A manifestly scale-invariant regularization and quantum effective operators

Σχετικά έγγραφα
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

2 Composition. Invertible Mappings

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Non-Gaussianity from Lifshitz Scalar

4.6 Autoregressive Moving Average Model ARMA(1,1)

Approximation of distance between locations on earth given by latitude and longitude

ST5224: Advanced Statistical Theory II

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

derivation of the Laplacian from rectangular to spherical coordinates

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Abstract Storage Devices

Dark Matter and Neutrino Masses from a Scale-Invariant Multi-Higgs Portal

Other Test Constructions: Likelihood Ratio & Bayes Tests

Homework 3 Solutions

The Simply Typed Lambda Calculus

On a four-dimensional hyperbolic manifold with finite volume

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Example Sheet 3 Solutions

Finite Field Problems: Solutions

( y) Partial Differential Equations

The challenges of non-stable predicates

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

EE512: Error Control Coding

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Every set of first-order formulas is equivalent to an independent set

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Higher Derivative Gravity Theories

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

UV fixed-point structure of the 3d Thirring model

Inverse trigonometric functions & General Solution of Trigonometric Equations

Eulerian Simulation of Large Deformations

Areas and Lengths in Polar Coordinates

Space-Time Symmetries

Notes on the Open Economy

From the finite to the transfinite: Λµ-terms and streams

Dr. D. Dinev, Department of Structural Mechanics, UACEG

Reminders: linear functions

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Congruence Classes of Invertible Matrices of Order 3 over F 2

Bounding Nonsplitting Enumeration Degrees

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Areas and Lengths in Polar Coordinates

Capacitors - Capacitance, Charge and Potential Difference

ΕΘΝΙΚΗ ΣΧΟΛΗ ΗΜΟΣΙΑΣ ΙΟΙΚΗΣΗΣ

Fractional Colorings and Zykov Products of graphs

Partial Differential Equations in Biology The boundary element method. March 26, 2013

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

An Inventory of Continuous Distributions

Assalamu `alaikum wr. wb.

Section 8.3 Trigonometric Equations

6.3 Forecasting ARMA processes

Partial Trace and Partial Transpose

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Parametrized Surfaces

Μεταπτυχιακή διατριβή. Ανδρέας Παπαευσταθίου

Example 1: THE ELECTRIC DIPOLE

Lecture 34 Bootstrap confidence intervals

Concrete Mathematics Exercises from 30 September 2016

Finite difference method for 2-D heat equation

Second Order Partial Differential Equations

C.S. 430 Assignment 6, Sample Solutions

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

D Alembert s Solution to the Wave Equation

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Homework 8 Model Solution Section

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

Electronic structure and spectroscopy of HBr and HBr +

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

D-term Dynamical SUSY Breaking

Numerical Analysis FMN011

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Μηχανική Μάθηση Hypothesis Testing

Statistical Inference I Locally most powerful tests

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

Démographie spatiale/spatial Demography

Math221: HW# 1 solutions

Forced Pendulum Numerical approach

Uniform Convergence of Fourier Series Michael Taylor

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

Matrices and Determinants

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Context-aware και mhealth

A Lambda Model Characterizing Computational Behaviours of Terms

Instruction Execution Times

Math 6 SL Probability Distributions Practice Test Mark Scheme

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O


Transcript:

A manifestly scale-invariant regularization and quantum effective operators D. Ghilencea Corfu Summer Institute, Greece - 8 Sep 2015 E-print: arxiv:1508.00595 sponsored by RRC grant - project PN-II-ID-PCE-2011-3-0607

1 ] Outline - Introduction: Scale invariance as a solution to the hierarchy problem - Problem: Usual regularizations of quantum corrections break scale invariance - Goal: Study implications of a special, scale-invariant regularization. - Implications: New corrections to scalar potential beyond Coleman-Weinberg. - Applications: the scalar potential in SM + dilaton.

2 ] Introduction - One approach to hierarchy problem: scale invariance (x ρx, φ ρ d φ): forbids (higgs) mass terms - the real world is not scale invariant this symmetry must be broken. - at classical level: one can start with a scale invariant L - at quantum level? the need for a subtraction/renormalization scale (µ) Cutoff schemes: lnλ/m Z = lnλ/µ+lnµ/m Z, (Λ ). DR scheme: λ φ = µ 2ǫ λ (r) φ + n a n/ǫ n ], (ǫ 0) At quantum level: scale symmetry is broken explicitly by: a dimensionful scale (cutoff, Pauli Villars) or a dimensionful coupling (DR scheme).

3 ] Problem: in theories with scale/conformal symmetry: regularization (DR, etc...) breaks explicitly the very symmetry one wants to study at quantum level! - impact, particulary in non-renormalizable case, and for the hierarchy problem - usual (naive?) argument: DR breaks scale symmetry more softly ( ) Bardeen 1995] Solution: replace µ f(dilaton: σ). Deser 1970, Englert 1976, Shaposhnikov 2009] Evanescentpowerµ 2ǫ inthelastequation need σ 0 spontaneousbreakingofscaleinvariance! Goal: study its implications. ( ) if the DR breaking of scale symmetry were indeed soft the result should be similar to spontaneous breaking of scale symmetry - see later

4 ] Scale invariance at classical level L of two real scalar fields: An example: L = 1 2 µφ µ φ+ 1 2 µσ µ σ V(φ,σ) V = λ φ 4 φ4 + λ m 2 φ2 σ 2 + λ σ 4 σ4 Extremum: φ λ φ φ 2 +λ m σ 2] = 0, σ λ m φ 2 +λ σ σ 2] = 0, a) The ground state is σ = 0, φ = 0 and both fields are massless. b) IF σ 0 a solution, then φ 0; a non-trivial ground state exists if λ 2 m = λ φ λ σ ; λ m < 0. φ 2 σ = λ m, V = λ ( φ φ 2 + λ ) 2 m σ 2 2 λ φ 4 λ φ Spontaneous breaking of scale symmetry EWSB at tree-level, with a vanishing cosmo constant

5 ] Scale invariance at classical level L of two real scalar fields: L = 1 2 µφ µ φ+ 1 2 µσ µ σ V(φ,σ) An example: Kobakhidze et al 2007, 2014] V = λ φ 4 φ4 + λ m 2 φ2 σ 2 + λ σ 4 σ4 The mass eigenstates: m 2 φ = 2λ φ ( 1 λm /λ φ ) φ 2 = 2λ m (1 λ m /λ φ ) σ 2 m σ = 0 σ: Goldstone mode of scale invariance (dilaton). Shaposhnikov et al 2009, Ross et al 2014] Expect: σ M Planck To ensure a hierachy m φ φ O(100) GeV, one tunes classically λ m : φ σ if λ φ λ m λ σ, λ 2 m = λ φ λ σ λ m 1/ σ 2, λ σ 1/ σ 4. At quantum level: is extra tuning needed?

6 ] Scale invariance at quantum level L = 1 2 µφ µ φ+ 1 2 µσ µ σ V(φ,σ) - DR: d = 4 2ǫ: L] = d, λ]= V (4) ] =d 4(d 2)/2 = 4 d λ µ 4 d λ. A scale invariant regularization: µ µ(σ,φ). Then V Ṽ µ(φ,σ)4 d V U = Ṽ i d d p 2 (2π) Trln p 2 M 2 (φ,σ)+iε ], ( M 2 ) d αβ = 2 Ṽ α β Ṽαβ, = Ṽ 1 2 M 4 64π 2 s 4 d ln M ] s/κ 2, (M 2 ) αβ = V αβ ; α,β = φ,σ. s=φ,σ ( M 2 ) αβ = µ 4 d (M 2 ) αβ +(4 d)µ 2 N αβ ], ] M s 4 = µ TrM 2(4 d) 4 +2 (4 d)µ 2 Tr(M 2 N), s=φ,σ N αβ µ(µ α V β +µ β V α )+(µµ αβ µ α µ β )V, Evanescent corrections to (M 2 ) αβ bring finite quantum corrections to U, due to (4 d) 2 (4 d).

7 ] The scale-invariant one-loop potential U(φ,σ) = V(φ,σ)+ 1 64π 2 { s=φ,σ Ms(φ,σ) 4 ln M2 s(φ,σ) µ 2 (φ,σ) 3 ] } + U(φ,σ) 2 U = 4 µ 2 { V (µµ φφ µ 2 φ)v φφ +2(µµ φσ µ φ µ σ )V φσ +(µµ σσ µ 2 σ)v σσ ] + 2µ(µ φ V φφ +µ σ V φσ )V φ +2µ(µ φ V φσ +µ σ V σσ )V σ }, µ α = µ α, µ αβ = 2 µ α β, with α,β = φ,σ. If µ = µ(σ) only: U = 4 µ(σ) 2 { 2σ ( V σ V σσ +V φ V φσ ) V Vσσ } If µ=constant, U = 0. On tree-level ground state: U = 0. U: new, one-loop finite correction, beyond the Coleman-Weinberg term.

8 ] The scale-invariant one-loop potential. Minimal case: µ = z σ, z: constant. µ = zσ 2/(d 2) ] U = λ φλ m φ 6 σ 2 ( 16λ φ λ m +6λ 2 m 3λ φ λ σ ) φ 4 ( 16λ m +25λ σ ) λm φ 2 σ 2 21λ 2 σσ 4 - U contains higher dimensional operators. It is independent of the subtraction parameter z! - total U is unstable if λ m < 0, due to λ m φ 6 /σ 2 < 0! Higher orders can stabilize it. - if λ 2 m = λ φ λ σ, λ m < 0 for tree-level EWSB, then: U = λ m λ φ ( φ 2 σ 2 + λ m λ φ ) (λ 2 φ φ 4 4λ φ (4λ φ +λ m )φ 2 σ 2 21λ 2 mσ 4) - U can be Taylor expanded: σ = σ +δσ, δσ = quantum fluctuation - spectrum at quantum level: massive φ and a massless dilaton σ (Goldstone) - flat direction - can only predict the ratio φ / σ. Potential unstable under quantum fluctuations. Higher orders may stabilize it. Quantum effective operators present, with known, finite coefficient, independent of z.

9 ] Minimizing the one-loop U: λ φ λ m λ σ, and µ = zσ. (*) U = λ φ 4 φ4 + λ m 2 φ2 σ 2 + λ σ 4 σ4 + 1 64π 2 { s=1,2 M 4 s ln M2 s z 2 σ 3 ] 2 2 φ 6 + λ φ λ m σ ( ) } 16λ 2 φ λ m +6λ 2 m 3λ φ λ σ φ 4 16λ 2 mφ 2 σ 2 +O(λ 3 m) min: ρ φ 2 σ 2 = λ m λ φ 1 6λ φ 64π 2 ( 4ln3λφ 17/3 )] +O(λ 2 m) m 2 φ = (U φφ +U σσ ) min ; δm 2 φ = 1 64π 2 ( Uφφ + U σσ )min δm 2 φ = σ 2 4λ 2 32π m(4+13ρ)+18λ 2 σ (7λ σ λ φ ρ)+λ m 25λσ (1+ρ) 3λ φ ρ( 32+5ρ+ρ 2 ) ]] λ 2 m σ 2 - fixing the dimensionless subtraction parameter: take z = φ / σ µ = φ, as usual. No tuning needed beyond (*) to keep δm 2 φ σ 2. No dangereous λ φ σ 2. may hold to all orders Callan-Symanzik: z du/dz = 0. see related work of C. Tamarit 2014]

10 ] Restrictions on other expressions for µ(σ, φ): Adding a term: L G = 1 2 (ξ φφ 2 +ξ σ σ 2 )R, needed in some models to generate the Planck scale Shaposhnikov et al 2009] µ = z ( ξ φ φ 2 +ξ σ σ 2) 1/2 ] Then: U = (ξ φ φ 2 +ξ σ σ 2 ) (21λ 2 φ ξ φ +λ m ξ σ )ξ φ λ φ φ 8 +(21λ σ ξ σ +λ m ξ φ )ξ σ λ σ σ 8 + negative coefficients of φ 8, σ 8 for λ 2 m = λ φ λ σ. U unstable at large fields. ] U = 3 λm =0 λ2 φ ξ φ φ 6 9ξ σ σ 2 +7 ξ φ φ 2 (ξ φ φ 2 +ξ σ σ 2 ) 2 in the classical decoupling limit: non-decoupling quantum effects, unless σ More general case of: µ(φ,σ) = zσ exp h(φ/σ) ] - similar conclusion. The form of µ(φ,σ) is restricted to avoid such non-decoupling effects Minimal µ = µ(σ) only!

11 ] Summary - scale invariance often used to address the hierarchy problem but all regularizations break explicitly the symmetry one wants to study at quantum level. we studied a scale-invariant regularization, with spontaneous breaking of this symmetry. Implications: One-loop scale invariant scalar potential U. U: new correction to U, beyond Coleman-Weinberg term ( evanescent origin). U: independent of subtraction parameter; U φ 6 /σ 2 finite, effective operator(s), destabilize U at large φ. mass correction to φ under control at one-loop (no extra tuning needed). next: study the scalar potential for scale invariant SM (+ dilaton). Non-renormalizability? applications to theories in which preserving scale invariance at loop level needed (CFT s,...)

12 ] Scale invariant Standard Model one-loop potential: Ṽ = µ 4 d V, V = λ φ H 4 +λ m H 2 σ 2 + λ σ 4 σ4 ; H = (0,φ)/ 2. M 2 G = λ φ φ 2 +λ m σ 2, M 2 φ,m 2 σ M 2 W = 1 4 g2 φ 2, M 2 Z = 1 4 (g2 +g 2 )φ 2, M 2 t = 1 2 y2 tφ 2. U = λ φ 4 φ4 + λ m 2 φ2 σ 2 + λ σ 4 σ4 + 1 { 3 64π 2 2 (λ φφ 2 +λ m σ 2 ) 2 ln λ σφ 2 +λ m σ 2 3 ] z 2 σ 2 2 φ 6 + λ φ λ m σ ( ) 16λ 2 φ λ m +6λ 2 m 3λ φ λ σ φ 4 ( ) 16λ m +25λ σ λm φ 2 σ 2 21λ 2 σσ 4 + Ms 4 ln M2 s z 2 σ 3 ] (9λ 2 2 φ +λ 2 2 m)φ 4 +2λ m (3λ φ +4λ m +3λ σ )φ 2 σ 2 +(λ 2 m +9λ 2 σ)σ 4 s=φ,σ + 3 8 g4 φ 4 ln g2 2φ 2 4z 2 σ 2 5 6 ]+ 3 16 (g2 +g 2 ) 2 φ 4 ln g2 φ 2 ] 4z 2 σ 2 5 3φ 4 yt 4 ln φ2 y 2 ]} t 6 2z 2 σ 2 3 2 - Phenomenology?