Αλγοριθμική Θεωρία Παιγνίων
|
|
- Πλειόνη Δασκαλόπουλος
- 9 χρόνια πριν
- Προβολές:
Transcript
1 Αλγοριθμική Θεωρία Παιγνίων ιδάσκοντες: E. Ζάχος, Α. Παγουρτζής,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο
2 Πολύπλοκα Συστήματα αποτελούνται από πολλές (ετερογενείς) συνιστώσες που αλληλεπιδρούν. Συμπεριφορά συστήματος δεν συνάγεται από χαρακτηριστικά συνιστωσών. Συμπεριφορά εξαρτάται κυρίως από αλληλεπίδραση συνιστωσών και είναι δύσκολο να προβλεφθεί. Αλγοριθμική Θεωρία Παιγνίων Εισαγωγή 2
3 Παραδείγματα Φυσική (phase transitions, symmetry breaking, self organization, ). Βιολογία και Εξελικτική Βιολογία (εξέλιξη ειδών). Οικονομικά Παγκόσμια Οικονομία: ανεξάρτητες οντότητες αλληλεπιδρούν με στόχο μεγιστοποίηση κέρδους. Κοινωνιολογία Τι μικρός που είναι ο κόσμος! Μη-γραμμικά δυναμικά συστήματα (χαοτική συμπεριφορά). Αλγοριθμική Θεωρία Παιγνίων Εισαγωγή 3
4 στην Πληροφορική Internet Web (όχι ιεραρχικός σχεδιασμός αλλά «άναρχη» ανάπτυξη από αυτόνομες οντότητες). E-commerce, sponsored search auctions, Κατανεμημένα συστήματα. Agents, P2P systems, sensor networks, ιάδοση και αντιμετώπιση ιών. Ευρετικές τεχνικές Γενετικοί αλγόριθμοι, simulated annealing, Αυτο-οργάνωση, εξέλιξη, προσαρμογή, Αλγοριθμική Θεωρία Παιγνίων Εισαγωγή 4
5 Αναγκαιότητα Μεγάλα, πολύπλοκα, και δυναμικά μεταβαλλόμενα συστήματα αποτελούν τμήμα τεχνολογικής υποδομής. Αδύνατο να υπάρξει κεντρική διαχειριστική αρχή που εξασφαλίζει βέλτιστη λειτουργία. Συνιστώσες ενεργούν αυτόνομα και «εγωιστικά» με κριτήριο τη βελτιστοποίηση «ατομικών» αντικειμενικών στόχων. Κλασσικά παραδείγματα: Κυκλοφορία στις μεγάλες πόλεις. ρομολόγηση κυκλοφορίας στο Internet. Αλγοριθμική Θεωρία Παιγνίων Εισαγωγή 5
6 Μονόδρομος Ύποπτου Συλλαμβάνεται ύποπτος για μεγάλη ληστεία. ενυπάρχουνεπαρκήστοιχεία! Ομολογεί: 5 χρόνια φυλακή. εν ομολογεί: 1 χρόνο φυλακή. Ο ύποπτος δεν ομολογεί. Αλγοριθμική Θεωρία Παιγνίων Εισαγωγή 6
7 ίλημμα Υπόπτων Συλλαμβάνονται δύο συνεργάτες για μεγάλη ληστεία. Κρατούνται σε χωριστά κελιά χωρίς επικοινωνία. Ομολογεί Α εν ομολογεί Α Ομολογεί Β 5, 5 15, 0 εν ομολογεί Β 0, 15 1, 1 Αμφότεροι οι ύποπτοι ομολογούν! Αλγοριθμική Θεωρία Παιγνίων Εισαγωγή 7
8 Θεωρία Παιγνίων Μελετά συμπεριφορά αυτόνομων οντοτήτων που δρουν με στόχο βελτιστοποίηση ατομικών στόχων. Λογική συμπεριφορά. Στρατηγική συμπεριφορά. Εργαλείο για μελέτη πολύπλοκων συστημάτων. Σημεία ισορροπίας και ιδιότητες τους. Πρόβλεψη του τι θα συμβεί σε ένα πολύπλοκο σύστημα. Περιοχή εφαρμογής: Πολυπλοκότητα υπολογισμού σημείων ισορροπίας, υπολογιστικά αποδοτικοί μηχανισμοί. Αποδοτικός υπολογισμός πρόβλεψης. Είναι η πρόβλεψη ρεαλιστική; Αλγοριθμική Θεωρία Παιγνίων Εισαγωγή 8
9 Ανταγωνιστικό Παίγνιο Σύνολο παικτών που ανταγωνίζονται (π.χ. για πόρους). Κάθε παίκτης αποφασίζει μόνο τη δική του στρατηγική. Μοναδικός στόχος: μεγιστοποίηση ατομικής ωφέλειας. Ατομική ωφέλεια εξαρτάται από στρατηγικές όλων. Ισορροπία Nash: Κανένας δεν βελτιώνει ατομική ωφέλεια αλλάζοντας μόνο τη δική του στρατηγική. Nash (1952) απέδειξε ότι πάντα υπάρχει τέτοια ισορροπία (αλλά μπορεί να είναι πεπλεγμένη mixed). Ισορροπία Nash αποτελεί «λύση» του συστήματος: Aν οι παίκτες συμπεριφερθούν στρατηγικά και λογικά και έχουν στη διάθεσή τους πλήρη γνώση και επαρκή χρόνο, τότε καταλήγουν σε μία ισορροπία Nash. Ισορροπία Nash υπολογίζεται αποδοτικά; Αλγοριθμική Θεωρία Παιγνίων Εισαγωγή 9
10 Πλαίσιο Μελέτης Η πολυπλοκότητα είναι πηγή πολλών δυνατοτήτων! Aυτο-οργάνωση, εξέλιξη, προσαρμογή, Χαοτική συμπεριφορά, αστάθεια, μη-ισορροπία, Πρόκληση: κατανόηση και εξαγωγή επιθυμητής συμπεριφοράς. Ανάλυση ιδιοτήτων και κανόνες σχεδιασμού συστημάτων που θα χρησιμοποιούνται από ανταγωνιστικούς χρήστες. Αλγοριθμική Θεωρία Παιγνίων Εισαγωγή 10
11 Ισορροπία Nash Ομολογεί Α εν ομολογεί Α Ομολογεί Β 5, 5 15, 0 εν ομολογεί Β 0, 15 1, 1 Ισορροπία Nash δεν βελτιστοποιεί συνολικό αποτέλεσμα. Συμβιβασμός με δεδομένη την έλλειψη συντονισμού. Αλγοριθμική Θεωρία Παιγνίων Εισαγωγή 11
12 Παράδοξο Braess Συνολική καθυστέρηση 1.5 Nash ισορροπία αποτελεί βέλτιστη λύση. Νέα εξαιρετικά γρήγορη σύνδεση. Συνολική καθυστέρηση αυξάνεται σε 2 γιατί όλοι χρησιμοποιούν την γρήγορη σύνδεση. Παραδοσιακός σχεδιασμός δεν επαρκεί για πολύπλοκα συστήματα. Αλγοριθμική Θεωρία Παιγνίων Εισαγωγή 12
13 Ανταγωνιστική Ανάθεση Πόρων Μοντελοποίηση με παίγνια συμφόρησης. Ανάλυση απόδοσης. Κόστος αναρχίας: Υποβάθμιση λόγω αυτόνομης και ανταγωνιστικής συμπεριφοράς σε σχέση με βέλτιστη κεντρικοποιημένη διαχείριση. Κίνητρα για βελτίωση απόδοσης. Τεχνικές για βέλτιστο σχεδιασμό. Αλγοριθμική Θεωρία Παιγνίων Εισαγωγή 13
14 ημοπρασίες και Μηχανισμοί Ένααντικείμενοσεδημοπρασίαμεn συμμετέχοντες. Το αντικείμενο αξίζει u j για συμμετέχοντα j. Όλοι υποβάλλουν (σφραγισμένες) προσφορές b 1,, b n. Αντικείμενο κατοχυρώνεται σε k με μέγιστη προσφορά b k αντί τιμής t. Ωφέλεια κερδισμένου = u k t. Ωφέλεια μη κερδισμένου = 0. Πώς καθορίζουμε την τιμή, ώστε οι προσφορές να ανταποκρίνονται στην πραγματική αξία του αντικειμένου; Τιμή ίση με μέγιστη προσφορά. Όχι, π.χ. 100, 5! Τιμή ίση με δεύτερη μεγαλύτερη προσφορά. Αλγοριθμική Θεωρία Παιγνίων Εισαγωγή 14
15 Αντικείμενο - Ατζέντα (Πολύ) σύντομη στον Γραμμικό Προγραμματισμό και (κυρίως) στην υϊκότητα του Γραμμικού Προγραμματισμού. Εφαρμογή: απόδειξη ύπαρξης και αποδοτικού υπολογισμού ισορροπίας Nash σε 2-person zero-sum games. Ανταγωνιστική ανάθεση πόρων και παίγνια συμφόρησης: Μη ατομικά και ατομικά. Ύπαρξη και πολυπλοκότητα υπολογισμού (αμιγούς) ισορροπίας Nash. Τίμημα της αναρχίας και τεχνικές βελτίωσής του. Πολυπλοκότητα υπολογισμού (πεπλεγμένης) ισορροπίας Nash σε παίγνια με 2 παίκτες (bimatrix games). Η κλάση PPAD και γιατί είναι PPAD-complete. Αποδοτικός υπολογισμός προσεγγιστικών ισορροπιών Nash. Σχεδιασμός (υπολογιστικά αποδοτικών) μηχανισμών. Με χρηματικά ανταλλάγματα (VCG μηχανισμοί). Χωρίς χρηματικά ανταλλάγματα (social choice). Αλγοριθμική Θεωρία Παιγνίων Εισαγωγή 15
16 Βιβλιογραφία - Πληροφορίες Nisan, Roughgarden, Tardos, Vazirani. Algorithmic Game Theory, 2007 (διαθέσιμο ηλεκτρονικά). Karloff. Linear Programming, Roughgarden. An Algorithmic Game Theory Primer. Σε πολλές περιπτώσεις θα ανατρέξουμε σε εξειδικευμένα surveys και ερευνητικές εργασίες. Πέμπτη: 16:00-19:00, , Παλ. Κτήριο ΣΗΜΜΥ. Αλγοριθμική Θεωρία Παιγνίων Εισαγωγή 16
Αλγοριθμική Θεωρία Παιγνίων: Εισαγωγή και Βασικές Έννοιες
Αλγοριθμική Θεωρία Παιγνίων: Εισαγωγή και Βασικές Έννοιες ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Πολύπλοκα Συστήματα αποτελούνται από πολλές
Ανταγωνιστική Ανάθεση Πόρων και Παίγνια Συμφόρησης
Ανταγωνιστική Ανάθεση Πόρων και Παίγνια Συμφόρησης ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συστήματα με Ιδιοτελείς (και Ανταγωνιστικούς) Χρήστες
Αλγοριθµική Θεωρία Παιγνίων
Αλγοριθµική Θεωρία Παιγνίων Δηµήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο «Πολύπλοκα» Συστήµατα αποτελούνται από πολλές (ετερογενείς) συνιστώσες που
Παίγνια Συμφόρησης και Ανταγωνιστική Ανάθεση Πόρων
Παίγνια Συμφόρησης και Ανταγωνιστική Ανάθεση Πόρων Δημήτρης Φωτάκης Πολύπλοκα Συστήματα αποτελούνται από πολλές (ετερογενείς) συνιστώσες που αλληλεπιδρούν. Συμπεριφορά συστήματος δεν συνάγεται από χαρακτηριστικά
Ανταγωνιστική Ανάθεση Πόρων και Παίγνια Συμφόρησης
Ανταγωνιστική Ανάθεση Πόρων και Παίγνια Συμφόρησης Δημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Μοντέλο Ανάθεσης Πόρων Σύνολο πόρων Ε = { e 1,, e
Παίγνια Συμφόρησης. ημήτρης Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο
Παίγνια Συμφόρησης ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Μοντέλο Ανάθεσης Πόρων Σύνολο πόρων Ε = { e 1,, e m }. Πόροι: ακμές δικτύου, υπηρεσίες
παίγνια και δίκτυα Παύλος Στ. Εφραιµίδης Τοµέας Λογισµικού και Ανάπτυξης Εφαρµογών Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
παίγνια και δίκτυα Παύλος Στ. Εφραιµίδης Τοµέας Λογισµικού και Ανάπτυξης Εφαρµογών Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών 1 Διαδίκτυο (1) Είναι µάλλον αποδεκτό ότι το Διαδίκτυο έχει ξεπεράσει
Αλγόριθμοι και Πολυπλοκότητα
Αλγόριθμοι και Πολυπλοκότητα ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Οργανωτικά ιδάσκοντες: Σ. Ζάχος,.
Αλγόριθμοι και Πολυπλοκότητα
Αλγόριθμοι και Πολυπλοκότητα ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Οργανωτικά ιδάσκοντες: Σ. Ζάχος,.
Αλγόριθμοι και Πολυπλοκότητα
Αλγόριθμοι και Πολυπλοκότητα ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Οργανωτικά ιδάσκοντες: Σ. Ζάχος,.
Αλγόριθμοι και Πολυπλοκότητα
Αλγόριθμοι και Πολυπλοκότητα ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό
Αλγόριθμοι και Πολυπλοκότητα
Αλγόριθμοι και Πολυπλοκότητα ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Οργανωτικά ιδάσκοντες:. Φωτάκης (και Σ. Ζάχος στο μτπχ.) Βοηθοί διδασκαλίας
Ορισμένες Κατηγορίες Αλγορίθμων
Ορισμένες Κατηγορίες Αλγορίθμων Παύλος Εφραιμίδης pefraimi ee.duth.gr Οριασμένες κατηγορίες αλγορίθμων 1 Αλγόριθμοι Προσέγγισης Υπολογιστικά προβλήματα τα οποία είναι NPhard δεν μπορούμε να τα λύσουμε
Θεωρία Παιγνίων και Αποφάσεων. Ενότητα 5: Εύρεση σημείων ισορροπίας σε παίγνια μηδενικού αθροίσματος. Ε. Μαρκάκης. Επικ. Καθηγητής
Θεωρία Παιγνίων και Αποφάσεων Ενότητα 5: Εύρεση σημείων ισορροπίας σε παίγνια μηδενικού αθροίσματος Ε. Μαρκάκης Επικ. Καθηγητής Περίληψη Παίγνια μηδενικού αθροίσματος PessimisIc play Αμιγείς max-min και
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα ηµήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Οργανωτικά ιδάσκοντες:. Φωτάκης και. Σούλιου (και Σ. Ζάχος στις πρόσθετες
Θεωρία Παιγνίων και Αποφάσεων. Ενότητα 2: Έννοιες λύσεων σε παίγνια κανονικής μορφής. Ε. Μαρκάκης. Επικ. Καθηγητής
Θεωρία Παιγνίων και Αποφάσεων Ενότητα 2: Έννοιες λύσεων σε παίγνια κανονικής μορφής Ε. Μαρκάκης Επικ. Καθηγητής Λύσεις παιγνίων 2 Επιλέγοντας στρατηγική... Δεδομένου ενός παιγνίου, τι στρατηγική πρέπει
Το Διαδίκτυο ως ερευνητικό αντικείμενο
Το Διαδίκτυο ως ερευνητικό αντικείμενο Χρίστος Χ. Παπαδημητρίου christos ΟΠΑ, 20 Ιουνίου 2007 2 TοΔιαδίκτυο Τεράστιο, ανοικτό, end-to-end Κορυφαίος παράγων οικονομικής ανάπτυξης Το σπίτι του www It wants
Αλγόριθμοι και Πολυπλοκότητα
Αλγόριθμοι και Πολυπλοκότητα ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
ιακριτές Μέθοδοι για την Επιστήμη των Υπολογιστών
ιακριτές Μέθοδοι για την Επιστήμη των Υπολογιστών ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο
ΑΛΓΟΡΙΘΜΙΚΗ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Πανεπιστήµιο Αθηνών Εαρινό Εξάµηνο 2007 ιδάσκων : Ηλίας Κουτσουπιάς
ΑΛΓΟΡΙΘΜΙΚΗ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Πανεπιστήµιο Αθηνών Εαρινό Εξάµηνο 007 ιδάσκων : Ηλίας Κουτσουπιάς Μάθηµα : Overview Of The Algorithmic Game Theory Ηµεροµηνία : 007/04/19 Σηµειώσεις : Ελενα Χατζηγιωργάκη,
Βασικές Έννοιες Θεωρίας Παιγνίων
Βασικές Έννοιες Θεωρίας v. 01/06/2014 Παύλος Σ. Εφραιμίδης Βασικές Έννοιες Θεωρίας Περιεχόμενα Τι είναι η θεωρία παιγνίων Ο ρόλος ενός μαθηματικού μοντέλου Το δίλημμα του φυλακισμένου Σημείο ισορροπίας
Βασικές Αρχές της Θεωρίας Παιγνίων
Βασικές Αρχές της Θεωρίας Παιγνίων - Ορισμός. Αν οι επιλογές μιας επιχείρησης εξαρτώνται από την αναμενόμενη αντίδραση των υπόλοιπων επιχειρήσεων που συμμετέχουν στην αγορά, τότε υπάρχει στρατηγική αλληλεπίδραση
Άπληστοι Αλγόριθμοι. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Άπληστοι Αλγόριθμοι ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άπληστοι Αλγόριθμοι... για προβλήματα
Άπληστοι Αλγόριθμοι. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Άπληστοι Αλγόριθμοι ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άπληστοι Αλγόριθμοι... για προβλήματα
Κοινωνικά Δίκτυα Θεωρία Παιγνίων
Κοινωνικά Δίκτυα Θεωρία Παιγνίων Ν. Μ. Σγούρος Τμήμα Ψηφιακών Συστημάτων, Παν. Πειραιώς sgouros@unipi.gr Ορισμοί Ένα Παίγνιο (game) ορίζεται ως μια δραστηριότητα με τα ακόλουθα τρία χαρακτηριστικά: Υπάρχει
Βασικές Έννοιες Θεωρίας Παιγνίων
Παύλος Σ. Εφραιμίδης Έκδοση 05/11/2013 Περιεχόμενα Τι είναι η θεωρία παιγνίων Ο ρόλος ενός μαθηματικού μοντέλου Το δίλημμα του φυλακισμένου Σημείο ισορροπίας Nash Θεωρία Παιγνίων Η θεωρία παιγνίων (game
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2015
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2015 Λύσεις 2η σειράς ασκήσεων Προθεσμία παράδοσης: 18 Μαίου 2015 Πρόβλημα 1. (14
1 Εισαγωγή στις Συνδυαστικές Δημοπρασίες - Combinatorial Auctions
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2015 Συμπληρωματικές σημειώσεις για τον μηχανισμό VCG 1 Εισαγωγή στις Συνδυαστικές
ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες
ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες Θεωρία Παιγνίων Μαρκωβιανά Παιχνίδια Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Μερική αρατηρησιµότητα POMDPs
Θεωρία Παιγνίων Δρ. Τασσόπουλος Ιωάννης
Θεωρία Παιγνίων Δρ. Τασσόπουλος Ιωάννης 1 η Διάλεξη Ορισμός Θεωρίας Παιγνίων και Παιγνίου Κατηγοριοποίηση παιγνίων Επίλυση παιγνίου Αξία (τιμή) παιγνίου Δίκαιο παίγνιο Αναπαράσταση Παιγνίου Με πίνακα Με
Λήψη απόφασης σε πολυπρακτορικό περιβάλλον. Θεωρία Παιγνίων
Λήψη απόφασης σε πολυπρακτορικό περιβάλλον Θεωρία Παιγνίων Αβεβαιότητα παρουσία άλλου πράκτορα Μια άλλη πηγή αβεβαιότητας είναι η παρουσία άλλου πράκτορα στο περιβάλλον, ακόμα κι όταν ένας πράκτορας είναι
1 Εισαγωγή στις Συνδυαστικές Δημοπρασίες - Combinatorial Auctions
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2015 Συμπληρωματικές σημειώσεις για τον μηχανισμό VCG 1 Εισαγωγή στις Συνδυαστικές
10/3/17. Μικροοικονομική. Κεφάλαιο 29 Θεωρία παιγνίων. Μια σύγχρονη προσέγγιση. Εφαρµογές της θεωρίας παιγνίων. Τι είναι τα παίγνια;
HA. VAIAN Μικροοικονομική Μια σύγχρονη προσέγγιση 3 η έκδοση Κεφάλαιο 29 Θεωρία παιγνίων Θεωρία παιγνίων Η θεωρία παιγνίων βοηθά στην ανάλυση της στρατηγικής συμπεριφοράς από φορείς που κατανοούν ότι οι
Κεφάλαιο 29 Θεωρία παιγνίων
HA. VAIAN Μικροοικονομική Μια σύγχρονη προσέγγιση 3 η έκδοση Εκδόσεις Κριτική Κεφάλαιο 29 Θεωρία παιγνίων Ύλη για τη Μίκρο ΙΙ: κεφάλαιο 29.1, 29.2, 29.4, 29.7, 29.8 Κεφάλαιο 29 Θεωρία παιγνίων Ταυτόχρονα
Ανάλυση Ισορροπιών Σε Μηχανισμούς με Μερική Επαλήθευση
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΛΟΓΙΚΗΣ ΚΑΙ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Ανάλυση Ισορροπιών Σε Μηχανισμούς
Μικτές Στρατηγικές σε Παίγνια και σημεία Ισορροπίας Nash. Τµήµα Μηχανικών Πληροφορικής και Υπολογιστών 1
Μικτές Στρατηγικές σε Παίγνια και σημεία Ισορροπίας Nash Τµήµα Μηχανικών Πληροφορικής και Υπολογιστών 1 Σημεία ισορροπίας Nash: Yπάρχουν πάντα; Έχουν όλα τα παίγνια σημείο ισορροπίας; - Ναι, στην εξιδανικευμένη
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2017
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2017 2η σειρά ασκήσεων Προθεσμία παράδοσης: 16 Ιουνίου 2017 Πρόβλημα 1. (18 μονάδες)
Μοντέλα των Cournotκαι Bertrand
Μοντέλα των Cournotκαι Bertrand Παύλος Στ. Εφραιµίδης Τοµέας Λογισµικού και Ανάπτυξης Εφαρµογών Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Τι θα πούμε Θα εξετάσουμε αναλυτικά το μοντέλο Cournot
Evolutionary Equilibrium
Evolutionary Equilibrium Παύλος Στ. Εφραιµίδης Τοµέας Λογισµικού Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών v. 22.05.2012 Algorithmic Game Theory Evolutionary Equilibium 1 τι θα πούμε εξελικτικά
Θεωρία Παιγνίων και Αποφάσεων. Ενότητα 8: Δημοπρασίες. Ε. Μαρκάκης. Επικ. Καθηγητής
Θεωρία Παιγνίων και Αποφάσεων Ενότητα 8: Δημοπρασίες Ε. Μαρκάκης Επικ. Καθηγητής Δημοπρασίες ενός αγαθού 2 Δημοπρασίες 1 µη διαιρετό αγαθό Σύνολο παικτών N = {1, 2,, n} 3 Δημοπρασίες Μέσο συνδιαλλαγής
Θεωρία Παιγνίων και Αποφάσεων. Ενότητα 4: Μεικτές Στρατηγικές. Ε. Μαρκάκης. Επικ. Καθηγητής
Θεωρία Παιγνίων και Αποφάσεων Ενότητα 4: Μεικτές Στρατηγικές Ε. Μαρκάκης Επικ. Καθηγητής Μεικτές στρατηγικές σε παίγνια 2 Σημεία ισορροπίας: Ύπαρξη Δεν έχουν όλα τα παίγνια σημείο ισορροπίας Π.χ. Το Matching
Θεωρία Παιγνίων και Αποφάσεων. Ενότητα 3: Παίγνια με περισσότερους παίκτες και μέθοδοι απλοποίησης παιγνίων. Ε. Μαρκάκης. Επικ.
Θεωρία Παιγνίων και Αποφάσεων Ενότητα 3: Παίγνια με περισσότερους παίκτες και μέθοδοι απλοποίησης παιγνίων Ε. Μαρκάκης Επικ. Καθηγητής Παίγνια πολλών παικτών 2 Παίγνια με > 2 παίκτες Όλοι οι ορισμοί που
Συμπληρωματικές Σημειώσεις για τη Διάλεξη 8
Συμπληρωματικές Σημειώσεις για τη Διάλεξη 8 Ένα από τα παράδοξα της ισορροπίας Nash που μπορεί να θεωρηθεί και σαν αδυναμία της είναι ότι σε κάποια παίγνια οι παίκτες έχουν μεγαλύτερο όφελος αν δεν διαλέξουν
ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες
ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες Μερική Παρατηρησιµότητα Θεωρία Παιγνίων Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Reinforcement Learning (RL)
Διάλεξη 7. Θεωρία παιγνίων VA 28, 29
Διάλεξη 7 Θεωρία παιγνίων VA 28, 29 Θεωρία παιγνίων Στη θεωρία παιγνίων χρησιμοποιούμε υποδείγματα για τη στρατηγική συμπεριφορά των οικονομικών μονάδων που καταλαβαίνουν ότι οι ενέργειές τους επηρεάζουν
HAL R. VARIAN. Μικροοικονομική. Μια σύγχρονη προσέγγιση. 3 η έκδοση
HAL R. VARIAN Μικροοικονομική Μια σύγχρονη προσέγγιση 3 η έκδοση Κεφάλαιο 29 Θεωρία παιγνίων Θεωρία παιγνίων Η θεωρία παιγνίων βοηθά στην ανάλυση της στρατηγικής συμπεριφοράς από φορείς που κατανοούν ότι
Κεφάλαιο 28 Ολιγοπώλιο
HAL R. VARIAN Μικροοικονομική Μια σύγχρονη προσέγγιση 3 η έκδοση Εκδόσεις Κριτική Κεφάλαιο 28 Ολιγοπώλιο Ύλη για τη Μίκρο ΙΙ: κεφάλαιο 28.1 έως και 28.9 Κεφάλαιο 28 Ολιγοπώλιο Cournot Stackelberg Bertrand
Θεωρία Παιγνίων και Αποφάσεων
Θεωρία Παιγνίων και Αποφάσεων Ε. Μαρκάκης Επικ. Καθηγητής Τι είναι η Θεωρία Παιγνίων? Quote από το βιβλίο του Osborne: Game Theory aims to help us understand situawons in which decision makers interact
Εκτεταμένα Παίγνια (Extensive Games)
Εκτεταμένα Παίγνια (Extensive Games) Παύλος Στ. Εφραιµίδης Τοµέας Λογισµικού και Ανάπτυξης Εφαρµογών Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εκτεταμένα Παίγνια Τα στρατηγικά παίγνια δεν
Βασικές Έννοιες Θεωρίας Παιγνίων
Παύλος Σ. Εφραιμίδης Περιεχόµενα Τι είναι η θεωρία παιγνίων Ο ρόλος ενός µαθηµατικού µοντέλου Το δίληµµα του φυλακισµένου Σηµείο ισορροπίας Nash Θεωρία Παιγνίων Η θεωρία παιγνίων (game theory) µας βοηθάει
Θεωρία Παιγνίων Δρ. Τασσόπουλος Ιωάννης
Θεωρία Παιγνίων Δρ. Τασσόπουλος Ιωάννης 3 η Διάλεξη-Περιεχόμενα (1/2) Σημείο ή ζεύγος ισορροπίας κατά Nash Λύση ακολουθιακής κυριαρχίας και σημεία ισορροπίας Nash Αλγοριθμική εύρεση σημείων ισορροπίας
ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΤΡΙΤΟ-ΙΣΟΡΡΟΠΙΑ ΚΑΤΑ NASH ΑΚΑΔΗΜΑΙΚΟ ΕΤΟΣ
ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΤΡΙΤΟ-ΙΣΟΡΡΟΠΙΑ ΚΑΤΑ NASH ΑΚΑΔΗΜΑΙΚΟ ΕΤΟΣ 2011-2012 Συνέχεια από πριν.. Στο προηγούμενο μάθημα είδαμε ότι μπορούμε να επιλύσουμε παίγνια με την μέθοδο της απαλοιφής
δημιουργία: http://macedonia.uom.gr/~acg επεξεργασία: Ν.Τσάντας
Θεωρία Παιγνίων Μελέτη στοιχείων που χαρακτηρίζουν καταστάσεις ανταγωνιστικής άλληλεξάρτησης με έμφαση στη διαδικασία λήψης αποφάσεων περισσοτέρων από ένα ληπτών απόφασης (αντιπάλων). Παίγνια δύο παικτών
Μικροοικονομική Ι. Ενότητα # 6: Θεωρία παιγνίων Διδάσκων: Πάνος Τσακλόγλου Τμήμα: Διεθνών και Ευρωπαϊκών Οικονομικών Σπουδών
Μικροοικονομική Ι Ενότητα # 6: Θεωρία παιγνίων Διδάσκων: Πάνος Τσακλόγλου Τμήμα: Διεθνών και Ευρωπαϊκών Οικονομικών Σπουδών Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού
Άπληστοι Αλγόριθμοι. Επιμέλεια διαφανειών: Δ. Φωτάκης Τροποποιήσεις: Α. Παγουρτζής. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Άπληστοι Αλγόριθμοι Επιμέλεια διαφανειών: Δ. Φωτάκης Τροποποιήσεις: Α. Παγουρτζής Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άπληστοι Αλγόριθμοι... για προβλήματα
Έστω ότι έχουµε 2 µάρκες υπολογιστών: A (Apricot), B (Banana) [ ιαρκή Αγαθά].
2.2. ΥΟΠΩΛΙΟ ΙΑΦΟΡΕΤΙΚΩΝ ΠΡΟΪΟΝΤΩΝ ΜΕ ΕΤΕΡΟΓΕΝΕΙΣ ΚΑΤΑΝΑΛΩΤΕΣ Έστω ότι έχουµε 2 µάρκες υπολογιστών: (pricot), (anana) [ ιαρκή Αγαθά]. Υποθέτουµε µηδενικό κόστος παραγωγής και P, P, οι τιµές για το Α, αντίστοιχα.
Κεφάλαιο 1. Πέντε Αντιπροσωπευτικά Προβλήματα. Έκδοση 1.4, 30/10/2014. Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.
Κεφάλαιο 1 Πέντε Αντιπροσωπευτικά Προβλήματα Έκδοση 1.4, 30/10/2014 Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 1.2 Πέντε Αντιπροσωπευτικά Προβλήματα 1. Χρονοπρογραμματισμός Διαστημάτων
Ασυμπτωτικός Συμβολισμός
Ασυμπτωτικός Συμβολισμός ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό
Υπολογιστική Πολυπλοκότητα
Υπολογιστική Πολυπλοκότητα ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό
6. Παίγνια αλληλοδιαδοχικών κινήσεων και η αξία του περιορισμού των επιλογών κάποιου ατόμου
Θεωρία παιγνίων 1 1. Παρακίνηση: Honda και Toyota 2. Ισορροπία κατά Nash 3. Το δίλημμα του φυλακισμένου 4. Ισορροπία με κυρίαρχη στρατηγική 5. Μειονεκτήματα της ισορροπίας κατά Nash 6. Παίγνια αλληλοδιαδοχικών
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2015
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2015 Εξεταστική περίοδος Ιουνίου 2015 16 Ιουνίου 2015 Διάρκεια εξέτασης: 2,5 ώρες
Κυριαρχία και μεικτές στρατηγικές Μεικτές στρατηγικές και κυριαρχία Είδαμε ότι μια στρατηγική του παίκτη i είναι κυριαρχούμενη, αν υπάρχει κάποια άλλη
Θεωρία παιγνίων: Μεικτές στρατηγικές και Ισορροπία Nash Κώστας Ρουμανιάς Ο.Π.Α. Τμήμα Δ. Ε. Ο. Σ. 18 Μαρτίου 2012 Κώστας Ρουμανιάς (Δ.Ε.Ο.Σ.) Μεικτές στρατηγικές 18 Μαρτίου 2012 1 / 9 Κυριαρχία και μεικτές
Ένα Παίγνιο (game) ορίζεται ως μια δραστηριότητα με τα ακόλουθα τρία χαρακτηριστικά:
Γενικοί Ορισμοί Η Θεωρία Παιγνίων (game theory) εξετάζει δραστηριότητες στις οποίες το αποτέλεσμα της απόφασης ενός ατόμου εξαρτάται όχι μόνο από τον τρόπο με τον οποίο επιλέγει ανάμεσα από διάφορες εναλλακτικές
ΠΜΣ Ενέργειας, Τμήμα ΔΕΣ, ΠαΠει
ΠΜΣ Ενέργειας, Τμήμα ΔΕΣ, ΠαΠει Επίκουρος Καθηγητής (μόνιμος) 19 Δεκεμβρίου 2015 2 out of 45 3 out of 45 4 out of 45 5 out of 45 6 out of 45 7 out of 45 8 out of 45 Ένας λήπτης απόφασης (decision maker):
- Παράδειγμα 2. Εκτέλεση Πέναλτι ή Κορώνα-Γράμματα (Heads or Tails) - Ένας ποδοσφαιριστής ετοιμάζεται να εκτελέσει ένα πέναλτι, το οποίο προσπαθεί να
- Παράδειγμα. Εκτέλεση Πέναλτι ή Κορώνα-Γράμματα (Heads or Tails) - Ένας ποδοσφαιριστής ετοιμάζεται να εκτελέσει ένα πέναλτι, το οποίο προσπαθεί να αποκρούσει ένας τερματοφύλακας. - Αν οι δύο παίκτες επιλέξουν
Τμήμα Διεθνών και Ευρωπαϊκών Σπουδών. Ιωάννης Παραβάντης. Επίκουρος Καθηγητής. Απρίλιος 2016
Τμήμα Διεθνών και Ευρωπαϊκών Σπουδών Ιωάννης Παραβάντης Επίκουρος Καθηγητής Απρίλιος 2016 Το κλασσικό μοντέλο του διλήμματος των φυλακισμένων (prisoner s dilemma) προβλέπει τις ακόλουθες ανταμοιβές ( )
Εφαρμογές Υπολογιστικής Νοημοσύνης στις Ασύρματες Επικοινωνίες
ΑΛΕΞΑΝΔΡΕΙΟ Τ.Ε.Ι. ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε. Εφαρμογές Υπολογιστικής Νοημοσύνης στις Ασύρματες Επικοινωνίες Πτυχιακή εργασία Φοιτήτρια: Ριζούλη Βικτώρια
υναμικός Προγραμματισμός
υναμικός Προγραμματισμός ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιωνυμικοί Συντελεστές ιωνυμικοί
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ Ακαδημαϊκό έτος B εξάμηνο (εαρινό)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ Ακαδημαϊκό έτος 2017-2018 B εξάμηνο (εαρινό) ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΩΝ Β ΕΞΑΜΗΝΟΥ ΓΙΑ ΤΗΝ 2 η ΚΑΤΕΥΘΥΝΣΗ «ΥΠΟΛΟΓΙΣΤΙΚΕΣ
Μοντελοποίηση προβληµάτων
Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Θεωρία γράφων
28 Πολυπρακτορικά Συστήµατα
ΚΕΦΑΛΑΙΟ 28 28 Πολυπρακτορικά Συστήµατα "There is no such thing as a single agent system". [Woodridge, 2002] Η παραπάνω ρήση από το βιβλίο του M.Wooldridge τονίζει, ίσως µε περισσή έµφαση, ότι είναι πλέον
Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα
Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια
Ασυμπτωτικός Συμβολισμός
Ασυμπτωτικός Συμβολισμός Επιμέλεια διαφανειών: Δημήτρης Φωτάκης (λίγες προσθήκες: Άρης Παγουρτζής) Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Υπολογιστική Πολυπλοκότητα
Α2 Β2 Γ2 2 Α1 1,0 5,-1-1,-2 9,-2 Β1 2,1-2,0 0,2 0,-1 Γ1 0,3 14,2 2,1 8,1 1 1,2 0,1 3,0-1,0
ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ιδάσκων: Ε. Πετράκης. Επαναληπτική Εξέταση: 15/09/99 Απαντήστε στα τρία από τα τέσσερα θέµατα. Όλα τα υποερωτήµατα βαθµολογούνται το ίδιο. 1. Θεωρήσατε ένα ολιγοπωλιακό κλάδο όπου τρεις
Κύρια σημεία. Η έννοια του μοντέλου. Έρευνα στην εφαρμοσμένη Στατιστική. ΈρευναστηΜαθηματικήΣτατιστική. Αντικείμενο της Μαθηματικής Στατιστικής
Κύρια σημεία Ερευνητική Μεθοδολογία και Μαθηματική Στατιστική Απόστολος Μπουρνέτας Τμήμα Μαθηματικών ΕΚΠΑ Αναζήτηση ερευνητικού θέματος Εισαγωγή στην έρευνα Ολοκλήρωση ερευνητικής εργασίας Ο ρόλος των
ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΤΕΤΑΡΤΟ ΠΑΙΓΝΙΑ ΜΗ ΕΝΙΚΟΥ ΑΘΡΟΙΣΜΑΤΟΣ ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ 2011-2012
ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΤΕΤΑΡΤΟ ΠΑΙΓΝΙΑ ΜΗ ΕΝΙΚΟΥ ΑΘΡΟΙΣΜΑΤΟΣ ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ 2011-2012 Προηγούµενο Μάθηµα: Κυρίαρχη Στρατηγική- Κυριαρχούµενη στρατηγική-nash equilibrium Μια στρατηγική
Ασυμπτωτικός Συμβολισμός
Ασυμπτωτικός Συμβολισμός ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Υπολογιστική Πολυπλοκότητα Υπολογιστική
ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1
ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1 1 Βελτιστοποίηση Στην προσπάθεια αντιμετώπισης και επίλυσης των προβλημάτων που προκύπτουν στην πράξη, αναπτύσσουμε μαθηματικά μοντέλα,
Αλγόριθμοι Προσέγγισης για NP-Δύσκολα Προβλήματα
Αλγόριθμοι Προσέγγισης για NP-Δύσκολα Προβλήματα Διδάσκοντες: E. Ζάχος, Α. Παγουρτζής Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο
ΕΠΙΧΕΙΡΗΣΙΑΚΟ ΠΡΟΓΡΑΜΜΑ «ΕΚΠΑΙΔΕΥΣΗ ΚΑΙ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗ» ΕΘΝΙΚΟ ΣΤΡΑΤΗΓΙΚΟ ΠΛΑΙΣΙΟ ΑΝΑΦΟΡΑΣ ΕΣΠΑ 2007-2013 ΔΡΑΣΗ «ΑΡΙΣΤΕΙΑ»
ΕΠΙΧΕΙΡΗΣΙΑΚΟ ΠΡΟΓΡΑΜΜΑ «ΕΚΠΑΙΔΕΥΣΗ ΚΑΙ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗ» ΕΘΝΙΚΟ ΣΤΡΑΤΗΓΙΚΟ ΠΛΑΙΣΙΟ ΑΝΑΦΟΡΑΣ ΕΣΠΑ 2007-2013 ΔΡΑΣΗ «ΑΡΙΣΤΕΙΑ» ΕΡΓΟ: ΤΙΤΛΟΣ: TITLE: ΔΙΚΑΙΟΥΧΟΣ: HEPHAESTUS Ευφυή Ενεργειακά Συστήματα Νέας Γενιάς
Οικονομία των ΜΜΕ. Ενότητα 8: Παίγνια και ολιγοπωλιακές επιχειρήσεις
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 8: Παίγνια και ολιγοπωλιακές επιχειρήσεις Γιώργος Τσουρβάκας, Αναπληρωτής Καθηγητής Τμήμα Δημοσιογραφίας και ΜΜΕ Σχολή Οικονομικών
Ισορροπία σε Αγορές Διαφοροποιημένων Προϊόντων
Ισορροπία σε Αγορές Διαφοροποιημένων Προϊόντων - Στο υπόδειγμα ertrand, οι επιχειρήσεις, παράγουν ένα ομοιογενές αγαθό, οπότε η τιμή είναι η μοναδική μεταβλητή που ενδιαφέρει τους καταναλωτές και οι καταναλωτές
Παιγνιακά Μοντέλα Σύγκρουσης και Συνεργασίας
Επίκουρος Καθηγητής Ιωάννης Παραβάντης Τµήµα ιεθνών και Ευρωπαϊκών Σπουδών ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ Μάρτιος 2010 Παιγνιακά Μοντέλα Σύγκρουσης και Συνεργασίας 1. Εισαγωγή Στο παρόν φυλλάδιο παριστάνουµε περιπτώσεις
υναμικός Προγραμματισμός
υναμικός Προγραμματισμός ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιωνυμικοί Συντελεστές ιωνυμικοί
HAL R. VARIAN. Μικροοικονομική. Μια σύγχρονη προσέγγιση. 3 η έκδοση
HAL R. VARIAN Μικροοικονομική Μια σύγχρονη προσέγγιση 3 η έκδοση Κεφάλαιο 28 Ολιγοπώλιο Ολιγοπώλιο Ένα μονοπώλιο είναι ένας κλάδος που αποτελείται από μία μόνο εταιρεία. Ένα δυοπώλιο είναι ένας κλάδος
ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH
ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Διοίκηση Παραγωγής & Συστημάτων Υπηρεσιών ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Περιεχόμενα
10/3/17. Κεφάλαιο 28 Ολιγοπώλιο. Μικροοικονομική. Ολιγοπώλιο. Ολιγοπώλιο. Ανταγωνισµός ποσότητας. Μια σύγχρονη προσέγγιση
0/3/7 HAL R. VARIAN Μικροοικονομική Μια σύγχρονη προσέγγιση 3 η έκδοση Κεφάλαιο 8 Ολιγοπώλιο Ολιγοπώλιο Ένα μονοπώλιο είναι ένας κλάδος που αποτελείται από μία μόνο εταιρεία. Ένα δυοπώλιο είναι ένας κλάδος
Αναζήτηση Κατά Πλάτος
Αναζήτηση Κατά Πλάτος ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό
Δυναμικός Προγραμματισμός
Τρίγωνο του Pascal Δυναμικός Προγραμματισμός Διωνυμικοί συντελεστές Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο
Τ.Ε.Ι. ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΚΑΙ ΘΡΑΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
Τ.Ε.Ι. ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΚΑΙ ΘΡΑΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΙΣΗΓΗΤΗΣ: Δρ. Ιωάννης Σ. Τουρτούρας Μηχανικός Παραγωγής & Διοίκησης Δ.Π.Θ. Χρηματοδότηση Το παρόν εκπαιδευτικό
Οικονομικά Υποδείγματα: Εισαγωγικές Έννοιες - Τα οικονομικά υποδείγματα περιγράφουν τη συμπεριφορά επιχειρήσεων-καταναλωτών και την αλληλεπίδρασή
Οικονομικά Υποδείγματα: Εισαγωγικές Έννοιες - Τα οικονομικά υποδείγματα περιγράφουν τη συμπεριφορά επιχειρήσεων-καταναλωτών και την αλληλεπίδρασή τους στις διάφορες αγορές. - Τα οικονομικά υποδείγματα:
Μελέτη πάνω στην εφαρμογή της θεωρίας παιγνίων σε θέματα πολεμικών τακτικών και στρατηγικής.
Μελέτη πάνω στην εφαρμογή της θεωρίας παιγνίων σε θέματα πολεμικών τακτικών και στρατηγικής. Ιστορική αναδρομή 1713 Ο Francis Waldegrave, σε ένα γράμμα του, παρουσίασε την πρώτη μικτή στρατηγική μεγίστου
Σκοπός του μαθήματος. Αρχές Φυσικής Μοντελοποίησης
Αρχές Φυσικής Μοντελοποίησης (Μαθηματική έκφραση της λεκτικής περιγραφής των φαινομένων) Σκοπός του μαθήματος Αρχές Φυσικής Μοντελοποίησης Αρχές Φυσικής Προσομοίωσης 1/2.1 Σκοπός της Φυσικής Προσομοίωσης
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Τομέας Τεχνολογίας Πληροφορικής και Υπολογιστών
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Τομέας Τεχνολογίας Πληροφορικής και Υπολογιστών Προσεγγισιμότητα και επαλήθευση προσφορών στο Σχεδιασμό Μηχανισμών Διπλωματική
ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Βfi 1 2 Αfl 1 1, 2 0, 1 2 2, 1 1, 0
ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Παίγνιο: Συμμετέχουν τουλάχιστον δύο παίκτες με τουλάχιστον δύο στρατηγικές ο καθένας και αντίθετα συμφέροντα. Το αποτέλεσμα για κάθε παίκτη καθορίζεται από τις συνδυασμένες επιλογές όλων
Εισαγωγή. Παίγνια Αποφάσεων 9 ο Εξάμηνο
Εισαγωγή Στόχοι του μαθήματος Πρακτική εφαρμογή των γνώσεων που έχουν αποκτηθεί στα μαθήματα της ροής Γνωριμία με εργαλεία στρατηγικής και λήψης αποφάσεων Κατανόηση του τρόπου με τον οποίο συνδυάζονται
Θέματα Υπολογισμού στον Πολιτισμό
Θέματα Υπολογισμού στον Πολιτισμό Εύη Παπαϊωάννου papaioan@ceid.upatras.gr papaioan@upatras.gr Πότε και πού; Ωρολόγιο πρόγραμμα Η φυσική παρουσία ΔΕΝ είναι υποχρεωτική Η εμπρόθεσμη εκπλήρωση υποχρεώσεων
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ www.cslab.ece.ntua.gr Διπλωματικές
Δυναμικός Προγραμματισμός
Δυναμικός Προγραμματισμός Επιμέλεια διαφανειών: Δ. Φωτάκης Τροποποιήσεις: Α. Παγουρτζής Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Διωνυμικοί Συντελεστές Διωνυμικοί
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ Ακαδηµαϊκό έτος B εξάµηνο (εαρινό)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ Ακαδηµαϊκό έτος 2016-2017 B εξάµηνο (εαρινό) ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΩΝ Β ΕΞΑΜΗΝΟΥ ΓΙΑ ΤΗΝ 2 η ΚΑΤΕΥΘΥΝΣΗ «ΥΠΟΛΟΓΙΣΤΙΚΕΣ