγάλης χωρητικότητας µε latency πρακτικά µηδενική 40

l(x)=x v l(x)=1 s l(x)=0 t l(x)=1 w l(x)=x 41

Νέα ισορροπία NE και το παράδοξο Ροή 1 στο µονοπάτι s->v->w-> l(x)=x v l(x)=1 s l(x)=0 t l(x)=1 w l(x)=x Κόστος Παικτών: 1 + 0 + 1 = 2 Οι παίκτες έχουν µεγαλύτερο κόστος latency στο νέο δίκτυο!! 42

κατηγορίες αλγορίθµων 43

κατηγορίες αλγορίθµων Υπολογιστικό Πρόβληµα µε τον περιορισµό: Μη-ύπαρξη απεριόριστων υπολογιστικών πόρων Μη-ύπαρξη όλης της πληροφορίας εξαρχής Έλλειψη συντονισµού (coordination) Αλγοριθµική Αντιµετώπιση Αλγόριθµοι Προσέγγισης On-line Αλγόριθµοι Non-cooperative Game 44

Πηγές - Αναφορές Selfish Routing in Non-cooperative Networks: A Survey, R. Feldmann, M. Gairing, T. Luecking, B. Monien, M. Rode, MFCS 2003, LNCS 2747, pp 21-45, 2003. Koutsoupias, Papadimitriou, STACS 1999. Papadimitriou, STOC 2001. Roughgarden, Tardos, JACM, 2002. 45