Θεωρία Παιγνίων και Αποφάσεων. Ενότητα 3: Παίγνια με περισσότερους παίκτες και μέθοδοι απλοποίησης παιγνίων. Ε. Μαρκάκης. Επικ.
|
|
- Ζώπυρος Γούσιος
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Θεωρία Παιγνίων και Αποφάσεων Ενότητα 3: Παίγνια με περισσότερους παίκτες και μέθοδοι απλοποίησης παιγνίων Ε. Μαρκάκης Επικ. Καθηγητής
2 Παίγνια πολλών παικτών 2
3 Παίγνια με > 2 παίκτες Όλοι οι ορισμοί που έχουμε δει γενικεύονται και σε παίγνια με περισσότερους παίκτες Κυρίαρχες στρατηγικές και σημεία ισορροπίας ορίζονται ανεξαρτήτως του αριθμού των παικτών Όμως: η αναπαράσταση δεν μπορεί να γίνει πλέον με 2διάστατους πίνακες Για παίγνια n παικτών θέλουμε n-διάστατους πίνακες 3
4 Παίγνια σε κανονική μορφή Ορισμός: Ένα παίγνιο σε κανονική μορφή αποτελείται από ένα σύνολο παικτών N = {1, 2,..., n} Για κάθε παίκτη i, ένα σύνολο διαθέσιμων στρατηγικών S i Για κάθε παίκτη i, μια συνάρτηση ωφέλειας u i : S 1 x... x S n R Προφίλ στρατηγικών: Κάθε διάνυσμα της μορφής (s 1,..., s n ), με s i S i Κάθε προφίλ αντιστοιχεί σε μια έκβαση του παιγνίου 4
5 Ορολογία Δεδομένου ενός διανύσματος s = (s 1,..., s n ), συμβολίζουμε με s i το διάνυσμα στο οποίο έχουμε αφαιρέσει την i-οστή συντεταγμένη (αν το s είναι προφίλ στρατηγικών, αφαιρούμε απλά την στρατηγική του π. i): s i = (s 1,..., s i-1, s i+1,..., s n ) Π.χ. αν s = (3, 5, 7, 8), τότε s -3 = (3, 5, 8) s -1 = (5, 7, 8) Το αρχικό προφίλ s μπορούμε να το γράφουμε και ως s = (s i, s i )
6 Κυρίαρχες στρατηγικές Μια στρατηγική s i του π. i ονομάζεται κυρίαρχη (dominant) αν u i (s i, s -i ) u i (s, s -i ) για κάθε στρατηγική s S i και για κάθε προφίλ s -i των υπόλοιπων παικτών Μια στρατηγική s i του π. i ονομάζεται αυστηρά κυρίαρχη (strictly dominant) αν u i (s i, s -i ) > u i (s, s -i ) για κάθε στρατηγική s S i και για κάθε προφίλ s -i των υπόλοιπων παικτών Παρατηρήσεις (όπως και στα παίγνια 2 παικτών): Μπορεί να υπάρχουν περισσότερες από μια κυρίαρχες στρατηγικές για έναν παίκτη, αν δίνουν την ίδια ωφέλεια σε όλα τα προφίλ Κάθε παίκτης μπορεί να έχει το πολύ μια αυστηρά κυρίαρχη στρατηγική Μια αυστηρά κυρίαρχη στρατηγική είναι και κυρίαρχη 6
7 Σημεία ισορροπίας κατά Nash Ορισμός: Ένα προφίλ στρατηγικών s = (s 1,..., s n ) είναι σημείο ισορροπίας κατά Nash (Nash equilibrium), αν κανένας παίκτης δεν έχει κίνητρο να αλλάξει μονομερώς την στρατηγική του, βλέποντας τις επιλογές των άλλων παικτών Δηλαδή πρέπει για κάθε παίκτη i να ισχύει ότι: u i (s i, s -i ) u i (s, s -i ) για κάθε στρατηγική s S i 7
8 Πολυπλοκότητα εύρεσης Με μια πρώτη ματιά: Μπορούμε να δοκιμάσουμε με brute force όλα τα προφίλ Έστω ότι έχουμε n παίκτες Και έστω m επιλογές για κάθε παίκτη: S i = m Θα πρέπει να ελέγξουμε m n προφίλ! Αρκετά πιο δύσκολο πρόβλημα από ότι στην περίπτωση των 2 παικτών Σε πολλές περιπτώσεις όμως μπορούμε να εκμεταλλευτούμε συμμετρίες ή άλλες ιδιότητες και να μειώσουμε την πολυπλοκότητα 8
9 Παράδειγμα 1: Παίγνια συμφόρησης (Conges}on games) A s B t C Παίγνια συμφόρησης (απλοϊκή εκδοχή): Ένα σύνολο χρηστών θέλει να μετακινηθεί από το σημείο s στο σημείο t 3 δυνατές διαδρομές, A, B, C Χρονική καθυστέρηση σε κάθε διαδρομή: συνάρτηση του αριθμού παικτών που επιλέγουν την διαδρομή d A (x) = 5x, d B (x) = 7.5x, d C (x) = 10x, 9
10 Παράδειγμα 1: Παίγνια συμφόρησης (Conges}on games) A s B t C Έστω n = 5 παίκτες Για κάθε παίκτη i, S i = {A, B, C} Πιθανά προφίλ: 3 5 = 243 Ωφέλειες: αυξάνονται όταν μειώνεται η καθυστέρηση Στο προφίλ s = (A, C, A, B, A} u 1 (s) = -15, u 2 (s) = -10, u 3 (s) = -15, u 4 (s) = -7.5, u 5 (s) =
11 Παράδειγμα 1: Παίγνια συμφόρησης (Conges}on games) A s B t C Δεν είναι ανάγκη να εξετάσουμε και τα 243 προφίλ Συμμετρία: Σε κάθε διαδρομή, η καθυστέρηση δεν εξαρτάται από το ποιοι την επέλεξαν, αλλά μόνο από το πόσοι την επέλεξαν Η συμμετρία μειώνει σημαντικά την αναζήτηση Μπορούμε να εκμεταλλευτούμε κι άλλες ιδιότητες Π.χ. Δεν υπάρχει σημείο ισορροπίας όπου καποια διαδρομή δεν χρησιμοποιείται από κανέναν παίκτη Άσκηση: βρείτε (αν υπάρχουν) τα σημεία ισορροπίας 11
12 Παράδειγμα 2: Το δίλημμα των απεργών Ένα σύνολο από n εργάτες σκέφτονται να απεργήσουν για να διεκδικήσουν τα αιτήματά τους S i = {Απεργώ (Α), Δεν απεργώ (Δ)} Αν απεργήσουν όλοι, τα αιτήματα πραγματοποιούνται, και δεν χάνεται ο μισθός για τις μέρες που απέργησαν Αν έστω κι ένας δεν απεργήσει, τότε Τα αιτήματα δεν πραγματοποιούνται Όσοι απέργησαν, χάνουν το μισθό τους για τις μέρες απεργίας 12
13 Παράδειγμα 2: Το δίλημμα των απεργών Προτιμήσεις: Το καλύτερο για κάθε παίκτη είναι να απεργήσουν όλοι [προφίλ (Α, Α,..., Α)] Το χειρότερο για κάθε παίκτη είναι να απεργήσει και τουλάχιστον ένας άλλος να μην απεργήσει Για κάθε π. i, τα προφίλ στα οποία δεν απεργεί έχουν την ίδια ωφέλεια για αυτόν Πλήθος προφίλ: 2 n, εκθετικά μεγάλος αριθμός Όμως κι εδώ μπορούμε να εκμεταλλευτούμε ότι οι παίκτες έχουν την ίδια συνάρτηση ωφέλειας Ανάλυση των προφίλ: (Α, Α,..., Α): σημείο ισορροπίας (Δ, Δ,..., Δ): ομοίως Προφίλ με τουλ. 1 Α και τουλ. 1 Δ: δεν είναι σημείο ισορροπίας Πόρισμα: Είτε πρέπει να γίνεται μαζικά μια απεργία είτε να μην γίνεται καθόλου! 13
14 Απλοποιήσεις παιγνίων: Αυστηρή και ασθενής κυριαρχία 14
15 Prisoner s Dilemma Ας επανέλθουμε στο δίλημμα του φυλακισμένου Είχαμε δει ότι η στρατηγική D είναι κυρίαρχη Συλλογισμός του π. 1: Αν ο π. 2 δεν ομολογήσει, με συμφέρει να ομολογήσω Αν ο π. 2 ομολογήσει, με συμφέρει να ομολογήσω 3, 3 0, 4 4, 0 1, 1 Ομοίως για τον π. 2 Κάθε παίκτης πιστεύει ότι δεν έχει νόημα να επιλέξει την στρατηγική C Η στρατηγική C κυριαρχείται από την D C D C D 15
16 Αυστηρά κυριαρχούμενες στρατηγικές Ορισμός: Μια στρατηγική s i του π. i κυριαρχεί αυστηρά μια άλλη στρατηγική s αν για οποιοδήποτε προφιλ s -i των υπόλοιπων παικτών, ισχύει ότι u i (s i, s -i ) > u i (s, s -i ) H στρατηγική s θα λέγεται αυστηρά κυριαρχούμενη 16
17 Αυστηρά κυριαρχούμενες στρατηγικές Μια αυστηρά κυριαρχούμενη στρατηγική δεν χρησιμοποιείται σε κανένα σημείο ισορροπίας Άρα, μπορούμε να αφαιρέσουμε τις αυστηρά κυριαρχούμενες στρατηγικές, και να επικεντρωθούμε σε ένα μικρότερο παίγνιο Σε κάποιες περιπτώσεις, οδηγούμαστε έτσι σε αρκετά απλούστερα παίγνια 17
18 Επαναλαμβανόμενη αφαίρεση αυστηρά κυριαρχούμενων στρατηγικών Η B του π. 1 κυριαρχείται από την T και την C Οι στρατηγικές του π. 2 δεν κυριαρχούνται Αν ο π. 1 είναι λογικός, δεν θα επιλέξει την B T C B L M R (4, 4) (4, 1) (3, 0) (3, 1) (3, 4) (4, 0) (2, 0) (2, 0) (2, 6) Δεν πρέπει να επιλέξω την B 18
19 Επαναλαμβανόμενη αφαίρεση αυστηρά κυριαρχούμενων στρατηγικών Αν ο π. 2 ξέρει ότι ο π. 1 είναι λογικός, υποθέτει ότι ο π. 1 δεν επιλέγει την B Τότε και ο π. 2 δεν πρέπει να επιλέξει την R Δεν πρέπει να επιλέξω B T C B L M R (4, 4) (4, 1) (3, 0) (3, 1) (3, 4) (4, 0) (2, 0) (2, 0) (2, 6) Άρα δεν πρέπει να επιλέξω την R 19
20 Επαναλαμβανόμενη αφαίρεση αυστηρά κυριαρχούμενων στρατηγικών Συνεχίζοντας έτσι... Δεν παίζω την B Άρα δεν επιλέγω R Άρα δεν επιλέγω C T C B L M R (4, 4) (4, 1) (3, 0) (3, 1) (3, 4) (4, 0) (2, 0) (2, 0) (2, 6) 20
21 Επαναλαμβανόμενη αφαίρεση αυστηρά κυριαρχούμενων στρατηγικών Πώς τρέχουμε τον αλγόριθμο επαναλαμβανόμενης αφαίρεσης: Δεδομένου ενός παίγνίου n παικτών Διαλέγουμε έναν παίκτη i που έχει τουλ. 1 αυστηρά κυριαρχούμενη στρατηγική Διαγράφουμε μία από τις αυστηρά κυριαρχούμενες στρατηγικές του π. I repeat un}l: δεν υπάρχει παίκτης που να έχει αυστηρά κυριαρχούμενη στρατηγική 21
22 Επαναλαμβανόμενη αφαίρεση αυστηρά κυριαρχούμενων στρατηγικών Παρατήρηση: Οι στρατηγικές που επιβιώνουν αυτή την διαδικασία δεν εξαρτώνται από την σειρά με την οποία κάνουμε την αφαίρεση δλδ, δεν έχει σημασία ποιον παίκτη θα διαλέγουμε σε καθε βήμα Θεώρημα: Έστω G ένα παίγνιο n παικτών και G το παίγνιο που προκύπτει από την επαναλαμβανόμενη αφαίρεση αυστηρά κυριαρχούμενων στρατηγικών. Το G και το G έχουν τα ίδια σημεία ισορροπίας δλδ, δεν καταστρέφουμε κανένα σημείο ισορροπίας με αυτή την διαδικασία, μόνο απλοποιούμε το παίγνιο 22
23 Ασθενώς κυριαρχούμενες στρατηγικές Ορισμός: Μια στρατηγική s i του π. i κυριαρχεί ασθενώς μια άλλη στρατηγική s αν για οποιοδήποτε προφιλ s -i των υπόλοιπων παικτών, ισχύει ότι u i (s i, s -i ) u i (s, s -i ) και για τουλάχιστον 1 προφίλ s -i έχουμε u i (s i, s -i ) > u i (s, s -i ) H s θα λέγεται ασθενώς κυριαρχούμενη 23
24 Ασθενώς κυριαρχούμενες στρατηγικές T B L R 1, 1 0, 0 0, 0 0, 0 2, 2 3, 0 0, 3 3, 3 Όταν αφαιρούμε ασθενώς κυριαρχούμενες στρατηγικές, μπορεί να χάσουμε κάποια σημεία ισορροπίας Στα παραπάνω παίγνια: Η T κυριαρχεί ασθενώς την B Η L κυριαρχεί ασθενώς την R όμως, το (B, R) είναι σημείο ισορροπίας Παρατήρηση: Στο 2 ο παίγνιο, έχουμε και καλύτερη συνολική ωφέλεια όταν οι παίκτες επιλέγουν ασθενώς κυριαρχούμενες 24 στρατηγικές T B L R
25 Επαναλαμβανόμενη αφαίρεση αυστηρά κυριαρχούμενων στρατηγικών Μπορούμε να κάνουμε την ίδια διαδικασία όπως με τις αυστηρά κυριαρχούμενες στρατηγικές ΟΜΩΣ: Η σειρά με την οποία αφαιρούμε έχει σημασία Δαιφορετικές σειρές αφαίρεσης μπορεί να αφαιρέσουν διαφορετικά σημεία ισορροπίας Υπάρχει περίπτωση να χάσουμε όλα τα σημεία ισορροπίας με αυτή την διαδικασία? 25
26 Επαναλαμβανόμενη αφαίρεση αυστηρά κυριαρχούμενων στρατηγικών Θεώρημα: Σε κάθε παίγνιο, υπάρχει πάντα τουλάχιατον 1 σημείο ισορροπίας που επιβιώνει όταν κάνουμε επαναλαμβανόμενη αφαίρεση ασθενώς κυριαρχούμενων στρατηγικών επομένως: αν μας νοιάζει απλά να βρούμε ένα σημείο ισορροπίας, μπορούμε να απλοποιήσουμε το παίγνιο, χωρίς να μας απασχολεί η σειρά αφαίρεσης 26
Θεωρία Παιγνίων και Αποφάσεων. Ενότητα 2: Έννοιες λύσεων σε παίγνια κανονικής μορφής. Ε. Μαρκάκης. Επικ. Καθηγητής
Θεωρία Παιγνίων και Αποφάσεων Ενότητα 2: Έννοιες λύσεων σε παίγνια κανονικής μορφής Ε. Μαρκάκης Επικ. Καθηγητής Λύσεις παιγνίων 2 Επιλέγοντας στρατηγική... Δεδομένου ενός παιγνίου, τι στρατηγική πρέπει
Διαβάστε περισσότεραΘεωρία Παιγνίων και Αποφάσεων. Ενότητα 4: Μεικτές Στρατηγικές. Ε. Μαρκάκης. Επικ. Καθηγητής
Θεωρία Παιγνίων και Αποφάσεων Ενότητα 4: Μεικτές Στρατηγικές Ε. Μαρκάκης Επικ. Καθηγητής Μεικτές στρατηγικές σε παίγνια 2 Σημεία ισορροπίας: Ύπαρξη Δεν έχουν όλα τα παίγνια σημείο ισορροπίας Π.χ. Το Matching
Διαβάστε περισσότεραΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2015
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2015 Λύσεις 2η σειράς ασκήσεων Προθεσμία παράδοσης: 18 Μαίου 2015 Πρόβλημα 1. (14
Διαβάστε περισσότεραΜικτές Στρατηγικές σε Παίγνια και σημεία Ισορροπίας Nash. Τµήµα Μηχανικών Πληροφορικής και Υπολογιστών 1
Μικτές Στρατηγικές σε Παίγνια και σημεία Ισορροπίας Nash Τµήµα Μηχανικών Πληροφορικής και Υπολογιστών 1 Σημεία ισορροπίας Nash: Yπάρχουν πάντα; Έχουν όλα τα παίγνια σημείο ισορροπίας; - Ναι, στην εξιδανικευμένη
Διαβάστε περισσότεραΘεωρία Παιγνίων και Αποφάσεων. Ενότητα 5: Εύρεση σημείων ισορροπίας σε παίγνια μηδενικού αθροίσματος. Ε. Μαρκάκης. Επικ. Καθηγητής
Θεωρία Παιγνίων και Αποφάσεων Ενότητα 5: Εύρεση σημείων ισορροπίας σε παίγνια μηδενικού αθροίσματος Ε. Μαρκάκης Επικ. Καθηγητής Περίληψη Παίγνια μηδενικού αθροίσματος PessimisIc play Αμιγείς max-min και
Διαβάστε περισσότεραΒασικές Αρχές της Θεωρίας Παιγνίων
Βασικές Αρχές της Θεωρίας Παιγνίων - Ορισμός. Αν οι επιλογές μιας επιχείρησης εξαρτώνται από την αναμενόμενη αντίδραση των υπόλοιπων επιχειρήσεων που συμμετέχουν στην αγορά, τότε υπάρχει στρατηγική αλληλεπίδραση
Διαβάστε περισσότεραΘεωρία Παιγνίων Δρ. Τασσόπουλος Ιωάννης
Θεωρία Παιγνίων Δρ. Τασσόπουλος Ιωάννης 3 η Διάλεξη-Περιεχόμενα (1/2) Σημείο ή ζεύγος ισορροπίας κατά Nash Λύση ακολουθιακής κυριαρχίας και σημεία ισορροπίας Nash Αλγοριθμική εύρεση σημείων ισορροπίας
Διαβάστε περισσότερα10/3/17. Μικροοικονομική. Κεφάλαιο 29 Θεωρία παιγνίων. Μια σύγχρονη προσέγγιση. Εφαρµογές της θεωρίας παιγνίων. Τι είναι τα παίγνια;
HA. VAIAN Μικροοικονομική Μια σύγχρονη προσέγγιση 3 η έκδοση Κεφάλαιο 29 Θεωρία παιγνίων Θεωρία παιγνίων Η θεωρία παιγνίων βοηθά στην ανάλυση της στρατηγικής συμπεριφοράς από φορείς που κατανοούν ότι οι
Διαβάστε περισσότεραΒασικές Έννοιες Θεωρίας Παιγνίων
Παύλος Σ. Εφραιμίδης Έκδοση 05/11/2013 Περιεχόμενα Τι είναι η θεωρία παιγνίων Ο ρόλος ενός μαθηματικού μοντέλου Το δίλημμα του φυλακισμένου Σημείο ισορροπίας Nash Θεωρία Παιγνίων Η θεωρία παιγνίων (game
Διαβάστε περισσότεραΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 2: Ισορροπία Nash. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής
Ενότητα 2: Ισορροπία Nash Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας
Διαβάστε περισσότεραHAL R. VARIAN. Μικροοικονομική. Μια σύγχρονη προσέγγιση. 3 η έκδοση
HAL R. VARIAN Μικροοικονομική Μια σύγχρονη προσέγγιση 3 η έκδοση Κεφάλαιο 29 Θεωρία παιγνίων Θεωρία παιγνίων Η θεωρία παιγνίων βοηθά στην ανάλυση της στρατηγικής συμπεριφοράς από φορείς που κατανοούν ότι
Διαβάστε περισσότεραΘεωρία Παιγνίων και Αποφάσεων
Θεωρία Παιγνίων και Αποφάσεων Ε. Μαρκάκης Επικ. Καθηγητής Τι είναι η Θεωρία Παιγνίων? Quote από το βιβλίο του Osborne: Game Theory aims to help us understand situawons in which decision makers interact
Διαβάστε περισσότεραΘεωρία Παιγνίων Δρ. Τασσόπουλος Ιωάννης
Θεωρία Παιγνίων Δρ. Τασσόπουλος Ιωάννης 2 η Διάλεξη Παίγνια ελλιπούς πληροφόρησης Πληροφοριακά σύνολα Κανονική μορφή παιγνίου Ισοδύναμες στρατηγικές Παίγνια συνεργασίας και μη συνεργασίας Πεπερασμένα και
Διαβάστε περισσότεραΔιάλεξη 7. Θεωρία παιγνίων VA 28, 29
Διάλεξη 7 Θεωρία παιγνίων VA 28, 29 Θεωρία παιγνίων Στη θεωρία παιγνίων χρησιμοποιούμε υποδείγματα για τη στρατηγική συμπεριφορά των οικονομικών μονάδων που καταλαβαίνουν ότι οι ενέργειές τους επηρεάζουν
Διαβάστε περισσότεραΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2017
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2017 2η σειρά ασκήσεων Προθεσμία παράδοσης: 16 Ιουνίου 2017 Πρόβλημα 1. (18 μονάδες)
Διαβάστε περισσότεραΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΤΡΙΤΟ-ΙΣΟΡΡΟΠΙΑ ΚΑΤΑ NASH ΑΚΑΔΗΜΑΙΚΟ ΕΤΟΣ
ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΤΡΙΤΟ-ΙΣΟΡΡΟΠΙΑ ΚΑΤΑ NASH ΑΚΑΔΗΜΑΙΚΟ ΕΤΟΣ 2011-2012 Συνέχεια από πριν.. Στο προηγούμενο μάθημα είδαμε ότι μπορούμε να επιλύσουμε παίγνια με την μέθοδο της απαλοιφής
Διαβάστε περισσότεραΒασικές Έννοιες Θεωρίας Παιγνίων
Βασικές Έννοιες Θεωρίας v. 01/06/2014 Παύλος Σ. Εφραιμίδης Βασικές Έννοιες Θεωρίας Περιεχόμενα Τι είναι η θεωρία παιγνίων Ο ρόλος ενός μαθηματικού μοντέλου Το δίλημμα του φυλακισμένου Σημείο ισορροπίας
Διαβάστε περισσότεραΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες
ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες Μερική Παρατηρησιµότητα Θεωρία Παιγνίων Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Reinforcement Learning (RL)
Διαβάστε περισσότεραΘεωρία Παιγνίων Δρ. Τασσόπουλος Ιωάννης
Θεωρία Παιγνίων Δρ. Τασσόπουλος Ιωάννης 3 η Διάλεξη-Περιεχόμενα (1/2) Σημείο ή ζεύγος ισορροπίας κατά Nash Λύση ακολουθιακής κυριαρχίας και σημεία ισορροπίας Nash Αλγοριθμική εύρεση σημείων ισορροπίας
Διαβάστε περισσότεραΚεφάλαιο 29 Θεωρία παιγνίων
HA. VAIAN Μικροοικονομική Μια σύγχρονη προσέγγιση 3 η έκδοση Εκδόσεις Κριτική Κεφάλαιο 29 Θεωρία παιγνίων Ύλη για τη Μίκρο ΙΙ: κεφάλαιο 29.1, 29.2, 29.4, 29.7, 29.8 Κεφάλαιο 29 Θεωρία παιγνίων Ταυτόχρονα
Διαβάστε περισσότεραΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Βfi 1 2 Αfl 1 1, 2 0, 1 2 2, 1 1, 0
ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Παίγνιο: Συμμετέχουν τουλάχιστον δύο παίκτες με τουλάχιστον δύο στρατηγικές ο καθένας και αντίθετα συμφέροντα. Το αποτέλεσμα για κάθε παίκτη καθορίζεται από τις συνδυασμένες επιλογές όλων
Διαβάστε περισσότεραΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΕΥΤΕΡΟ- ΚΥΡΙΑΡΧΟΥΜΕΝΗ ΣΤΡΑΤΗΓΙΚΗ- PRISONER S DILLEMA ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ 2011-2012
ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΕΥΤΕΡΟ- ΚΥΡΙΑΡΧΟΥΜΕΝΗ ΣΤΡΑΤΗΓΙΚΗ- PRISONER S DILLEMA ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ 2011-2012 ΚΟΙΝΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ Players-Παίκτες Rules- Κανόνες. Τιµωρείσαι εάν τους παραβιάσεις.
Διαβάστε περισσότεραΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 7: Τέλεια ισορροπία Nash για υποπαίγνια. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής
Ενότητα 7: Τέλεια ισορροπία Nash για υποπαίγνια Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Διαβάστε περισσότεραΠληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 9: Λύσεις παιγνίων δύο παικτών
Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 9: Λύσεις παιγνίων δύο παικτών Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων
Διαβάστε περισσότεραΛήψη απόφασης σε πολυπρακτορικό περιβάλλον. Θεωρία Παιγνίων
Λήψη απόφασης σε πολυπρακτορικό περιβάλλον Θεωρία Παιγνίων Αβεβαιότητα παρουσία άλλου πράκτορα Μια άλλη πηγή αβεβαιότητας είναι η παρουσία άλλου πράκτορα στο περιβάλλον, ακόμα κι όταν ένας πράκτορας είναι
Διαβάστε περισσότεραΒασικές Έννοιες Θεωρίας Παιγνίων
Παύλος Σ. Εφραιμίδης Περιεχόµενα Τι είναι η θεωρία παιγνίων Ο ρόλος ενός µαθηµατικού µοντέλου Το δίληµµα του φυλακισµένου Σηµείο ισορροπίας Nash Θεωρία Παιγνίων Η θεωρία παιγνίων (game theory) µας βοηθάει
Διαβάστε περισσότεραNotes. Notes. Notes. Notes Ε 10,10 0,3 Λ 3,0 2,2
Θεωρία παιγνίων: Κώστας Ρουμανιάς Ο.Π.Α. Τμήμα Δ. Ε. Ο. Σ. 3 Δεκεμβρίου 2012 Κώστας Ρουμανιάς (Δ.Ε.Ο.Σ.) Θεωρία παιγνίων: 3 Δεκεμβρίου 2012 1 / 21 -best responses Κυνήγι ελαφιού: Δυο κυνηγοί ταυτόχρονα
Διαβάστε περισσότεραΘεωρία Παιγνίων και Αποφάσεων. Ενότητα 8: Δημοπρασίες. Ε. Μαρκάκης. Επικ. Καθηγητής
Θεωρία Παιγνίων και Αποφάσεων Ενότητα 8: Δημοπρασίες Ε. Μαρκάκης Επικ. Καθηγητής Δημοπρασίες ενός αγαθού 2 Δημοπρασίες 1 µη διαιρετό αγαθό Σύνολο παικτών N = {1, 2,, n} 3 Δημοπρασίες Μέσο συνδιαλλαγής
Διαβάστε περισσότεραΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 8: Πεπερασμένα επαναλαμβανόμενα παίγνια. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής
Ενότητα 8: Πεπερασμένα επαναλαμβανόμενα παίγνια Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Διαβάστε περισσότεραΠαιγνιακά Μοντέλα Σύγκρουσης και Συνεργασίας
Επίκουρος Καθηγητής Ιωάννης Παραβάντης Τµήµα ιεθνών και Ευρωπαϊκών Σπουδών ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ Μάρτιος 2010 Παιγνιακά Μοντέλα Σύγκρουσης και Συνεργασίας 1. Εισαγωγή Στο παρόν φυλλάδιο παριστάνουµε περιπτώσεις
Διαβάστε περισσότεραΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 9: Απείρως επαναλαμβανόμενα παίγνια. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής
Ενότητα 9: Απείρως επαναλαμβανόμενα παίγνια Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Διαβάστε περισσότεραΑσκήσεις. Ιωάννα Καντζάβελου. Τµήµα Μηχανικών Πληροφορικής και Υπολογιστών 1
Ασκήσεις Ιωάννα Καντζάβελου Τµήµα Μηχανικών Πληροφορικής και Υπολογιστών 1 1. Επιλογή Διαδρομής 2. Παραλλαγή του Matching Pennies 3. Επίλυση Matching Pennies με Βέλτιστες Αποκρίσεις 4. Επίλυση BoS με Βέλτιστες
Διαβάστε περισσότεραNotes. Notes. Notes Σ -1,-1-9,0 Π 0,-9-6,-6. Notes Σ Π
Θεωρία αιγνίων-υριαρχία ώστας Ρουμανιάς Ο..Α. Τμήμα Δ. Ε. Ο.. Δεκεμβρίου 1 ώστας Ρουμανιάς (Δ.Ε.Ο..) Θεωρία αιγνίων-υριαρχία Δεκεμβρίου 1 1 / Λύσεις αιγνίων. υριαρχούμενες/υρίαρχες στρατηγικές Το δίλημμα
Διαβάστε περισσότερα6. Παίγνια αλληλοδιαδοχικών κινήσεων και η αξία του περιορισμού των επιλογών κάποιου ατόμου
Θεωρία παιγνίων 1 1. Παρακίνηση: Honda και Toyota 2. Ισορροπία κατά Nash 3. Το δίλημμα του φυλακισμένου 4. Ισορροπία με κυρίαρχη στρατηγική 5. Μειονεκτήματα της ισορροπίας κατά Nash 6. Παίγνια αλληλοδιαδοχικών
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Τελικές Εξετάσεις Παρασκευή 16 Οκτωβρίου 2007 ιάρκεια εξέτασης: 3 ώρες (15:00-18:00) ΘΕΜΑ 1
Διαβάστε περισσότεραΘεωρία Παιγνίων Δρ. Τασσόπουλος Ιωάννης
Θεωρία Παιγνίων Δρ. Τασσόπουλος Ιωάννης 1 η Διάλεξη Ορισμός Θεωρίας Παιγνίων και Παιγνίου Κατηγοριοποίηση παιγνίων Επίλυση παιγνίου Αξία (τιμή) παιγνίου Δίκαιο παίγνιο Αναπαράσταση Παιγνίου Με πίνακα Με
Διαβάστε περισσότεραΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2015
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2015 Εξεταστική περίοδος Ιουνίου 2015 16 Ιουνίου 2015 Διάρκεια εξέτασης: 2,5 ώρες
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ
ΠΝΕΠΙΣΤΗΜΙΟ ΜΚΕ ΟΝΙΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜ ΕΦΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙ ΠΙΓΝΙΩΝ Εξετάσεις 13 Φεβρουαρίου 2004 ιάρκεια εξέτασης: 2 ώρες (13:00-15:00) ΘΕΜ 1 ο (2.5) α) Για δύο στρατηγικές
Διαβάστε περισσότεραΚοινωνικά Δίκτυα Θεωρία Παιγνίων
Κοινωνικά Δίκτυα Θεωρία Παιγνίων Ν. Μ. Σγούρος Τμήμα Ψηφιακών Συστημάτων, Παν. Πειραιώς sgouros@unipi.gr Ορισμοί Ένα Παίγνιο (game) ορίζεται ως μια δραστηριότητα με τα ακόλουθα τρία χαρακτηριστικά: Υπάρχει
Διαβάστε περισσότεραΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΕΙ ΠΑΤΡΑΣ ΤΕΙ ΠΑΤΡΑΣ ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΏΝ ΠΑΙΓΝΙΩΝ- ΠΡΟΓΡΑΜΜΑ GAMBIT
ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Α Κ Α Η Μ Α Ι Κ Ο Ε Τ Ο Σ 2 0 1 1-2 0 1 2 ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΏΝ ΠΑΙΓΝΙΩΝ- ΠΡΟΓΡΑΜΜΑ GAMBIT Ο συγκεκριµένος οδηγός για το πρόγραµµα
Διαβάστε περισσότεραΤεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Παίγνια Δύο Αντιπάλων Τα προβλήματα όπου η εξέλιξη των καταστάσεων εξαρτάται
Διαβάστε περισσότεραΠΜΣ Ενέργειας, Τμήμα ΔΕΣ, ΠαΠει
ΠΜΣ Ενέργειας, Τμήμα ΔΕΣ, ΠαΠει Επίκουρος Καθηγητής (μόνιμος) 19 Δεκεμβρίου 2015 2 out of 45 3 out of 45 4 out of 45 5 out of 45 6 out of 45 7 out of 45 8 out of 45 Ένας λήπτης απόφασης (decision maker):
Διαβάστε περισσότεραΑνταγωνιστική Ανάθεση Πόρων και Παίγνια Συμφόρησης
Ανταγωνιστική Ανάθεση Πόρων και Παίγνια Συμφόρησης Δημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Μοντέλο Ανάθεσης Πόρων Σύνολο πόρων Ε = { e 1,, e
Διαβάστε περισσότεραΤμήμα Διεθνών και Ευρωπαϊκών Σπουδών. Ιωάννης Παραβάντης. Επίκουρος Καθηγητής. Απρίλιος 2016
Τμήμα Διεθνών και Ευρωπαϊκών Σπουδών Ιωάννης Παραβάντης Επίκουρος Καθηγητής Απρίλιος 2016 Το κλασσικό μοντέλο του διλήμματος των φυλακισμένων (prisoner s dilemma) προβλέπει τις ακόλουθες ανταμοιβές ( )
Διαβάστε περισσότεραΚυριαρχία και μεικτές στρατηγικές Μεικτές στρατηγικές και κυριαρχία Είδαμε ότι μια στρατηγική του παίκτη i είναι κυριαρχούμενη, αν υπάρχει κάποια άλλη
Θεωρία παιγνίων: Μεικτές στρατηγικές και Ισορροπία Nash Κώστας Ρουμανιάς Ο.Π.Α. Τμήμα Δ. Ε. Ο. Σ. 18 Μαρτίου 2012 Κώστας Ρουμανιάς (Δ.Ε.Ο.Σ.) Μεικτές στρατηγικές 18 Μαρτίου 2012 1 / 9 Κυριαρχία και μεικτές
Διαβάστε περισσότεραΔεύτερο πακέτο ασκήσεων
ΕΚΠΑ Τμήμα Οικονομικών Επιστημών Μικροοικονομική Θεωρία ΙΙ Εαρινό εξάμηνο Ακαδ. έτους 08-09 Αν. Παπανδρέου, Φ. Κουραντή, Ηρ. Κόλλιας Δεύτερο πακέτο ασκήσεων Προθεσμία παράδοσης Παρασκευή 0 Μαϊου. Θα υπάρξει
Διαβάστε περισσότεραΚεφ. 9 Ανάλυση αποφάσεων
Κεφ. 9 Ανάλυση αποφάσεων Η θεωρία αποφάσεων έχει ως αντικείμενο την επιλογή της καλύτερης στρατηγικής. Τα αποτελέσματα κάθε στρατηγικής εξαρτώνται από παράγοντες, οι οποίοι μπορεί να είναι καταστάσεις
Διαβάστε περισσότεραΟικονομία των ΜΜΕ. Ενότητα 8: Παίγνια και ολιγοπωλιακές επιχειρήσεις
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 8: Παίγνια και ολιγοπωλιακές επιχειρήσεις Γιώργος Τσουρβάκας, Αναπληρωτής Καθηγητής Τμήμα Δημοσιογραφίας και ΜΜΕ Σχολή Οικονομικών
Διαβάστε περισσότερα1 Εισαγωγή στις Συνδυαστικές Δημοπρασίες - Combinatorial Auctions
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2015 Συμπληρωματικές σημειώσεις για τον μηχανισμό VCG 1 Εισαγωγή στις Συνδυαστικές
Διαβάστε περισσότερα- Παράδειγμα 2. Εκτέλεση Πέναλτι ή Κορώνα-Γράμματα (Heads or Tails) - Ένας ποδοσφαιριστής ετοιμάζεται να εκτελέσει ένα πέναλτι, το οποίο προσπαθεί να
- Παράδειγμα. Εκτέλεση Πέναλτι ή Κορώνα-Γράμματα (Heads or Tails) - Ένας ποδοσφαιριστής ετοιμάζεται να εκτελέσει ένα πέναλτι, το οποίο προσπαθεί να αποκρούσει ένας τερματοφύλακας. - Αν οι δύο παίκτες επιλέξουν
Διαβάστε περισσότεραΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2016
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2016 Λύσεις 2ης σειράς ασκήσεων Προθεσμία παράδοσης: 25 Ιουνίου 2016 Πρόβλημα 1.
Διαβάστε περισσότεραΣηματοδοτικά Παίγνια και Τέλεια Μπεϊζιανή Ισορροπία
Σηματοδοτικά Παίγνια και Τέλεια Μπεϊζιανή Ισορροπία - Ορισμός. Ένα παίγνιο ονομάζεται παίγνιο πλήρους πληροφόρησης (game of complete information) όταν κάθε παίκτης διαθέτει πλήρη πληροφόρηση για τις συναρτήσεις
Διαβάστε περισσότεραΘεωρία παιγνίων Δημήτρης Χριστοφίδης Εκδοση 1η: Παρασκευή 3 Απριλίου 2015. Παραδείγματα Παράδειγμα 1. Δυο άτομα παίζουν μια παραλλαγή του σκακιού όπου σε κάθε βήμα ο κάθε παίκτης κάνει δύο κανονικές κινήσεις.
Διαβάστε περισσότεραΣτατικά Παίγνια Ελλιπούς Πληροφόρησης
ΣΤΑΤΙΚΑ ΠΑΙΓΝΙΑ ΕΛΛΙΠΟΥΣ ΠΛΗΡΟΦΟΡΗΣΗΣ 67 Στατικά Παίγνια Ελλιπούς Πληροφόρησης ΣΤΟ ΠΑΡOΝ ΚΕΦAΛΑΙΟ ξεκινά η ανάλυση των παιγνίων ελλιπούς πληροφόρησης, τα οποία ονομάζονται και μπεϋζιανά παίγνια (bayesa
Διαβάστε περισσότεραΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες
ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες Θεωρία Παιγνίων Μαρκωβιανά Παιχνίδια Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Μερική αρατηρησιµότητα POMDPs
Διαβάστε περισσότερα1 Εισαγωγή στις Συνδυαστικές Δημοπρασίες - Combinatorial Auctions
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2015 Συμπληρωματικές σημειώσεις για τον μηχανισμό VCG 1 Εισαγωγή στις Συνδυαστικές
Διαβάστε περισσότεραδημιουργία: http://macedonia.uom.gr/~acg επεξεργασία: Ν.Τσάντας
Θεωρία Παιγνίων Μελέτη στοιχείων που χαρακτηρίζουν καταστάσεις ανταγωνιστικής άλληλεξάρτησης με έμφαση στη διαδικασία λήψης αποφάσεων περισσοτέρων από ένα ληπτών απόφασης (αντιπάλων). Παίγνια δύο παικτών
Διαβάστε περισσότεραA 2 B 2 Γ 2. u 1 (A 1, A 2 ) = 3 > 1 = u 1 (B 1, A 2 ) u 1 (A 1, Γ 2 ) = 1 > 0 = u 1 (B 1, Γ 2 ) A 2 B 2
Κεφάλαιο 2 Στατικά παίγνια με πλήρη πληροφόρηση 2.1 Εισαγωγή Η πιο απλή, αλλά και θεμελιώδης, κατηγορία παιγνίων είναι αυτή των στατικών παιγνίων με πλήρη πληροφόρηση. Στα παίγνια αυτά οι συμμετέχοντες
Διαβάστε περισσότερα1 Η εναλλάσσουσα ομάδα
Η εναλλάσσουσα ομάδα Η εναλλάσσουσα ομάδα Όπως είδαμε η συνάρτηση g : S { } είναι ένας επιμορφισμός ομάδων. Ο πυρήνας Ke g {σ S / g σ } του επιμορφισμού συμβολίζεται με A περιέχει όλες τις άρτιες μεταθέσεις
Διαβάστε περισσότεραΕκτεταμένα Παίγνια (Extensive Games)
Εκτεταμένα Παίγνια (Extensive Games) Παύλος Στ. Εφραιµίδης Τοµέας Λογισµικού και Ανάπτυξης Εφαρµογών Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εκτεταμένα Παίγνια Τα στρατηγικά παίγνια δεν
Διαβάστε περισσότεραΚεφάλαιο 2ο (α) Αµιγείς Στρατηγικές (β) Μεικτές Στρατηγικές (α) Αµιγείς Στρατηγικές. Επαναλαµβάνουµε:
Κεφάλαιο 2 ο Μέχρι τώρα δώσαµε τα στοιχεία ενός παιγνίου σε µορφή δέντρου και σε µορφή µήτρας. Τώρα θα ορίσουµε τη στρατηγική στην αναλυτική µορφή του παιγνίου (η στρατηγική ορίζεται από κάθε στήλη ή γραµµή
Διαβάστε περισσότεραΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 1: Εισαγωγή. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής
Ενότητα 1: Εισαγωγή Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας χρήσης,
Διαβάστε περισσότεραΚεφάλαιο 5. Αλγόριθµοι Αναζήτησης σε Παίγνια ύο Αντιπάλων. Τεχνητή Νοηµοσύνη - Β' Έκδοση
Κεφάλαιο 5 Αλγόριθµοι Αναζήτησης σε Παίγνια ύο Αντιπάλων Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Αλγόριθµοι Αναζήτησης σε Παίγνια ύο Αντιπάλων
Διαβάστε περισσότεραΜελέτη πάνω στην εφαρμογή της θεωρίας παιγνίων σε θέματα πολεμικών τακτικών και στρατηγικής.
Μελέτη πάνω στην εφαρμογή της θεωρίας παιγνίων σε θέματα πολεμικών τακτικών και στρατηγικής. Ιστορική αναδρομή 1713 Ο Francis Waldegrave, σε ένα γράμμα του, παρουσίασε την πρώτη μικτή στρατηγική μεγίστου
Διαβάστε περισσότεραΤο Υπόδειγμα της Οριακής Τιμολόγησης
Το Υπόδειγμα της Οριακής Τιμολόγησης (ilgrom, Paul and John Roberts 98, imit Pricing and Entry under Incomplete Information) - Μια επιχείρηση ακολουθεί πολιτική οριακής τιμολόγησης (limit pricing) όταν
Διαβάστε περισσότεραΑλληλεπιδράσεις πρακτόρων. Πώς σχεδιάζουμε κοινωνίες πρακτόρων;
Αλληλεπιδράσεις πρακτόρων Πώς σχεδιάζουμε κοινωνίες πρακτόρων; Δεν υπάρχει σύστημα ενός πράκτορα! πράκτορας οργανωσιακή σχέση πρακτόρων αλληλεπίδραση πρακτόρων σφαίρα επιρροής πράκτορα περιβάλλον 2 Δεν
Διαβάστε περισσότεραΠαίγνια Συμφόρησης. ημήτρης Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο
Παίγνια Συμφόρησης ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Μοντέλο Ανάθεσης Πόρων Σύνολο πόρων Ε = { e 1,, e m }. Πόροι: ακμές δικτύου, υπηρεσίες
Διαβάστε περισσότεραΤεχνητή Νοημοσύνη. 4η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
Τεχνητή Νοημοσύνη 4η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται κυρίως στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β.
Διαβάστε περισσότεραΚεφάλαιο 5 R (2, 3) R (3, 0)
Κεφάλαιο 5 Θα ξεκινήσουµε το κεφάλαιο αυτό βλέποντας ένα ακόµη παράδειγµα αναφορικά µε την ισορροπία που προκύπτει από την οπισθογενή επαγωγή (backwards induction) και την ισορροπία κατά Nash στην στρατηγική
Διαβάστε περισσότεραΚεφάλαιο 9 ο Κ 5, 4 4, 5 0, 0 0,0 5, 4 4, 5. Όπως βλέπουµε το παίγνιο δεν έχει καµιά ισορροπία κατά Nash σε αµιγείς στρατηγικές διότι: (ΙΙ) Α Κ
Κεφάλαιο ο Μεικτές Στρατηγικές Τώρα θα δούµε ένα παράδειγµα στο οποίο κάθε παίχτης έχει τρεις στρατηγικές. Αυτό θα µπορούσε να είναι η µορφή που παίρνει κάποιος µετά που έχει απαλείψει όλες τις αυστηρά
Διαβάστε περισσότεραΔιάλεξη 4: Απόδειξη: Για την κατεύθυνση, παρατηρούμε ότι διαγράφοντας μια κορυφή δεν μπορούμε να διαχωρίσουμε τα u και v. Αποδεικνύουμε
Διάλεξη 4: 20.10.2016 Θεωρία Γραφημάτων Γραφέας: Σ. Κ. Διδάσκων: Σταύρος Κολλιόπουλος 4.1 2-συνεκτικά γραφήματα (συνέχεια) Πρόταση 4.1 Δύο μπλοκ ενός γραφήματος G μοιράζονται το πολύ μία κορυφή. Απόδειξη:
Διαβάστε περισσότεραΑΛΓΟΡΙΘΜΙΚΗ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Πανεπιστήµιο Αθηνών Εαρινό Εξάµηνο 2007 ιδάσκων : Ηλίας Κουτσουπιάς
ΑΛΓΟΡΙΘΜΙΚΗ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Πανεπιστήµιο Αθηνών Εαρινό Εξάµηνο 007 ιδάσκων : Ηλίας Κουτσουπιάς Μάθηµα : Overview Of The Algorithmic Game Theory Ηµεροµηνία : 007/04/19 Σηµειώσεις : Ελενα Χατζηγιωργάκη,
Διαβάστε περισσότεραΕισαγωγικές έννοιες. Κατηγορίες προβλημάτων (σε μια διάσταση) Προβλήματα εύρεσης μεγίστου. Συμβολισμοί
Κατηγορίες προβλημάτων (σε μια διάσταση) Εισαγωγικές έννοιες Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc164.materials.uoi.gr/dpapageo Το πρόβλημα
Διαβάστε περισσότεραH 2 = H 1 H 1 H 3 = H 2 H 1 = H 1 H 1 H 1
Κεφάλαιο 4 Επαναλαμβανόμενα παίγνια 4.1 Εισαγωγή Πολλά οικονομικά, ή και άλλα, φαινόμενα επαναλαμβάνονται στον χρόνο. Για παράδειγμα, οι επιχειρήσεις σε μία αγορά ανταγωνίζονται μεταξύ τους σε πολλές χρονικές
Διαβάστε περισσότεραΑσκήσεις μελέτης της 4 ης διάλεξης. ), για οποιοδήποτε μονοπάτι n 1
Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2016 17 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 4 ης διάλεξης 4.1. (α) Αποδείξτε ότι αν η h είναι συνεπής, τότε h(n
Διαβάστε περισσότεραΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 11: Σχεδίαση μηχανισμών. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής
Ενότητα 11: Σχεδίαση μηχανισμών Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου
Διαβάστε περισσότεραΣυμπληρωματικές Σημειώσεις για τη Διάλεξη 8
Συμπληρωματικές Σημειώσεις για τη Διάλεξη 8 Ένα από τα παράδοξα της ισορροπίας Nash που μπορεί να θεωρηθεί και σαν αδυναμία της είναι ότι σε κάποια παίγνια οι παίκτες έχουν μεγαλύτερο όφελος αν δεν διαλέξουν
Διαβάστε περισσότεραΘΕΩΡΙΑ ΤΩΝ ΠΑΙΓΝΙΩΝ I.
ΘΕΩΡΙΑ ΤΩΝ ΠΑΙΓΝΙΩΝ I. Γενικά Σε μαθήματα όπως η επιχειρησιακή έρευνα και ή λήψη αποφάσεων αναφέραμε τις αποφάσεις κάτω από συνθήκες βεβαιότητας, στις οποίες και εφαρμόζονται κυρίως οι τεχνικές της επιχειρησιακής
Διαβάστε περισσότεραΈνα Παίγνιο (game) ορίζεται ως μια δραστηριότητα με τα ακόλουθα τρία χαρακτηριστικά:
Γενικοί Ορισμοί Η Θεωρία Παιγνίων (game theory) εξετάζει δραστηριότητες στις οποίες το αποτέλεσμα της απόφασης ενός ατόμου εξαρτάται όχι μόνο από τον τρόπο με τον οποίο επιλέγει ανάμεσα από διάφορες εναλλακτικές
Διαβάστε περισσότεραΛύσεις των Θεμάτων του Διαγ/τος στην Τάξη και Σχόλια-Ιούνιος 2011
Λύσεις των Θεμάτων του Διαγ/τος στην Τάξη και Σχόλια-Ιούνιος Θέμα (Σχόλιο: Οι ερωτήσεις (α και (β που είναι και η ουσία του Θέματος (το (γ αποτελεί εφαρμογή είχαν ξαναζητηθεί πριν τρία χρόνια στα πλαίσια
Διαβάστε περισσότεραΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΤΕΤΑΡΤΟ ΠΑΙΓΝΙΑ ΜΗ ΕΝΙΚΟΥ ΑΘΡΟΙΣΜΑΤΟΣ ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ 2011-2012
ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΤΕΤΑΡΤΟ ΠΑΙΓΝΙΑ ΜΗ ΕΝΙΚΟΥ ΑΘΡΟΙΣΜΑΤΟΣ ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ 2011-2012 Προηγούµενο Μάθηµα: Κυρίαρχη Στρατηγική- Κυριαρχούµενη στρατηγική-nash equilibrium Μια στρατηγική
Διαβάστε περισσότεραΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ. Διανυσματικός χώρος
Διανυσματικός χώρος ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ Ορισμός Διανυσματικός χώρος V πάνω στο σύνολο πραγματικός διανυσματικός χώρος V λέγεται κάθε σύνολο εφοδιασμένο με τις πράξεις της πρόσθεσης μεταξύ των στοιχείων
Διαβάστε περισσότεραEvolutionary Equilibrium
Evolutionary Equilibrium Παύλος Στ. Εφραιµίδης Τοµέας Λογισµικού Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών v. 22.05.2012 Algorithmic Game Theory Evolutionary Equilibium 1 τι θα πούμε εξελικτικά
Διαβάστε περισσότεραακριβώς συμπεράσματα. Ο φυγάς ίσως να σκεφτεί ότι η γέφυρα Α συνεχίζει να είναι η καλύτερη επιλογή του επειδή είναι σε καλή κατάσταση και επιτρέπει
. ΕΙΣΓΩΓΗ Η Θεωρία Παιγνίων είναι ο επιστημονικός κλάδος που μελετάει συστηματικά και με χρήση μαθηματικών εργαλείων την συμπεριφορά των ατόμων σε συνθήκες στρατηγικής αλληλεπίδρασης. Στρατηγική αλληλεπίδραση
Διαβάστε περισσότεραΔιάλεξη 4: Θεωρία Γραφημάτων Γραφέας: Σ. Κ. Διδάσκων: Σταύρος Κολλιόπουλος συνεκτικά γραφήματα (συνέχεια) Πρόταση 4.1 Δύο μπλοκ ενός
Διάλεξη 4: 20.10.2016 Θεωρία Γραφημάτων Γραφέας: Σ. Κ. Διδάσκων: Σταύρος Κολλιόπουλος 4.1 2-συνεκτικά γραφήματα (συνέχεια) Πρόταση 4.1 Δύο μπλοκ ενός γραφήματος G μοιράζονται το πολύ μία κορυφή. Απόδειξη:
Διαβάστε περισσότεραΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΝΟΜΙΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΣΠΟΥΔ ΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΤΙΚΗΣ ΔΥΝΑΜΙΚΗΣ Μεθοδολογία Κλεομένης Γ. Τσιγάνης Λέκτορας ΑΠΘ Πρόχειρες
Διαβάστε περισσότεραΑνταγωνιστική Ανάθεση Πόρων και Παίγνια Συμφόρησης
Ανταγωνιστική Ανάθεση Πόρων και Παίγνια Συμφόρησης ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συστήματα με Ιδιοτελείς (και Ανταγωνιστικούς) Χρήστες
Διαβάστε περισσότεραΠληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 8: Παίγνια πλήρους και ελλιπούς πληροφόρησης
Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 8: Παίγνια πλήρους και ελλιπούς πληροφόρησης Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων
Διαβάστε περισσότεραΕιδικά θέματα Αλγορίθμων και Δομών Δεδομένων (ΠΛΕ073) Απαντήσεις 1 ου Σετ Ασκήσεων
Ειδικά θέματα Αλγορίθμων και Δομών Δεδομένων (ΠΛΕ073) Απαντήσεις 1 ου Σετ Ασκήσεων Άσκηση 1 α) Η δομή σταθμισμένης ένωσης με συμπίεση διαδρομής μπορεί να τροποποιηθεί πολύ εύκολα ώστε να υποστηρίζει τις
Διαβάστε περισσότεραΟλιγοπώλιο. Εισαγωγή στην Οικονομική Επιστήμη Ι. Αρ. Διάλεξης: 11
Ολιγοπώλιο Εισαγωγή στην Οικονομική Επιστήμη Ι Αρ. Διάλεξης: 11 Μορφές Αγορών μεταξύ Μονοπωλίου και Τέλειου Ανταγωνισμού Ο Ατελής Ανταγωνισμός αναφέρεται στην διάρθρωση της αγοράς εκείνης η οποία βρίσκεται
Διαβάστε περισσότεραΠαίγνια Συμφόρησης και Ανταγωνιστική Ανάθεση Πόρων
Παίγνια Συμφόρησης και Ανταγωνιστική Ανάθεση Πόρων Δημήτρης Φωτάκης Πολύπλοκα Συστήματα αποτελούνται από πολλές (ετερογενείς) συνιστώσες που αλληλεπιδρούν. Συμπεριφορά συστήματος δεν συνάγεται από χαρακτηριστικά
Διαβάστε περισσότεραΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ 1. Κοινά χαρακτηριστικά
ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ 1 Εφαρµόζονται σε αγορές που δεν είναι Walrasian. ηλαδή σε αγορές που οι πρωταγωνιστές δεν είναι λήπτες τιµών π.χ. ολιγοπώλιο. Τέτοιες αγορές τις µελετούµε µε παίγνια. Κοινά χαρακτηριστικά
Διαβάστε περισσότεραΑλγοριθμική Θεωρία Παιγνίων: Εισαγωγή και Βασικές Έννοιες
Αλγοριθμική Θεωρία Παιγνίων: Εισαγωγή και Βασικές Έννοιες ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Πολύπλοκα Συστήματα αποτελούνται από πολλές
Διαβάστε περισσότεραΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΝΟΜΙΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΣΠΟΥΔΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΤΙΚΗΣ ΔΥΝΑΜΙΚΗΣ ( Μεθοδολογία- Παραδείγματα ) Κλεομένης Γ. Τσιγάνης
Διαβάστε περισσότεραΔομές Δεδομένων & Αλγόριθμοι
Θέματα Απόδοσης Αλγορίθμων 1 Η Ανάγκη για Δομές Δεδομένων Οι δομές δεδομένων οργανώνουν τα δεδομένα πιο αποδοτικά προγράμματα Πιο ισχυροί υπολογιστές πιο σύνθετες εφαρμογές Οι πιο σύνθετες εφαρμογές απαιτούν
Διαβάστε περισσότεραf(t) = (1 t)a + tb. f(n) =
Παράρτημα Αʹ Αριθμήσιμα και υπεραριθμήσιμα σύνολα Αʹ1 Ισοπληθικά σύνολα Ορισμός Αʹ11 (ισοπληθικότητα) Εστω A, B δύο μη κενά σύνολα Τα A, B λέγονται ισοπληθικά αν υπάρχει μια συνάρτηση f : A B, η οποία
Διαβάστε περισσότεραn, C n, διανύσματα στο χώρο Εισαγωγή
Θα περιοριστούμε σε διανύσματα των οποίων τα στοιχεία προέρχονται από τον χώρο και τον C, χωρίς καμία δυσκολία όμως μπορούν να αναχθούν σε οποιοδήποτε χώρο K Το πρώτο διάνυσμα: Τέρματα που έχουν πέτυχει
Διαβάστε περισσότεραΙσορροπία σε Αγορές Διαφοροποιημένων Προϊόντων
Ισορροπία σε Αγορές Διαφοροποιημένων Προϊόντων - Στο υπόδειγμα ertrand, οι επιχειρήσεις, παράγουν ένα ομοιογενές αγαθό, οπότε η τιμή είναι η μοναδική μεταβλητή που ενδιαφέρει τους καταναλωτές και οι καταναλωτές
Διαβάστε περισσότεραΚεφάλαιο 7ο. max(p 1 c)(α bp 1 +dp 2 )
Κεφάλαιο 7ο Μιλήσαµε στο προηγούµενο κεφάλαιο για το τι θα συµβεί αν οι επιχειρήσεις ανταγωνίζονται σε τιµές. Επιπλέον µιλήσαµε για το πως αποδεικνύεται το παράδοξο του Bertrand και καθώς επίσης και για
Διαβάστε περισσότερα2 Πώς πουλάει διαφημιστικό χώρο η Google;
2 Πώς πουλάει διαφημιστικό χώρο η Google; 2.1. Μία Σύντομη Απάντηση Σήμερα πολλές διαδικτυακές υπηρεσίες και πληροφορίες στον παγκόσμιο ιστό διατίθενται «δωρεάν», λόγω των διαφημίσεων που εμφανίζονται
Διαβάστε περισσότερα