Some generalization of Cauchy s and Wilson s functional equations on abelian groups

Σχετικά έγγραφα
Generalized Fibonacci-Like Polynomial and its. Determinantal Identities

A Class of Orthohomological Triangles

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

Multi-dimensional Central Limit Theorem

Congruence Classes of Invertible Matrices of Order 3 over F 2

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

Multi-dimensional Central Limit Theorem

α & β spatial orbitals in

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

EE512: Error Control Coding

Example Sheet 3 Solutions

THE SECOND WEIGHTED MOMENT OF ζ. S. Bettin & J.B. Conrey

Other Test Constructions: Likelihood Ratio & Bayes Tests

2 Composition. Invertible Mappings

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population

C.S. 430 Assignment 6, Sample Solutions

F19MC2 Solutions 9 Complex Analysis

Concomitants of Dual Generalized Order Statistics from Bivariate Burr III Distribution

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Solutions for Mathematical Physics 1 (Dated: April 19, 2015)

Fractional Colorings and Zykov Products of graphs

Tridiagonal matrices. Gérard MEURANT. October, 2008

LECTURE 4 : ARMA PROCESSES

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Every set of first-order formulas is equivalent to an independent set

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

8.324 Relativistic Quantum Field Theory II

CRASH COURSE IN PRECALCULUS

Supplementary materials for Statistical Estimation and Testing via the Sorted l 1 Norm

New bounds for spherical two-distance sets and equiangular lines

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

1 Complete Set of Grassmann States

Matrices and Determinants

Symplecticity of the Störmer-Verlet algorithm for coupling between the shallow water equations and horizontal vehicle motion

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

On the Galois Group of Linear Difference-Differential Equations

Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Finite Field Problems: Solutions

Statistical Inference I Locally most powerful tests

Estimators when the Correlation Coefficient. is Negative

Homework 3 Solutions

4.6 Autoregressive Moving Average Model ARMA(1,1)

Approximation of distance between locations on earth given by latitude and longitude

Uniform Convergence of Fourier Series Michael Taylor

Math221: HW# 1 solutions

Homomorphism of Intuitionistic Fuzzy Groups

Homomorphism in Intuitionistic Fuzzy Automata

Second Order Partial Differential Equations

A Note on Intuitionistic Fuzzy. Equivalence Relation

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Quadratic Expressions

( y) Partial Differential Equations

Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp

Solution Series 9. i=1 x i and i=1 x i.

Homework 8 Model Solution Section

Affine Weyl Groups. Gabriele Nebe. Summerschool GRK 1632, September Lehrstuhl D für Mathematik

Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

MABUCHI AND AUBIN-YAU FUNCTIONALS OVER COMPLEX THREE-FOLDS arxiv: v1 [math.dg] 27 Mar 2010

Trigonometric Formula Sheet

Solutions to Exercise Sheet 5

On a four-dimensional hyperbolic manifold with finite volume

The Simply Typed Lambda Calculus

Partial Differential Equations in Biology The boundary element method. March 26, 2013

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Intuitionistic Fuzzy Ideals of Near Rings

1. Introduction and Preliminaries.

Commutative Monoids in Intuitionistic Fuzzy Sets

SOLVING CUBICS AND QUARTICS BY RADICALS

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

Reminders: linear functions

ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα,

Lecture 2. Soundness and completeness of propositional logic

Duals of the QCQP and SDP Sparse SVM. Antoni B. Chan, Nuno Vasconcelos, and Gert R. G. Lanckriet

Generating Set of the Complete Semigroups of Binary Relations

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Section 8.3 Trigonometric Equations

2 Lagrangian and Green functions in d dimensions

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Inverse trigonometric functions & General Solution of Trigonometric Equations

Problem Set 3: Solutions

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [,

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

Cyclic or elementary abelian Covers of K 4

Neutralino contributions to Dark Matter, LHC and future Linear Collider searches

derivation of the Laplacian from rectangular to spherical coordinates

A General Note on δ-quasi Monotone and Increasing Sequence

The one-dimensional periodic Schrödinger equation

On Inclusion Relation of Absolute Summability

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Fuzzifying Tritopological Spaces

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Transcript:

Aequat. Math. 89 (2015), 591 603 c The Author(s) 2013. Ths artcle s publshed wth open access at Sprngerlnk.com 0001-9054/15/030591-13 publshed onlne December 6, 2013 DOI 10.1007/s00010-013-0244-4 Aequatones Mathematcae Some generalzaton of Cauchy s and Wlson s functonal equatons on abelan groups Rados law Lukask Abstract. We fnd the solutons f, g,h: G X, α: G K of the functonal equaton f(x + λy) = K g(x)+ α(x)h(y), x,y G, where (G, +) s an abelan group, K s a fnte, abelan subgroup of the automorphsm group of G, X s a lnear space over the feld K {R, C}. Mathematcs Subject Classfcaton (2010). 39B52. Keywords. Wlson s functonal equaton, Cauchy s functonal equaton. 1. Introducton The followng generalzaton f(x + y)+f(x + σy) =2f(x)+2f(y), x,y G, of the quadratc functonal equaton, where σ s an automorphsm of an abelan group G such that σ σ = d G and f : G C, was nvestgated by Stetkær [9]. In hs other work [10] he solved the functonal equaton N 1 1 f(z + ω n ζ)=f(z)+g(z)h(ζ), z,ζ C, N n=0 where N {2, 3,...},ω s a prmtve N th root of unty, f,g,h: C C are contnuous. Lukask [5, 6] derved explct formulas for the solutons of the functonal equaton f(x + λy) = K α(y)g(x)+ K h(y), x,y G,

592 R. Lukask AEM where (G, +) s an abelan group, K s a fnte abelan subgroup of the automorphsm group of G, X s a lnear space over the feld K {R, C},f,g,h: G X, α: G K. The functonal equaton f(x + λy) = K g(x)h(y), x,y G, where (G, +) s an abelan group, K s a fnte subgroup of the automorphsm group on G, f, g, h: G C, was studed by Förg-Rob and Schwager [3], Gajda [4], Stetkær [7, 8], Badora [2]. Aczél et al. [1] studed the complex-valued solutons of the equaton f(x + y)+f(x y) 2f(x) =g(x)h(y), x,y G, where (G, +) s a group and f,g,h: G C. The purpose of ths paper s to fnd the solutons of the functonal equaton f(x + λy) = K g(x)+α(x)h(y), x,y G, where f,g,h: G X, α: G K, (G, +) s an abelan group, K s a fnte, abelan subgroup of the automorphsm group of G, X s a lnear space over the feld K {R, C}. We fnd these solutons under the assumpton f λ const, α λ const, α(0) 0 and they are some combnatons of multplcatve and mult-addtve functons. Our results generalze all the results mentoned above (except the papers by Lukask). 2. Man result Throughout the present paper, we assume that X s a lnear space over the feld K {R, C},(G, +) s an abelan group, K s a fnte, abelan subgroup of the automorphsm group of G. In ths work we use some theorems. The frst gves us the form of the solutons of a generalzaton of Jensen s functonal equaton. Theorem 1. [5, Theorem5]Let (S, +) be an abelan semgroup, K be a fnte subgroup of the automorphsm group of S, (H, +) be an abelan group unquely dvsble by K!. Then the functon f : S H satsfes the equaton f(x + λy) = K f(x), x,y S (1)

Vol. 89 (2015) Generalzaton of Cauchy s and Wlson s functonal equatons 593 f and only f there exst k-addtve, symmetrc mappngs A k : S k H, k {1,..., K 1} and A 0 H such that f(x) =A 0 + A 1 (x)+ + A K 1 (x,...,x), x S, A k (x,...,x,λy,...,λy)=0, x,y S, 1 k K 1. The second theorem shows all solutons of a generalzaton of Wlson s functonal equaton. Theorem 2. [6, Theorem 4,5] Let f : G X,f 0,ϕ: G K. They satsfy the equaton f(x + λy) = K ϕ(y)f(x), x,y G, (2) f and only f there exsts a homomorphsm m: G C, such that ϕ(x) = 1 m(λx), x G, K and () f X s complex, then there exst A λ 0 X, k-addtve, symmetrc mappngs A λ k : Gk X,k {1,..., K 0 1},λ K 1 such that f(x) = K m(λx) A λ 0 + A λ (x,...,x), x G, 1 A λ k(x,...,x,μy,...,μy)=0, x,y G, 1, 1 k K 0 1, 0 () f X s real, then there exst A λ 0 X,B0 λ X, k-addtve, symmetrc mappngs A λ k,bλ k : Gk X,k {1,..., K 0 1},λ K 1 such that f(x) = K Re (m(λx)) A λ 0 + A λ (x,...,x) 1 Im (m(λx)) B 0 λ + K B λ (x,...,x), x G, A λ k(x,...,x,μy,...,μy)=0, x,y G, λ K 1, 1 k K 0 1, 0 Bk λ (x,...,x,μy,...,μy)=0, x,y G, 1, 1 k K 0 1, 0 where K 0 := {λ K : m λ = m},k 1 s the set of representatves of cosets of the quotent group K/K 0.

594 R. Lukask AEM Frst we start wth a corollary of Theorem 2. Corollary 1. A nonzero functon α: G K satsfes the equaton α(λy), x,y G, (3) α(x + λy) =α(x) f and only f there exsts a homomorphsm m: G C and () f K = C, then there exst a λ 0 C, k-addtve, symmetrc mappngs a λ k : Gk C,k {1,..., K 0 1},λ K 1 such that α(x) = K m(λx) a λ 0 + a λ (x,...,x), x G, 1 1, 1 k< K 0, 0 1 () f K = R, then there exst a λ 0,b λ 0 R, k-addtve, symmetrc mappngs a λ k,bλ k : Gk R,k {1,..., K 0 1},λ K 1 such that α(x) = K Re (m(λx)) a λ 0 + a λ (x,...,x) 1 Im (m(λx)) b λ 0 + K b λ (x,...,x), x G, 1, 1 k< K 0, 0 b λ k(x,...,x,μy,...,μy)=0, x,y G, λ K 1, 1 k< K 0, 0 1 where K 0 := {λ K : m λ = m},k 1 s the set of representatves of cosets of the quotent group K/K 0. Moreover, f α has the above form, then m(λx), x G. α(λx) = Proof. Assume that α satsfes (3). Let ϕ: G K be gven by the formula ϕ = 1 α λ. K

Vol. 89 (2015) Generalzaton of Cauchy s and Wlson s functonal equatons 595 Then α and ϕ satsfy the equaton 1 α(x + λy) =ϕ(y)α(x), x,y G. K In vew of Theorem 2 we have the form of α such as n the statement of ths corollary and the equalty ϕ(x) = 1 m(λx), x G. K We observe that () f K = C, then K ϕ(x) = α(μx) = K m(λμx) a λ 0 + a λ (μx,...,μx) 1 = K m(λμx) K 0 a λ 0 + a λ (σμx,...,σμx) 1 1 σ K 0 = m(λμx) K 0 a λ 0 = m(μx) a λ 0, x,y G, 1 1 1 () f K = R, then K ϕ(x) = α(μx) = K 0 1 Re (m(λμx)) a λ 0 + a λ (μx,...,μx) 1 K 0 1 Im (m(λμx)) b λ 0 + b λ (μx,...,μx) 1 = K 0 1 Re (m(λμx)) K 0 a λ 0 + a λ (σμx,...,σμx) 1 1 σ K 0 K 0 1 Im (m(λμx)) K 0 b λ 0 + b λ (σμx,...,σμx) 1 1 σ K 0 = Re (m(λμx)) K 0 a λ 0 Im (m(λμx)) K 0 b λ 0 1 1 1 1 = Re (m(μx)) a λ 0 Im (m(μx)) b λ 0 1 1 = m(μx) a λ 0, x,y G. 1

596 R. Lukask AEM Hence 1 a λ 0 = 1 and on the other hand a functon α, whch has the form such as n the statement of ths corollary, satsfes Eq. (3). Theorem 3. Let functons f : G X,α: G K be such that f λ 0, α 0, α λ K. They satsfy the equaton f(x + λy) = K f(x)+α(x) f(λy), x,y G, (4) f and only f there exst a homomorphsm m: G C,A 0 X, k-addtve, symmetrc mappngs A k : G k X,k {1,...,L 1} such that K 1 f(x) =A 0 + A (x,...,x) α(x)a 0, x G, (5) A k (x,...,x,μy,...,μy)=0, x,y G, 1 k< K, (6) and () f K = C, then there exst a λ 0 C, k-addtve, symmetrc mappngs a λ k : Gk C,k {1,..., K 0 1},λ K 1 such that α(x) = K m(λx) a λ 0 + a λ (x,...,x), x G, (7) 1 1, 1 k< K 0, 0 1 () f K = R, then there exst a λ 0,b λ 0 R, k-addtve, symmetrc mappngs a λ k,bλ k : Gk R,k {1,..., K 0 1},λ K 1 such that α(x) = K Re (m(λx)) a λ 0 + a λ (x,...,x)] (10) 1 Im (m(λx)) b λ 0 + K (8) (9) b λ (x,...,x), x G, (11) 1, 1 k< K 0, 0 (12)

Vol. 89 (2015) Generalzaton of Cauchy s and Wlson s functonal equatons 597 b λ k(x,...,x,μy,...,μy)=0, x,y G, λ K 1, 1 k< K 0, 0 (13) (14) 1 where K 0 := {λ K : m λ = m},k 1 s the set of representatves of cosets of the quotent group K/K 0. Moreover ( f(λx) = K ) α(λx) A 0, x G. (15) Proof. Let f and α satsfy (4). We observe that f(x + λy + μz) = K f(x + λy) + α(x + λy) f(μz) = K 2 f(x)+ K α(x) f(λy) + α(x + λy) f(μz), x,y,z G, and f(x + λ(y + μz)) f(x + λy + μz) = = K 2 f(x)+α(x) f(λy + μz) = K 2 f(x)+ K α(x) f(λy)+α(x) α(λy) f(μz), x,y,z G. Hence we have ( ) α(λy) f(μz) =0, x,y,z G, α(x + λy) α(x) and we obtan that α satsfes Eq. (3). In vew of Corollary 1 we get the form of α. Now we notce that K f(λx)+ α(λx) f(μy) = f(λx + μy) = f(μy + λx) = K f(μy)+ α(μy) f(λx), x,y G.

598 R. Lukask AEM Hence ( K ) α(λx) f(μy) = K α(μy) f(λx), x,y G. whch gves us Eq. (15) for some A 0 X. Now, we can wrte Eq. (4) nthe form ( f(x + λy) = K f(x)+α(x) K ) α(λy) A 0, x,y G. Let q : G X be gven by the formula q(x) =f(x)+α(x)a 0, x G. Then from equaltes (3), (4), (15) wehave α(x + λy)a 0 q(x + λy) = f(x + λy)+ = K f(x)+α(x) f(λy)+α(x) α(λy)a 0 = K f(x)+ K α(x)a 0 = K q(x), x,y G. In vew of Theorem 1 there exst c X, k-addtve, symmetrc mappngs A k : G k X,k {1,..., K 1} such that K 1 q(x) =c + A (x,...,x), x G, A k (x,...,x,μy,...,μy)=0, x,y G, 1 k< K. Snce c = q(0) = f(0) + α(0)a 0 = A 0, we have K 1 f(x) =A 0 + A (x,...,x) α(x)a 0, x G. Now we assume that f satsfes condtons (5) (6) andα satsfes condtons (7) (9) n the complex case or (10) (14) n the real case. In vew of Theorem 1 a functon f + αa 0 satsfes Eq. (1) and n vew of Corollary 1 α satsfes Eq. (3). We have α(x + λy)a 0 f(x + λy) = (f(x + λy)+α(x + λy)a 0 ) = K f(x)+ K α(x)a 0 α(x) α(λy)a 0, x,y G.

Vol. 89 (2015) Generalzaton of Cauchy s and Wlson s functonal equatons 599 Hence we obtan f(λy) = K f(0) + K α(0)a 0 α(0) = K A 0 α(λy)a 0, x,y G α(λy)a 0 and f(x + λy) = K f(x)+ K α(x)a 0 α(x) α(λy)a 0 = K f(x)+α(x) f(λy), x,y G, whch ends the proof. Remark 1. Let f : G X, α: G K,α =0or f λ = 0. Then they satsfy Eq. (15) f and only f f satsfes Eq. (1). Hence, n vew of Theorem 1, we know the form of f. Remark 2. Let f : G X, α: G K, α λ = K. If they satsfy Eq. (15) then α satsfes Eq. (1) and we know ts form. At the present moment we don t know the form of f. Now we can prove the man theorem of ths paper whch s a pexderzed verson of Theorem 3. Theorem 4. Let functons f,g,h: G X,α: G K be such that f λ const, α λ const, α(0) 0. They satsfy the equaton f(x + λy) = K g(x)+α(x)h(y), x,y G, (16) f and only f there exst a homomorphsm m: G C,A,B,A 0 X, k- addtve, symmetrc mappngs A k : G k X,k {1,..., K 1} such that K 1 f(x) =A + A 0 + A (x,...,x) α(x) α(0) A 0, x G, (17) and K 1 g(x) =A + A 0 + A (x,...,x) α(x) α(0) [A + A 0 B], x G, (18) [( h(x) = 1 K ) ] α(λx) A 0 + K (A B), x G, (19) α(0) α(0) A k (x,...,x,μy,...,μy)=0, x,y G, 1 k< K, (20)

600 R. Lukask AEM () f K = C, then there exst a λ 0 C, k-addtve, symmetrc mappngs a λ k : G k C, k {1,..., K 0 1},λ K 1 such that α(x) =α(0) K m(λx) a λ 0 + a λ (x,...,x), x G, (21) 1 1, 1 k< K 0, 0 1 (22) (23) () f K = R, then there exst a λ 0,b λ 0 R, k-addtve, symmetrc mappngs a λ k,bλ k : Gk R,k {1,..., K 0 1},λ K 1 such that α(x) =α(0) 1 Im (m(λx)) b λ 0 + Re (m(λx)) a λ 0 + K K a λ (x,...,x) (24) b λ (x,...,x), x G, (25) 1, 1 k< K 0, 0 (26) b λ k(x,...,x,μy,...,μy)=0, x,y G, λ K 1, 1 k< K 0, 0 1 (27) (28) where K 0 := {λ K : m λ = m},k 1 s the set of representatves of cosets of the quotent group K/K 0. Proof. Puttng x = 0n(16) wehave f(λy) = K g(0) + α(0)h(y), y G. Puttng y =0n(16) weget K f(x) = K g(x)+α(x)h(0), x G.

Vol. 89 (2015) Generalzaton of Cauchy s and Wlson s functonal equatons 601 Hence we get g(x) =f(x) α(x) α(x) h(0) = f(x) [f(0) g(0)], x G, (29) K α(0) [ ] h(y) = 1 f(λy) K g(0), y G. (30) α(0) Let f 0 = f f(0),α 0 = α α(0). From the above equaltes we obtan f 0 (x + λy) = f(x + λy) K f(0) = K g(x)+α(x)h(y) K f(0) [ ] = K f 0 (x) α 0 (x) K [f(0) g(0)] + α 0 (x) f(λy) K g(0) = K f 0 (x)+α 0 (x) f 0 (λy), x,y G. In vew of Theorem 3 there exst a homomorphsm m: G C,A 0 X, k- addtve, symmetrc mappngs A k : G k X,k {1,..., K 1} such that and K 1 f 0 (x) =A 0 + A (x,...,x) α 0 (x)a 0, x G, A k (x,...,x,μy,...,μy)=0, x,y G, 1 k< K, () f K = C, then there exst a λ 0 C, k-addtve, symmetrc mappngs a λ k : G k C, k {1,..., K 0 1},λ K 1 such that α 0 (x) = K m(λx) a λ 0 + a λ (x,...,x), x G, 1 1, 1 k< K 0, 0 1

602 R. Lukask AEM () f K = R, then there exst a λ 0,b λ 0 R, k-addtve, symmetrc mappngs a λ k,bλ k : Gk R,k {1,..., K 0 1},λ K 1 such that α 0 (x) = K Re (m(λx)) a λ 0 + a λ (x,...,x) 1 Im (m(λx)) b λ 0 + K b λ (x,...,x), x G, 1, 1 k< K 0, 0 b λ k(x,...,x,μy,...,μy)=0, x,y G, λ K 1, 1 k< K 0, 0 a λ 0 =1. 1 Moreover ( f 0 (λx) = K ) α 0 (λx) A 0, x G. Hence, puttng A := f(0),b := g(0) and usng equaltes (29), (30), we obtan the form of f,g,h and α. Now we assume that f,g,h satsfy condtons (17) (20) and α satsfes condtons (21) (23) n the complex case and (24) (28) n the real case. In vew of Theorem 1 a functon f + α 0 A 0 satsfes Eq. (1) and n vew of Corollary 1 α 0 satsfes Eq. (3). We have α 0 (x + λy)a 0 f(x + λy) = (f(x + λy)+α 0 (x + λy)a 0 ) = K f(x)+ K α 0 (x)a 0 α 0 (x) α 0 (λy)a 0 = K f(x) [ K α 0 (x)[a B]+α 0 (x) K (A B)+ K A 0 ] α 0 (λy)a 0 = K g(x)+α(x)h(y), x,y G, whch ends the proof. Remark 3. Let f,g,h: G X, α: G K satsfy Eq. (16). () If α(0) = 0, then f λ =const. () If f λ = const, then α λ = const or h = const (n ths case Eq. (16) becomes Eq. (1) and we know ts form). We don t know the form of the solutons n the case when α λ =const.

Vol. 89 (2015) Generalzaton of Cauchy s and Wlson s functonal equatons 603 Open Access. Ths artcle s dstrbuted under the terms of the Creatve Commons Attrbuton Lcense whch permts any use, dstrbuton, and reproducton n any medum, provded the orgnal author(s) and the source are credted. References [1] Acél, J., Chung, J.K., Ng, C.T.: Symmetrc Second Dfferences n Product form on Groups. Topcs n Mathematcal Analyss, 1 22, Seres n Pure Mathematcs, vol. 11. World Scentfc Publshng, Teaneck (1989) [2] Badora, R.: On a generalzed Wlson functonal equaton. Georgan Math. J. 12(4), 595 606 (2005) [3] Förg-Rob, W., Schwager, J.: A generalzaton of the cosne equaton to n summands. Grazer Math. Ber. 316, 219 226 (1992) [4] Gajda, Z.: A remark on the talk of W. Förg-Rob. Grazer Math. Ber. 316, 234 237 (1992) [5] Lukask, R.: Some generalzaton of Cauchy s and the quadratc functonal equatons. Aequ. Math. 83, 75 86 (2012) [6] Lukask, R.: Some generalzaton of the quadratc and Wlson s functonal equaton. Aequ. Math. do:10.1007/s00010-013-0185-y [7] Stetkær, H.: On a sgned cosne equaton of N summands. Aequ. Math. 51(3), 294 302 (1996) [8] Stetkær, H.: Wlson s functonal equaton on C. Aequ. Math. 53(1-2), 91 107 (1997) [9] Stetkær, H.: Functonal equaton on abelan groups wth nvoluton. Aequ. Math. 54(1 2), 144 172 (1997) [10] Stetkær, H.: Functonal equatons nvolvng means of functons on the complex plane. Aequ. Math. 56, 47 62 (1998) Rados law Lukask Insttute of Mathematcs Unversty of Slesa ul. Bankowa 14 40-007 Katowce Poland e-mal: rlukask@math.us.edu.pl Receved: July 30, 2013 Revsed: November 4, 2013