Κεφάλαιο 4ο: Δικτυωτή Ανάλυση
|
|
- ĒΓαβριήλ Φλέσσας
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Κεφάλαιο ο: Δικτυωτή Ανάλυση. Εισαγωγή Η δικτυωτή ανάλυση έχει παίξει σημαντικό ρόλο στην Ηλεκτρολογία. Όμως, ορισμένες έννοιες και τεχνικές της δικτυωτής ανάλυσης είναι πολύ χρήσιμες και σε άλλες επιστήμες. Για παράδειγμα, σπουδαίες εφαρμογές της έχουν γίνει στην κυβερνητική, στη μελέτη συστημάτων μεταφορών καθώς και στον προγραμματισμό και στον έλεγχο των προγραμμάτων έρευνας και ανάπτυξης. Άλλες περιοχές εφαρμογών είναι οι δομές των κοινωνικών ομάδων, τα συστήματα επικοινωνίας, η σχεδίαση παραγωγής και άλλα. Έτσι, ορισμένες απόψεις της δικτυωτής ανάλυσης (γνωστές ως θεωρία δικτύων ροής) έγιναν χρήσιμα εργαλεία της επιχειρησιακής έρευνας. Ένα βασικό πρόβλημα της δικτυακής θεωρίας, που συχνά συναντιέται στα συστήματα μεταφοράς, είναι η εύρεση της συντομότερης διαδρομής σε ένα δίκτυο. Ένα παραπλήσιο πρόβλημα είναι η επιλογή των ακμών ενός δικτύου, που έχουν το συντομότερο συνολικό μήκος και δίνουν μία διαδρομή για κάθε ζεύγος κορυφών. Ένα άλλο πρόβλημα είναι η μεγιστοποίηση της ροής σ ένα δίκτυο που συνδέει μία προέλευση με ένα προορισμό. Τέλος, ο προγραμματισμός και ο έλεγχος των έργων είναι μία τέταρτη περιοχή προβλημάτων, όπου γίνεται εφαρμογή των τεχνικών της δικτυωτής ανάλυσης και ειδικότερα της μεθόδου CPM (Critical Path Method). 9
2 . Το πρόβλημα του ελάχιστου κόστους ροής σ ένα δίκτυο Το πρόβλημα του ελάχιστου κόστους ροής σ ένα δίκτυο το οποίο μπορεί να θεωρηθεί και ως ένα πρόβλημα μεταφόρτωσης ορίζεται ως εξής: Δίνεται ένα δίκτυο μεταφόρτωσης το οποίο είναι ένα κατευθυνόμενο γράφημα κόμβων και τόξων όπως αυτό του σχήματος Σχήμα. Σε κάθε κόμβο j αντιστοιχεί ένας αριθμός b j όπου αν: b j, τότε ο κόμβος j ονομάζεται πηγή ή προέλευση με διαθέσιμη ποσότητα ίση με b j. b j, τότε ο κόμβος j ονομάζεται δέκτης ή σημείο ζήτησης ή σημείο προορισμού με ζητούμενη ποσότητα ίση με b j. b j =, τότε ο κόμβος j ονομάζεται ενδιάμεσος κόμβος ή σημείο μεταφόρτωσης. Για παράδειγμα στο δίκτυο του σχήματος., οι κόμβοι και είναι πηγές, οι κόμβοι, και είναι σημεία προορισμού και οι κόμβοι, και είναι ενδιάμεσοι κόμβοι. Σε κάθε τόξο (i,j) που συνδέει δύο κόμβους (i και j) αντιστοιχεί ένας αριθμός c ij που αναπαριστά το κόστος μεταφοράς μιας μονάδας προϊόντος από το κόμβο i στον κόμβο j. Έστω x ij η ποσότητα του προϊόντος που μεταφέρεται από τον κόμβο i στον κόμβο j. Μια βασική προϋπόθεση για να έχει το πρόβλημα εφικτές λύσεις είναι ότι στο δίκτυο η ολική ζήτηση είναι ίση με την ολική προσφορά. Υποθέτουμε, δηλαδή οτι m b j j = για ένα δίκτυο m κόμβων. Η υπόθεση αυτή που βοηθά σημαντικά τη μαθηματική διατύπωση και επεξεργασία του προβλήματος θα δούμε παρακάτω οτι δεν περιορίζει καθόλου τις εφαρμογές του προβλήματος του ελάχιστου κόστους ροής. Σ ένα δίκτυο μεταφόρτωσης ένα πρόγραμμα φόρτωσης x = {x ij : (i, j) τόξο του δικτύου} ονομάζεται εφικτό αν και μόνο αν, x ij, (i, j) τόξο του δικτύου και 9
3 ( i, j) x ij ( j, i) x ji = b i, για κάθε κόμβο i. Με άλλα λόγια το x είναι εφικτό, αν και μόνο αν οι διακινούμενες ποσότητες x ij πέρα από τον περιορισμό μη αρνητικότητας ικανοποιούν και τους παρακάτω περιορισμούς: i. Η εισερχόμενη ποσότητα σε κάθε σημείο ζήτησης μείον την εξερχόμενη ποσότητα από το σημείο αυτό να είναι ίση με τη ζητούμενη ποσότητα στο σημείο αυτό. Π.χ. στο σημείο ζήτησης του δικτύου του σχήματος. έχουμε ότι: x - x =. ii. Η εξερχόμενη ποσότητα από κάθε πηγή μείον την εισερχόμενη ποσότητα στο σημείο αυτό είναι ίση με την προσφερόμενη ποσότητα στο σημείο αυτό. iii. Η εισερχόμενη ποσότητ σε κάθε ενδιάμεσο κόμβο είναι ίση με την εξερχόμενη ποσότητα στο σημείο αυτό. Π.χ. στο κόμβο του δικτύου του σχήματος. έχουμε ότι: x + x = x + x + x. Με βάση τα παραπάνω δεδομένα το πρόβλημα του ελάχιστου κόστους ροής σ ένα δίκτυο μπορεί να διατυπωθεί ως εξής: Να προσδιοριστεί ένα εφικτό πρόγραμμα φόρτωσης που να ελαχιστοποιεί το ολικό κόστος διακίνησης ενός προϊόντος μέσα σ ένα δίκτυο. Η μαθηματική διατύπωση του προβλήματος του ελάχιστου κόστος ροής σ ένα δίκτυο έχει ωε εξής: min z(x) = c ij x ij με τους περιορισμούς ( i, j) x ij ( j, i) x ji ( i, j) = b i, για κάθε κόμβο i () x ij, για κάθετόξο του δικτύου (i, j). Οι περιορισμοί () στη μαθηματική μαθηματική διατύπωση του προβλήματος που είναι η μαθηματική αναπαράσταση των περιορισμών (i), (ii) και (iii) ονομάζονται εξισώσεις συντήρησης της ροής ή εξισώσεις ισορροπίας της ροής και εκφράζουν το γεγονός ότι η ροή δεν δημιουργείται ούτε καταστρέφεται μέσα στο δίκτυο. Π.χ. η μαθηματική διατύπωση του προβλήματος του ελάχιστου κόστους ροής για το δίκτυο του σχήματος. θα είναι η ακόλουθη: min z(x) = x + x + x + x + x + x + x + x + x + x + x με τους περιορισμούς: x = x = x -x -x -x +x = x +x -x -x = x +x -x -x -x = x +x = 9 x +x = x -x = 9
4 x, x, x, x, x, x, x, x, x, x, x. Θα πρέπει να τονιστεί ότι η υποθέση προσφερόμενη ποσότητα = ζητούμενη ποσότητα δεν εισάγει κανένα ουσιαστικό περιορισμό στις δυνατότητες εφαρμογής του προβλήματος του ελάχιστου κόστους ροής. Αυτό γιατί αν η προσφερόμενη ποσότητα είναι μεγαλύτερη από τη ζητούμενη ποσότητα τότε έχουμε m b j j m - b j j και προσθέτουμε έναν εικονικό κόμβο ζήτησης m+ με ζητούμενη ποσότητα και για κάθε κόμβο ζήτησης i εισάγουμε το τόξο (i, m+) με κόστος c i, m+ =. Π.χ. αν στο δίκτυο του σχήματος. ο κόμβος είχε ζήτηση, η προσφερόμενη ποσότητα () θα ήταν μεγαλύτερη από την ζητούμενη () και άρα θα έπρεπε να εισάγουμε έναν κόμβο 8 με ζήτηση όπως φαίνεται στον σχήμα Σχήμα. η ζητούμενη ποσότητα είναι μεγαλύτερη από τη προσφερόμενη ποσότητα τότε έχουμε m b j j και προσθέτουμε έναν εικονικό κόμβο προσφοράς m+ με προσφερόμενη ποσότητα ίση με - m b j j και για κάθε κόμβο προσφοράς i εισάγουμε το τόξο (m+, i) με κόστος c m+, i =. Π.χ. αν στο δίκτυο του σχήματος. ο κόμβος είχε ζήτηση, η ζητούμενη ποσότητα () θα ήταν μεγαλύτερη από την προσφερόμενη() και άρα θα έπρεπε να εισάγουμε έναν κόμβο 8 με προσφορά όπως φαίνεται στον σχήμα. 98
5 Σχήμα. Ανάλογα με τα είδη των κόμβων, της ροής και των τόξων το γενικό πρόβλημα του ελάχιστου κόστους ροής σε δίκτυα παρουσιάζει πολλές και ενδιαφέρουσες εφαρμογές. Ο παρακάτω πίνακας δίνει μια συνοπτική εικόνα των δυνατών εφαρμογών. Κόμβοι i Τόξα (i, j) Ροές x ij Περιφερειακά δίκτυα μεταφοράς αποθήκες, εργοστάσια, λιμάνια, στάσεις αυτοκινήτων, σταθμοί εξυπηρέτησης, κ.λ.π. δρόμοι, σιδηροδρομικές γραμμές, ακτοπλοϊκά δίκτυα, κ.λ.π. Διάφορα είδη εμπορευμάτων, αυτοκίνητα, κ.λ.π. Δίκτυα επικοινωνίας κέντρα τηλεφωνικά, κέντρα επικοινωνίας, κέντρα αναμετάδοσης, δορυφορικά κέντρα, κ.λ.π. κανάλια και πιο γενικά μέσα επικοινωνίας Διάφορα είδη πληροφοριών Υδάτινα δίκτυα δεξαμενές, κόμβοι διανομής, λίμνες, κ.λ.π. αρδευτικά κανάλια, ποτάμια και γενικά μέσα μεταφοράς και διανομής νερού Νερό Προφανώς ο αριθμός των δυνατών δικτύων δεν εξαντλείται με τον παραπάνω πίνακα με τον οποίο επιχειρείται να δοθεί μια γεύση μόνο των δικτύων στα οποία το πρόβλημα του ελάχιστου κόστους ροής μπορεί να εφαρμοστεί. 99
6 . Το πρόβλημα της συντομότερης διαδρομής Το πρόβλημα της συντομότερης διαδρομής αφορά την εύρεση της συντομότερης διαδρομής μεταξύ μιας πηγής (προέλευσης) και ενός προορισμού (σημείο ζήτησης) διαμέσου ενός δικτύου, όταν είναι γνωστές οι αποστάσεις των αντίστοιχων ακμών του δικτύου. Αν και έχουν προταθεί διάφορες μέθοδοι επίλυσης (αλγόριθμοι), εκείνη που θα παρουσιάστει είναι ίσως η πιο γρήγορη και η πιο εύκολη. Ο αλγόριθμος αυτός ξεκινάει από την αρχή του δικτύου και προσδιορίζει διαδοχικά τη συντομότερη διαδρομή για κάθε ένα από τους κόμβους του δικτύου. Έστω ότι έχουμε το δίκτυο του σχήματος. 8 9 Σχήμα. Το πρόβλημα διατυπώνεται ως εξής: Να ευρεθεί η συντομότερη διαδρομή μεταξύ των κόμβων και. Το πρόβλημα αυτό μπορεί να μετατραπεί σε ένα πρόβλημα ελάχιστου κόστους ροής ως ακολούθως: Ο κόμβος αποκτά διαθεσιμότητα μιας μονάδας και ο κόμβος την απαίτηση μίας μονάδας. Κάθε ακμή αποκτά ανώτατο όριο δυνατότητας ροής την μονάδα. και να λυθεί με τη μέθοδο Simplex. Σ αυτή την παράγραφο όπως είπαμε και πιο πάνω θα παρουσιαστεί ένας αλγόριθμος εύρεσης της συντομότερης διαδρομής που είναι πιο αποτελεσματικός από τη μέθοδο Simplex. Σ αυτόν το αλγόριθμο ορίζονται δύο μεταβλητές, τις: d ij = η απόσταση μεταξύ γειτονικών κόμβων i και j u j = η συντομότερη απόσταση του κόμβου j από τον κόμβο j και u (αρχικός κόμβος) =. Η διαδικασία του αλγορίθμου σταματάει όταν το u Τ (τελευταίος κόμβος) έχει υπολογισθεί. Το u j υπολογίζεται ως εξής: u j = min {συντομότερη απόσταση σε ένα αμέσως προηγούμενο κόμβο i + την απόσταση του παρόντος κόμβου j από τον προηγούμενο κόμβο i} = min i {u i + d ij }.
7 Δηλαδή η συντομότερη απόσταση u j του κόμβου j από την αρχή μπορεί να υπολογισθεί μόνο μετά τον υπολογισμό των συντομότερων αποστάσεων από την αρχή των προηγούμενων κόμβων i που συνδέονται με τον j με μία μόνο ακμή. Έτσι η διαδικασία του αλγορίθμου ξεκινάει από την αρχή και για κάθε κόμβο υπολογίζει την συντομότερη διαδρομή από την αρχή και από ποιον προηγούμενο κόμβο αυτή προέρχεται. Φτάνοντας στο τέλος, ακολουθούμε αντίστροφη πορεία για να βρούμε την συντομότερη διαδρομή. Δηλαδή για τον τελευταίο κόμβο βρίσκουμε μέσω ποιου προηγούμενου κόμβου έχουμε την συντομότερη διαδρομή. Στη συνέχεια κάνουμε την ίδια δουλειά για αυτόν το κόμβο μέχρι να φτάσουμε στην αρχή. Έτσι έχουμε βρει τους κόμβους που συνθέτουν την συντομότερη διαδρομή στο δίκτυο. Αν εφαρμόσουμε τον αλγόριθμο στο δίκτυο του σχήματος. θα έχουμε: u (αρχικός κόμβος) = u = u + d = + = (από τον κόμβο ) u = u + d = + = (από τον κόμβο ) u = min {u + d, u + d, u + d } = min { +, +, + } = (από τον κόμβο ) u = min {u + d, u + d } = min { +, + 8} = (από τον κόμβο ) u = min {u + d, u + d } = min { +, + } = (από τον κόμβο ) u (τελικός κόμβος) = min {u + d, u + d } = min { +, + 9} = (από τον κόμβο ) Ξεκινώντας τώρα από το τέλος προς την αρχή έχουμε ότι: η συντομότερη διαδρομή του κόμβου από τον κόμβο είναι και επιτυγχάνεται αν πάμε στον κόμβο από τον κόμβο. η συντομότερη διαδρομή του κόμβου από τον κόμβο επιτυγχάνεται αν πάμε στον κόμβο από τον κόμβο. η συντομότερη διαδρομή του κόμβου από τον κόμβο επιτυγχάνεται αν πάμε στον κόμβο από τον κόμβο που είναι και αρχικός κόμβος. Άρα η ελάχιστη απόσταση από τον κόμβο στον κόμβο είναι και ακολουθεί την διαδρομη. Έστω ότι στο δίκτυο του σχήματος. η ακμή (,) είχε τιμή 8 αντί για 9 δηλαδή έχουμε το δίκτυο του σχήματος.
8 8 8 Σχήμα. Αν εφαρμόσουμε τον αλγόριθμο στο νέο δίκτυο θα έχουμε: u (αρχικός κόμβος) = u = u + d = + = (από τον κόμβο ) u = u + d = + = (από τον κόμβο ) u = min {u + d, u + d, u + d } = min { +, +, + } = (από τον κόμβο ) u = min {u + d, u + d } = min { +, + 8} = (από τον κόμβο ) u = min {u + d, u + d } = min { +, + } = (από τον κόμβο ) u (τελικός κόμβος) = min {u + d, u + d } = min { +, + 8} = (από τον κόμβο και ) Ξεκινώντας τώρα από το τέλος προς την αρχή έχουμε ότι: η συντομότερη διαδρομή του κόμβου από τον κόμβο είναι και επιτυγχάνεται αν πάμε στον κόμβο από τον κόμβο ή από τον κόμβο. Αφού η συντομότερη διαδρομή επιτυγχάνεται αν πάμε στον τελευταίο κόμβο από δύο κόμβους ( και ) θα έχουμε δύο συντομότερες διαδρομές με μήκος. Πρώτα θα βρούμε την συντομότερη διαδρομή που επιτυγχάνεται αν πάμε στον κόμβο από τον κόμβο και μετά αν πάμε από τον κόμβο. η συντομότερη διαδρομή του κόμβου από τον κόμβο επιτυγχάνεται αν πάμε στον κόμβο από τον κόμβο. η συντομότερη διαδρομή του κόμβου από τον κόμβο επιτυγχάνεται αν πάμε στον κόμβο από τον κόμβο που είναι και αρχικός κόμβος. η συντομότερη διαδρομή του κόμβου από τον κόμβο επιτυγχάνεται αν πάμε στον κόμβο από τον κόμβο. η συντομότερη διαδρομή του κόμβου από τον κόμβο επιτυγχάνεται αν πάμε στον κόμβο από τον κόμβο που είναι και αρχικός κόμβος. Άρα η ελάχιστη απόσταση από τον κόμβο στον κόμβο είναι και ακολουθεί δύο διαδρομές τη διαδρομη και τη διαδρομή.
9 Αυτό που θα πρέπει να τονιστεί είναι ότι αν και μέχρι τώρα το πρόβλημα της συντομότερης διαδρομής έχει περιγραφεί σε σχέση με την ελαχιστοποίηση της απόστασης μεταξύς της αρχής και του τέλους ενός δικτύου, αυτό δεν σημαίνει ότι οι τιμές των ακμών πρέπει οποσδήποτε να είναι αποστάσεις. Για παράδειγμα, οι ακμές μπορεί να αντιστοιχούν σε δραστηριότητες κάποιου είδους, όπου η τιμή για κάθε ακμή είναι το κόστος της δραστηριότητας. Το πρόβλημα τότε θα είναι να βρεθεί η ακολουθία των δραστηριοτήτων που ελαχιστοποιεί το συνολικό κόστος. Ακόμη η τιμή της ακμής μπορεί να είναι χρόνος που χρειάζεται για την εκτέλεση της δραστηριότητας. Στην περίπτωση αυτή το πρόβλημα θα είναι να βρεθεί η ακολουθία των δραστηριοτήτων που ελαχιστοποιεί το συνολικό χρόνο. Έτσι, η λέξη απόσταση μπορεί να θεωρηθεί και ως κόστος ή χρόνος ή κάποια άλλη ποσότητα.
10
4.4 Το πρόβλημα του ελάχιστου ζευγνύοντος δένδρου
. Το πρόβλημα του ελάχιστου ζευγνύοντος δένδρου Σ αυτή την παράγραφο θα εξεταστεί μια παραλλαγή του προβλήματος της συντομότερης διαδρομής, το πρόβλημα του ελάχιστου ζευγνύοντος δένδρου. Σ αυτό το πρόβλημα
4.6 Critical Path Analysis (Μέθοδος του κρίσιμου μονοπατιού)
. Critical Path Analysis (Μέθοδος του κρίσιμου μονοπατιού) Η πετυχημένη διοίκηση των μεγάλων έργων χρειάζεται προσεχτικό προγραμματισμό, σχεδιασμό και συντονισμό αλληλοσυνδεόμενων δραστηριοτήτων (εργσιών).
Προβλήματα Ελάχιστου Κόστους Ροής σε Δίκτυο. Δίκτυα Ροής Ελάχιστου Κόστους (Minimum Cost Flow Networks)
Προβλήματα Ελάχιστου Κόστους Ροής σε Δίκτυο Ορισμοί Παραδείγματα Δικτυακή Simplex (προβλήματα με και χωρίς φραγμούς). Δίκτυα Ροής Ελάχιστου Κόστους (Minimum ost Flow Networks) Ένα δίκτυο μεταφόρτωσης αποτελείται
3.12 Το Πρόβλημα της Μεταφοράς
312 Το Πρόβλημα της Μεταφοράς Σ αυτή την παράγραφο και στις επόμενες μέχρι το τέλος του κεφαλαίου θα ασχοληθούμε με μερικά σπουδαία είδη προβλημάτων γραμμικού προγραμματισμού Οι ειδικές αυτές περιπτώσεις
Επιχειρησιακή Έρευνα I
Επιχειρησιακή Έρευνα I Operations/Operational Research (OR) Κωστής Μαμάσης Παρασκευή 9: : Σημειώσεις των Α. Platis, K. Mamasis Περιεχόμενα EE & Εισαγωγή Μαθηματικός Προγραμματισμός - Γραμμικός Προγραμματισμός
Προβλήματα Μεταφορών (Transportation)
Προβλήματα Μεταφορών (Transportation) Παραδείγματα Διατύπωση Γραμμικού Προγραμματισμού Δικτυακή Διατύπωση Λύση Γενική Μέθοδος Simplex Μέθοδος Simplex για Προβλήματα Μεταφοράς Παράδειγμα: P&T Co ΗεταιρείαP&T
3.7 Παραδείγματα Μεθόδου Simplex
3.7 Παραδείγματα Μεθόδου Simplex Παράδειγμα 1ο (Παράδειγμα 1ο - Κεφάλαιο 2ο - σελ. 10): Το πρόβλημα εκφράζεται από το μαθηματικό μοντέλο: max z = 600x T + 250x K + 750x Γ + 450x B 5x T + x K + 9x Γ + 12x
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 23: Κλασική Ανάλυση Ευαισθησίας, Βασικές Έννοιες Γραφημάτων Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Στοχαστικές Στρατηγικές. διαδρομής (1)
Στοχαστικές Στρατηγικές η ενότητα: Το γενικό πρόβλημα ελάχιστης διαδρομής () Τμήμα Μαθηματικών, ΑΠΘ Ακαδημαϊκό έτος 08-09 Χειμερινό Εξάμηνο Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ & Πανεπιστήμιο
Παραλλαγές του Προβλήματος Μεταφοράς Το Πρόβλημα Μεταφόρτωσης και το Πρόβλημα Αναθέσεων Γεωργία Φουτσιτζή ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα
Τμήμα Μηχανικών Πληροφορικής ΤΕ 2016-2017 Παραλλαγές του Προβλήματος Μεταφοράς Το Πρόβλημα Μεταφόρτωσης και το Πρόβλημα Αναθέσεων Γεωργία Φουτσιτζή ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα To Πρόβλημα Μεταφοράς
4. ΔΙΚΤΥΑ
. ΔΙΚΤΥΑ Τελευταία μορφή επιχειρησιακής έρευνας αποτελεί η δικτυωτή ανάλυση (δίκτυα). Τα δίκτυα είναι ένα διάγραμμα από ς οι οποίοι συνδέονται όλοι μεταξύ τους άμεσα ή έμμεσα μέσω ακμών. Πρόκειται δηλαδή
Το µαθηµατικό µοντέλο του Υδρονοµέα
Ερευνητικό έργο: Εκσυγχρονισµός της εποπτείας και διαχείρισης του συστήµατος των υδατικών πόρων ύδρευσης της Αθήνας Το µαθηµατικό µοντέλο του Υδρονοµέα Ανδρέας Ευστρατιάδης και Γιώργος Καραβοκυρός Τοµέας
Μοντέλα Διανομής και Δικτύων
Μοντέλα Διανομής και Δικτύων 10-03-2017 2 Πρόβλημα μεταφοράς (1) Τα προβλήματα μεταφοράς ανακύπτουν συχνά σε περιπτώσεις σχεδιασμού διανομής αγαθών και υπηρεσιών από τα σημεία προσφοράς προς τα σημεία
Διαχείριση Εφοδιαστικής Αλυσίδας ΙΙ
Διαχείριση Εφοδιαστικής Αλυσίδας ΙΙ 1 η Διάλεξη: Αναδρομή στον Μαθηματικό Προγραμματισμό 2019, Πολυτεχνική Σχολή Εργαστήριο Συστημάτων Σχεδιασμού, Παραγωγής και Λειτουργιών Περιεχόμενα 1. Γραμμικός Προγραμματισμός
ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΈΡΕΥΝΑ ΣΤΑ ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ ΚΑΙ ΚΑΤΑΜΕΡΙΣΜΟΥ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΚΑΠΑΝΤΑΙΔΑΚΗΣ ΜΙΧΑΗΛ Α.Μ 8342 ΕΞΑΜΗΝΟ :ΠΤΘ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΈΡΕΥΝΑ ΣΤΑ ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ ΚΑΙ ΚΑΤΑΜΕΡΙΣΜΟΥ ΠΤΥΧΙΑΚΗ
ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ
(Transportation Problems) Βασίλης Κώστογλου E-mail: vkostogl@it.teithe.gr URL: www.it.teithe.gr/~vkostogl Περιγραφή Ένα πρόβλημα μεταφοράς ασχολείται με το πρόβλημα του προσδιορισμού του καλύτερου δυνατού
Επιχειρησιακή Έρευνα I
Επιχειρησιακή Έρευνα I Κωστής Μαμάσης Παρασκευή 09:00 12:00 Σημειώσεις των Α. Platis, K. Mamasis Περιεχόμενα 1. Εισαγωγή 2. Γραμμικός Προγραμματισμός 1. Μοντελοποίηση 2. Μέθοδος Simplex 1. Αλγόριθμός Simplex
3. ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ ( Transportation )
3. ΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ 3. ΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ ( Transportation ) Σε αυτή την ενότητα θα ασχοληθούμε με προβλήματα που αφορούν τη μεταφορά αγαθών από διαφορετικά σημεία παραγωγής ή κεντρικής αποθήκευσης
Τμήμα Μηχανικών Πληροφορικής ΤΕ Δυϊκότητα. Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα. τελευταία ενημέρωση: 1/12/2016
Τμήμα Μηχανικών Πληροφορικής ΤΕ 2016-2017 Δυϊκότητα Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα τελευταία ενημέρωση: 1/12/2016 1 Το δυϊκό πρόβλημα Για κάθε πρόβλημα Γραμμικού Προγραμματισμού υπάρχει
Τμήμα Μηχανικών Πληροφορικής ΤΕ Πρόβλημα Μεταφοράς. Γεωργία Φουτσιτζή ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα
Τμήμα Μηχανικών Πληροφορικής ΤΕ 2016-2017 Πρόβλημα Μεταφοράς Γεωργία Φουτσιτζή ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα To Πρόβλημα Μεταφοράς Μαθηματική Διατύπωση Εύρεση Αρχικής Λύσης Προσδιορισμός Βέλτιστης Λύσης
ΠΡΟΟΡΙΣΜΟΣ ΑΠΟΘΗΚΕΣ Ζ1 Ζ2 Ζ3 Δ1 1,800 2,100 1,600 Δ2 1,100 700 900 Δ3 1,400 800 2,200
ΑΣΚΗΣΗ Η εταιρεία logistics Orient Express έχει αναλάβει τη διακίνηση των φορητών προσωπικών υπολογιστών γνωστής πολυεθνικής εταιρείας σε πελάτες που βρίσκονται στο Hong Kong, τη Σιγκαπούρη και την Ταϊβάν.
Προβλήµατα Μεταφορών (Transportation)
Προβλήµατα Μεταφορών (Transportation) Προβλήµατα Μεταφορών (Transportation) Μέθοδος Simplex για Προβλήµατα Μεταφοράς Προβλήµατα Εκχώρησης (assignment) Παράδειγµα: Κατανοµή Νερού Η υδατοπροµήθεια µιας περιφέρεια
Επιχειρησιακή Έρευνα I
Επιχειρησιακή Έρευνα I Κωστής Μαμάσης Παρασκευή 09:00 12:00 Σημειώσεις των Α. Platis, K. Mamasis Περιεχόμενα 1. Εισαγωγή 2. Γραμμικός Προγραμματισμός 1. Μοντελοποίηση 2. Μέθοδος Simplex (C) Copyright Α.
Μέθοδοι Βελτιστοποίησης
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μέθοδοι Βελτιστοποίησης Ενότητα # : Επιχειρησιακή έρευνα Αθανάσιος Σπυριδάκος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης
ΘΕΑΝΩ ΕΡΙΦΥΛΗ ΜΟΣΧΟΝΑ ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ
ΘΕΑΝΩ ΕΡΙΦΥΛΗ ΜΟΣΧΟΝΑ ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ Πρόβληµα µεταφοράς Η ανάπτυξη και διαµόρφωση του προβλήµατος µεταφοράς αναπτύσσεται στις σελίδες 40-45 του βιβλίου των
Το Πρόβλημα Μεταφοράς
Το Πρόβλημα Μεταφοράς Αφορά τη μεταφορά ενός προϊόντος από διάφορους σταθμούς παραγωγής σε διάφορες θέσεις κατανάλωσης με το ελάχιστο δυνατό κόστος. Πρόκειται για το πιο σπουδαίο πρότυπο προβλήματος γραμμικού
Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α
ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΣΕΠΤΕΜΒΡΙΟΣ 2011 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΘΕΜΑ 1 ο Σε ένα διαγωνισμό για την κατασκευή μίας καινούργιας γραμμής του
Κεφάλαιο 3ο: Γραμμικός Προγραμματισμός
Κεφάλαιο 3ο: Γραμμικός Προγραμματισμός 3.1 Εισαγωγή Πολλοί πιστεύουν ότι η ανάπτυξη του γραμμικού προγραμματισμού είναι μια από τις πιο σπουδαίες επιστημονικές ανακαλύψεις στα μέσα του εικοστού αιώνα.
Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 1: Δικτυωτή Ανάλυση (Θεωρία Γράφων)
Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 1: Δικτυωτή Ανάλυση (Θεωρία Γράφων) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων
ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1
ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1 1 Βελτιστοποίηση Στην προσπάθεια αντιμετώπισης και επίλυσης των προβλημάτων που προκύπτουν στην πράξη, αναπτύσσουμε μαθηματικά μοντέλα,
ΑΣΚΗΣΗ 3 ΑΣΚΗΣΗ 4 ΑΣΚΗΣΗ 5
ΑΣΚΗΣΗ Μία εταιρεία διανομών διατηρεί την αποθήκη της στον κόμβο και μεταφέρει προϊόντα σε πελάτες που βρίσκονται στις πόλεις,,,7. Το οδικό δίκτυο που χρησιμοποιεί για τις μεταφορές αυτές φαίνεται στο
min f(x) x R n b j - g j (x) = s j - b j = 0 g j (x) + s j = 0 - b j ) min L(x, s, λ) x R n λ, s R m L x i = 1, 2,, n (1) m L(x, s, λ) = f(x) +
KΕΦΑΛΑΙΟ 4 Κλασσικές Μέθοδοι Βελτιστοποίησης Με Περιορισµούς Ανισότητες 4. ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΠΕΡΙΟΡΙΣΜΟΥΣ ΑΝΙΣΟΤΗΤΕΣ Ζητούνται οι τιµές των µεταβλητών απόφασης που ελαχιστοποιούν την αντικειµενική συνάρτηση
2. ΣΥΓΚΕΝΤΡΩΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ
2. ΣΥΓΚΕΝΤΡΩΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ Ο Συγκεντρωτικός Προγραμματισμός Παραγωγής (Aggregae Produion Planning) επικεντρώνεται: α) στον προσδιορισμό των ποσοτήτων ανά κατηγορία προϊόντων και ανά χρονική
Επιχειρησιακή Έρευνα I
Επιχειρησιακή Έρευνα I Operations/Operational Research (OR) Κωστής Μαμάσης Παρασκευή 09:00 12:00 Σημειώσεις των Α. Platis, K. Mamasis Περιεχόμενα EE 1&2 Εισαγωγή Μαθηματικός Προγραμματισμός - Γραμμικός
Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ»
Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» 2 ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Προβλήματα ελάχιστης συνεκτικότητας δικτύου Το πρόβλημα της ελάχιστης
Βασική Εφικτή Λύση. Βασική Εφικτή Λύση
Αλγεβρική Μορφή Γενική Μορφή Γραµµικού Προγραµµατισµού n µεταβλητών και m περιορισµών Εστω πραγµατικοί αριθµοί a ij, b j, c i R µε 1 i m, 1 j n Αλγεβρική Μορφή Γενική Μορφή Γραµµικού Προγραµµατισµού n
ΤΣΑΝΤΑΣ ΝΙΚΟΣ 11/26/2007. Νίκος Τσάντας Τμήμα Μαθηματικών Πανεπιστημίου Πατρών, Ακαδημαϊκό έτος Δικτυωτή Ανάλυση
ΤΣΑΝΤΑΣ ΝΙΚΟΣ // Επιχειρησιακή Έρευνα ικτυωτή Ανάλυση Νίκος Τσάντας Τμήμα Μαθηματικών Πανεπιστημίου Πατρών, Ακαδημαϊκό έτος - Δικτυωτή Ανάλυση Δίκτυο είναι ένα διάγραμμα το οποίο το οποίο αναπαριστά τη
Το Πρόβλημα του Περιοδεύοντος Πωλητή - The Travelling Salesman Problem
Το Πρόβλημα του Περιοδεύοντος Πωλητή - The Travelling Salesman Problem Έλενα Ρόκου Μεταδιδακτορική Ερευνήτρια ΕΜΠ Κηρυττόπουλος Κωνσταντίνος Επ. Καθηγητής ΕΜΠ Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Εφαρμογές Συστημάτων Γεωγραφικών Πληροφοριών
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Εφαρμογές Συστημάτων Γεωγραφικών Πληροφοριών Ενότητα # 8: Ανάλυση δικτύων στα ΣΓΠ Ιωάννης Γ. Παρασχάκης Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών
Πληροφοριακά Συστήματα Διοίκησης. Εισαγωγή στον Γραμμικό Προγραμματισμό
Πληροφοριακά Συστήματα Διοίκησης Εισαγωγή στον Γραμμικό Προγραμματισμό Τι είναι ο Γραμμικός Προγραμματισμός; Είναι το σημαντικότερο μοντέλο στη Λήψη Αποφάσεων Αντικείμενό του η «άριστη» κατανομή περιορισμένων
Επιχειρησιακή Έρευνα
Επιχειρησιακή Έρευνα Ενότητα 10: Το πρόβλημα μεταφοράς: μαθηματικό μοντέλο και μεθοδολογία επίλυσης Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Δικτυακή Αναπαράσταση Έργων (Δίκτυα ΑΟΑ και ΑΟΝ) & η Μέθοδος CPM. Λυμένες Ασκήσεις & Παραδείγματα
Δικτυακή Αναπαράσταση Έργων (Δίκτυα ΑΟΑ και ΑΟΝ) & η Μέθοδος PM Λυμένες Ασκήσεις & Παραδείγματα Άσκηση σχεδίασης έργου με δίκτυο ΑΟΑ Σχεδιάστε το δίκτυο ΑΟΑ που ικανοποιεί του ακόλουθους περιορισμούς:
Μέγιστη ροή. Κατευθυνόμενο γράφημα. Συνάρτηση χωρητικότητας. αφετηρίακός κόμβος. τερματικός κόμβος. Ροή δικτύου. με τις ακόλουθες ιδιότητες
Κατευθυνόμενο γράφημα Συνάρτηση χωρητικότητας 12 16 2 Ροή δικτύου Συνάρτηση αφετηρίακός κόμβος 13 1 με τις ακόλουθες ιδιότητες 4 14 9 7 4 τερματικός κόμβος Περιορισμός χωρητικότητας: Αντισυμμετρία: Διατήρηση
m 1 min f = x ij 0 (8.4) b j (8.5) a i = 1
KΕΦΑΛΑΙΟ 8 Προβλήµατα Μεταφοράς και Ανάθεσης 8. ΕΙΣΑΓΩΓΗ Μια ειδική κατηγορία προβληµάτων γραµµικού προγραµµατισµού είναι τα προβλήµατα µεταφοράς (Π.Μ.), στα οποία επιζητείται η ελαχιστοποίηση του κόστους
Επιχειρησιακή Έρευνα
Επιχειρησιακή Έρευνα Ενότητα 7: Επίλυση με τη μέθοδο Simplex (1 ο μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.)
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 24: Ειδικές Περιπτώσεις του Προβλήματος Ροής Ελαχίστου Κόστους Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
2 η ΕΝΟΤΗΤΑ ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΙΣΑΓΩΓΗ ΣΤΗN ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ 2 η ΕΝΟΤΗΤΑ ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Μ. Καρλαύτης Ν. Λαγαρός Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες Χρήσης Creative
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 9: Γεωμετρία του Χώρου των Μεταβλητών, Υπολογισμός Αντιστρόφου Μήτρας Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Στοχαστικές Στρατηγικές. διαδρομής (2)
Στοχαστικές Στρατηγικές 6 η ενότητα: Το γενικό πρόβλημα ελάχιστης διαδρομής () Τμήμα Μαθηματικών, ΑΠΘ Ακαδημαϊκό έτος 018-019 Χειμερινό Εξάμηνο Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ & Πανεπιστήμιο
Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α
ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΙΟΥΝΙΟΣ 12 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΘΕΜΑ 1 ο Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α Μία εταιρεία παροχής ολοκληρωμένων ευρυζωνικών υπηρεσιών μελετά την
Q 12. c 3 Q 23. h 12 + h 23 + h 31 = 0 (6)
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Τοµέας Υδατικών Πόρων Μάθηµα: Τυπικά Υδραυλικά Έργα Μέρος 2: ίκτυα διανοµής Άσκηση E0: Μαθηµατική διατύπωση µοντέλου επίλυσης απλού δικτύου διανοµής
Συνδυαστική Βελτιστοποίηση Εισαγωγή στον γραμμικό προγραμματισμό (ΓΠ)
Εικονικές Παράμετροι Μέχρι στιγμής είδαμε την εφαρμογή της μεθόδου Simplex σε προβλήματα όπου το δεξιό μέλος ήταν θετικό. Δηλαδή όλοι οι περιορισμοί ήταν της μορφής: όπου Η παραδοχή ότι b 0 μας δίδει τη
ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΜΕΘΟΔΟΣ SIMPLEX, διαλ. 3. Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 29/4/2017
ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΜΕΘΟΔΟΣ SIMPLEX, διαλ. 3 Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 29/4/2017 ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Bέλτιστος σχεδιασμός με αντικειμενική συνάρτηση και περιορισμούς
Γραμμικός Προγραμματισμός Μέθοδος Simplex
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραμμικός Προγραμματισμός Μέθοδος Simplex Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Πρότυπη Μορφή ΓΠ 2. Πινακοποίηση
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Ακαδημαϊκό Έτος: ΣΗΜΕΙΩΣΕΙΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΥΕΝΑΣ ΓΙΑ ΤΟΥΣ ΦΟΙΤΗΤΕΣ ΤΟΥ Ε.Α.Π.
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ- Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 0- ΣΗΜΕΙΩΣΕΙΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΥΕΝΑΣ ΓΙΑ ΤΟΥΣ ΦΟΙΤΗΤΕΣ ΤΟΥ
Άσκηση 1 Ένα κεντρικό βιβλιοπωλείο ειδικεύεται στα λογοτεχνικά βιβλία και τα βιβλία τέχνης. Προκειμένου να προωθήσει μια νέα συλλογή λογοτεχνικών βιβλίων και βιβλίων τέχνης, η διεύθυνση του βιβλιοπωλείου
«Πρόβλημα μέγιστης ροής» Maximum flow problem. Κηρυττόπουλος Κωνσταντίνος PhD, Dipl. Eng., PMP
«Πρόβλημα μέγιστης ροής» Maximum flow problem Κηρυττόπουλος Κωνσταντίνος PhD, Dipl. Eng., PMP Στόχος προβλημάτων ροής Βέλτιστη αξιοποίηση κλάδων ενός δικτύου, προσανατολισμένου ή μη, για την επίτευξη μέγιστης
ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ: Δίκτυα Μεταγωγής & Τεχνικές Μεταγωγής Σε Δίκτυα Ευρείας Περιοχής
ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ: Δίκτυα Μεταγωγής & Τεχνικές Μεταγωγής Σε Δίκτυα Ευρείας Περιοχής Στο σημερινό μάθημα ασχολούμαστε με τις έννοιες: Τεχνικές Μεταγωγής o Μεταγωγή κυκλώματος o Μεταγωγή μηνύματος o Μεταγωγή
ΚΕΦΑΛΑΙΟ 2ο ΠΡΟΣΟΜΟΙΩΣΗ ΔΙΑΚΡΙΤΩΝ ΓΕΓΟΝΟΤΩΝ
ΚΕΦΑΛΑΙΟ 2ο ΠΡΟΣΟΜΟΙΩΣΗ ΔΙΑΚΡΙΤΩΝ ΓΕΓΟΝΟΤΩΝ 2.1 Εισαγωγή Η μέθοδος που θα χρησιμοποιηθεί για να προσομοιωθεί ένα σύστημα έχει άμεση σχέση με το μοντέλο που δημιουργήθηκε για το σύστημα. Αυτό ισχύει και
Η γραφική μέθοδος επίλυσης προβλημάτων Γραμμικού Προγραμματισμού
Η γραφική μέθοδος επίλυσης προβλημάτων Γραμμικού Προγραμματισμού Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα Τμήμα Μηχανικών Πληροφορικής ΤΕ 2016-2017 τελευταία ενημέρωση: 21/10/2016 1 Γραφική μέθοδος
Επιχειρησιακή Έρευνα I
Επιχειρησιακή Έρευνα I Operations/Operational Research (OR) Κωστής Μαμάσης Παρασκευή 09:00 12:00 Σημειώσεις των Α. Platis, K. Mamasis Περιεχόμενα EE 1&2 Εισαγωγή Μαθηματικός Προγραμματισμός - Γραμμικός
Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Προϋποθέσεις Εφαρμογής
ΣΥΝΕΚΤΙΚΟΤΗΤΑ ΓΡΑΦΗΜΑΤΩΝ
Συνεκτικότητα Γραφημάτων 123 ΚΕΦΑΛΑΙΟ 4 ΣΥΝΕΚΤΙΚΟΤΗΤΑ ΓΡΑΦΗΜΑΤΩΝ 4.1 Τοπική και Ολική Συνεκτικότητα Γραφημάτων 4.2 Συνεκτικότητα Μη-κατευθυνόμενων Γραφημάτων 4.3 Συνεκτικότητα Κατευθυνόμενων Γραφημάτων
ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Α ΛΥΚΕΙΟΥ
ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Α ΛΥΚΕΙΟΥ Ευθύγραμμη Ομαλή Κίνηση Επιμέλεια: ΑΓΚΑΝΑΚΗΣ.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός https://physicscorses.wordpress.com/ Βασικές Έννοιες Ένα σώμα καθώς κινείται περνάει από διάφορα σημεία.
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 18: Επίλυση Γενικών Γραμμικών Προβλημάτων Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος. Τεχνολογία Συστημάτων Υδατικών Πόρων
Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος Τεχνολογία Συστημάτων Υδατικών Πόρων Βελτιστοποίηση Μέρος b: Συμβατικές Μέθοδοι συνέχεια Σύνοψη προηγούμενου μαθήματος Στόχος βελτιστοποίησης:
ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ
ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΣΕΠΤΕΜΒΡΙΟΣ 2008 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΜΑ 1 ο Σε μία γειτονιά, η ζήτηση ψωμιού η οποία ανέρχεται σε 1400 φραντζόλες ημερησίως,
Η γραφική μέθοδος επίλυσης προβλημάτων Γραμμικού Προγραμματισμού
Η γραφική μέθοδος επίλυσης προβλημάτων Γραμμικού Προγραμματισμού Γεωργία Φουτσιτζή-Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα Τμήμα Μηχανικών Πληροφορικής ΤΕ 2017-2018 τελευταία ενημέρωση: 21/10/2016
ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων
ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων Επιχειρησιακή Έρευνα Τυπικό Εξάμηνο: Δ Αλέξιος Πρελορέντζος Εισαγωγή Ορισμός 1 Η συστηματική εφαρμογή ποσοτικών μεθόδων, τεχνικών
z = c 1 x 1 + c 2 x c n x n
Τεχνολογικό Εκπαιδευτικό Ιδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Γραμμικός Προγραμματισμός & Βελτιστοποίηση Δρ. Δημήτρης Βαρσάμης Καθηγητής Εφαρμογών Δρ. Δημήτρης Βαρσάμης Μάρτιος
1. Κατανομή πόρων σε συνθήκες στατικής αποτελεσματικότητας
Εφαρμογές Θεωρίας 1. Κατανομή πόρων σε συνθήκες στατικής αποτελεσματικότητας Έστω ότι η συνάρτηση ζήτησης για την κατανάλωση του νερού ενός φράγματος (εκφρασμένη σε ευρώ) είναι q = 12-P και το οριακό κόστος
Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών
Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών
Πρόβλημα μέγιστης ροής - Maximum flow problem. Κηρυττόπουλος Κωνσταντίνος Επ. Καθηγητής ΕΜΠ
Πρόβλημα μέγιστης ροής - Maximum flow problem Κηρυττόπουλος Κωνσταντίνος π. Καθηγητής ΜΠ Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. ια εκπαιδευτικό υλικό, όπως
Γραμμικός Προγραμματισμός
Γραμμικός Προγραμματισμός Εισαγωγή Το πρόβλημα του Σχεδιασμού στη Χημική Τεχνολογία και Βιομηχανία. Το συνολικό πρόβλημα του Σχεδιασμού, από μαθηματική άποψη ανάγεται σε ένα πρόβλημα επίλυσης συστήματος
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 19: Επίλυση Γενικών Γραμμικών Προβλημάτων Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων
3 η ΕΝΟΤΗΤΑ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΕΝΟΣ ΚΡΙΤΗΡΙΟΥ
ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΙΣΑΓΩΓΗ ΣΤΗN ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ 3 η ΕΝΟΤΗΤΑ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΕΝΟΣ ΚΡΙΤΗΡΙΟΥ Μ. Καρλαύτης Ν. Λαγαρός Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό
Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 3: Εφαρμογές Δικτυωτής Ανάλυσης (2 ο Μέρος)
Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 3: Εφαρμογές Δικτυωτής Ανάλυσης (2 ο Μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων
ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΜΑΘΗΜΑΤΙΚΗ ΔΙΑΤΥΠΩΣΗ, Διαλ. 2. Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 8/4/2017
ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΜΑΘΗΜΑΤΙΚΗ ΔΙΑΤΥΠΩΣΗ, Διαλ. 2 Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 8/4/2017 Αντικειμενικοί στόχοι Η μελέτη των βασικών στοιχείων που συνθέτουν ένα πρόβλημα βελτιστοποίησης
Εισαγωγή στο Γραμμικό Προγραμματισμό. Χειμερινό Εξάμηνο
Εισαγωγή στο Γραμμικό Προγραμματισμό Χειμερινό Εξάμηνο 2016-2017 Εισαγωγή Ασχολείται με το πρόβλημα της άριστης κατανομής των περιορισμένων πόρων μεταξύ ανταγωνιζόμενων δραστηριοτήτων μιας επιχείρησης
Στοχαστικές Στρατηγικές
Στοχαστικές Στρατηγικές 1 η ενότητα: Εισαγωγή στον Δυναμικό Προγραμματισμό Τμήμα Μαθηματικών, ΑΠΘ Ακαδημαϊκό έτος 2018-2019 Χειμερινό Εξάμηνο Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ & Πανεπιστήμιο
Επιχειρησιακή Έρευνα
Επιχειρησιακή Έρευνα Ενότητα 10: Ειδικές περιπτώσεις επίλυσης με τη μέθοδο simplex (2o μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων
Συστήματα Παραγωγής ΠΑΡΑΔΕΙΓΜΑ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ
Συστήματα Παραγωγής ΠΑΡΑΔΕΙΓΜΑ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Περιεχόμενα 1 Γενικά στοιχεία γραμμικού προγραμματισμού 2 Παράδειγμα γραμμικού προγραμματισμού και γραφικής επίλυσης του 3 Γραμμικός προγραμματισμός
ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ
ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΦΕΒΡΟΥΑΡΙΟΣ 2009 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΜΑ 1 ο Η Περιφέρεια Κεντρικής Μακεδονίας σχεδιάζει την ανάπτυξη ενός συστήματος αυτοκινητοδρόμων
Ολοκληρωμένη Λύση Δρομολόγησης και Προγραμματισμού Στόλου Οχημάτων «Route Planner»
Ολοκληρωμένη Λύση Δρομολόγησης και Προγραμματισμού Στόλου Οχημάτων «Route Planner» Ολοκληρωμένη Λύση Δρομολόγησης και Προγραμματισμού Στόλου Οχημάτων «Route Planner» Η δρομολόγηση και ο προγραμματισμός
Άσκηση 21. Συστήματα Αποφάσεων Εργαστήριο Συστημάτων Αποφάσεων και Διοίκησης
Εταιρία παράγει σκυρόδεμα με το οποίο προμηθεύει σε καθημερινή βάση διάφορες οικοδομικές επιχειρήσεις. Το σκυρόδεμα παράγεται σε δύο εργοτάξια της εταιρίας, το Α και το Β. Με τα σημερινά δεδομένα, υπάρχει
Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος. Διαχείριση Υδατικών Πόρων
Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος Διαχείριση Υδατικών Πόρων Βελτιστοποίηση Μέρος b: Συμβατικές Μέθοδοι συνέχεια Σύνοψη προηγούμενου μαθήματος Στόχος βελτιστοποίησης: Εύρεση
Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος
Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Θεωρία Παιγνίων Δρ. Τασσόπουλος Ιωάννης
Θεωρία Παιγνίων Δρ. Τασσόπουλος Ιωάννης 1 η Διάλεξη Ορισμός Θεωρίας Παιγνίων και Παιγνίου Κατηγοριοποίηση παιγνίων Επίλυση παιγνίου Αξία (τιμή) παιγνίου Δίκαιο παίγνιο Αναπαράσταση Παιγνίου Με πίνακα Με
Γ. Κορίλη Αλγόριθµοι ροµολόγησης
- Γ. Κορίλη Αλγόριθµοι ροµολόγησης http://www.seas.upenn.edu/~tcom50/lectures/lecture.pdf ροµολόγηση σε ίκτυα εδοµένων Αναπαράσταση ικτύου µε Γράφο Μη Κατευθυνόµενοι Γράφοι Εκτεταµένα έντρα Κατευθυνόµενοι
Τομές Γραφήματος. Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών. Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα
Τομές Γραφήματος Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα και 12 26 20 10 9 7 17 14 4 Τομές Γραφήματος Γράφημα (μη κατευθυνόμενο)
Μέγιστη ροή. Κατευθυνόμενο γράφημα. Συνάρτηση χωρητικότητας. αφετηρίακός κόμβος. τερματικός κόμβος. Ροή δικτύου. με τις ακόλουθες ιδιότητες
Κατευθυνόμενο γράφημα Συνάρτηση χωρητικότητας 2 6 20 Ροή δικτύου Συνάρτηση αφετηρίακός κόμβος 0 με τις ακόλουθες ιδιότητες 9 7 τερματικός κόμβος Περιορισμός χωρητικότητας: Αντισυμμετρία: Διατήρηση ροής:
Γραμμικός Προγραμματισμός
Γραμμικός Προγραμματισμός Παράδειγμα ΕΠΙΠΛΟΞΥΛ Η βιοτεχνία ΕΠΙΠΛΟΞΥΛ παράγει δύο βασικά προϊόντα: τραπέζια και καρέκλες υψηλής ποιότητας. Η διαδικασία παραγωγής και για τα δύο προϊόντα περιλαμβάνει την
ΚΕΦΑΛΑΙΟ 2 ΑΛΓΟΡΙΘΜΟΙ ΤΥΠΟΥ SIMPLEX. 2.1 Βασικές έννοιες - Ορισμοί
ΚΕΦΑΛΑΙΟ 2 ΑΛΓΟΡΙΘΜΟΙ ΤΥΠΟΥ SIMPLEX 2.1 Βασικές έννοιες - Ορισμοί Ο αλγόριθμος Simplex για τα προβλήματα γραμμικού προγραμματισμού, βλέπε Dntzig (1963), αποδίδει αρκετά καλά στην πράξη, ιδιαίτερα σε προβλήματα
1. ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
Η επιχειρησιακή έρευνα επικεντρώνεται στη λήψη αποφάσεων από επιχειρήσεις οργανισμούς, κράτη κτλ. Στα πλαίσια της επιχειρησιακής έρευνας εξετάζονται οι ακόλουθες περιπτώσεις : Γραμμικός προγραμματισμός
ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Γ.Π.).) (LINEAR PROGRAMMING)
ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Γ.Π.).) (LINEAR PROGRAMMING) Δρ. Βασιλική Καζάνα Αναπλ. Καθηγήτρια ΤΕΙ Καβάλας, Τμήμα Δασοπονίας & Διαχείρισης Φυσικού Περιβάλλοντος Δράμας Εργαστήριο Δασικής Διαχειριστικής
ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ
ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Dr. Christos D. Tarantilis Associate Professor in Operations Research & Management Science http://tarantilis.dmst.aueb.gr/ ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 1- ΕΦΑΡΜΟΓΕΣΔΙΟΙΚΗΤΙΚΗΣΕΠΙΣΤΗΜΗΣ&
Διαχείριση Εφοδιαστικής Αλυσίδας
Διαχείριση Εφοδιαστικής Αλυσίδας 4 η Διάλεξη: Βελτιστοποίηση πολλαπλών στόχων (Μulti-objective optimization) 2019 Εργαστήριο Συστημάτων Σχεδιασμού, Παραγωγής και Λειτουργιών Ατζέντα Εισαγωγή στην βελτιστοποίηση
ΤΟ ΠΡΟΒΛΗΜΑ ΜΕΤΑΦΟΡΑΣ
ΤΟ ΠΡΟΒΛΗΜΑ ΜΕΤΑΦΟΡΑΣ Η αρχική τους εφαρµογή, όπως δηλώνει και η ονοµασία τους, αφορούσε τον καθορισµό του βέλτιστου τρόπου µεταφοράς αγαθών από διαφορετικά σηµεία παραγωγής ή κεντρικής αποθήκευσης (π.χ.,
ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX
ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX Θεμελιώδης αλγόριθμος επίλυσης προβλημάτων Γραμμικού Προγραμματισμού που κάνει χρήση της θεωρίας της Γραμμικής Άλγεβρας Προτάθηκε από το Dantzig (1947) και πλέον