Simplex Crossover for Real-coded Genetic Algolithms

Σχετικά έγγραφα
Distributed Probabilistic Model-Building Genetic Algorithm

4.6 Autoregressive Moving Average Model ARMA(1,1)

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Other Test Constructions: Likelihood Ratio & Bayes Tests

2 Composition. Invertible Mappings

Buried Markov Model Pairwise

Solution Series 9. i=1 x i and i=1 x i.

Statistical Inference I Locally most powerful tests

Congruence Classes of Invertible Matrices of Order 3 over F 2

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Second Order Partial Differential Equations

ST5224: Advanced Statistical Theory II

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Topology Structural Optimization Using A Hybrid of GA and ESO Methods

Supplementary Materials for Evolutionary Multiobjective Optimization Based Multimodal Optimization: Fitness Landscape Approximation and Peak Detection

The Simply Typed Lambda Calculus

Problem Set 3: Solutions

Research of Han Character Internal Codes Recognition Algorithm in the Multi2lingual Environment

Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] (P)

6.3 Forecasting ARMA processes

Applying Markov Decision Processes to Role-playing Game

Section 8.3 Trigonometric Equations

1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1

Tridiagonal matrices. Gérard MEURANT. October, 2008

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Homework 8 Model Solution Section

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

Feasible Regions Defined by Stability Constraints Based on the Argument Principle

Probabilistic Approach to Robust Optimization

Math221: HW# 1 solutions

Stabilization of stock price prediction by cross entropy optimization

Fractional Colorings and Zykov Products of graphs

New bounds for spherical two-distance sets and equiangular lines

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Lecture 34 Bootstrap confidence intervals

Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation

Yoshifumi Moriyama 1,a) Ichiro Iimura 2,b) Tomotsugu Ohno 1,c) Shigeru Nakayama 3,d)

Notes on the Open Economy

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Detection and Recognition of Traffic Signal Using Machine Learning

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Homework 3 Solutions

SPECIAL FUNCTIONS and POLYNOMIALS

Adaptive grouping difference variation wolf pack algorithm

Exercises to Statistics of Material Fatigue No. 5

Concrete Mathematics Exercises from 30 September 2016

An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio

Arbitrage Analysis of Futures Market with Frictions

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Homomorphism in Intuitionistic Fuzzy Automata

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΜΣ «ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΚΗΣ» ΚΑΤΕΥΘΥΝΣΗ «ΕΥΦΥΕΙΣ ΤΕΧΝΟΛΟΓΙΕΣ ΕΠΙΚΟΙΝΩΝΙΑΣ ΑΝΘΡΩΠΟΥ - ΥΠΟΛΟΓΙΣΤΗ»

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

CAP A CAP

Numerical Analysis FMN011

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

GPGPU. Grover. On Large Scale Simulation of Grover s Algorithm by Using GPGPU

( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)

ΘΕΜΑΤΙΚΗ ΕΥΡΕΤΗΡΙΑΣΗ ΚΑΙ ΚΑΘΙΕΡΩΣΗ ΟΡΟΛΟΓΙΑΣ ΣΤΙΣ ΤΕΧΝΙΚΕΣ ΒΙΒΛΙΟΘΗΚΕΣ: Η ΕΜΠΕΙΡΙΑ ΣΤΟ ΤΕΕ

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Strain gauge and rosettes

Matrices and Determinants

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΗΡΑΚΛΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ

Reminders: linear functions

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ. του Γεράσιμου Τουλιάτου ΑΜ: 697

Section 7.6 Double and Half Angle Formulas

derivation of the Laplacian from rectangular to spherical coordinates

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016

High order interpolation function for surface contact problem

AKAΔΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΘΕΜΑ: Η ΧΡΗΣΗ ΒΙΟΚΑΥΣΙΜΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ ΠΛΕΟΝΕΚΤΗΜΑΤΑ-ΜΕΙΟΝΕΚΤΗΜΑΤΑ ΠΡΟΟΠΤΙΚΕΣ

ΖΩΝΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΟΛΙΣΘΗΤΙΚΗΣ ΕΠΙΚΙΝΔΥΝΟΤΗΤΑΣ ΣΤΟ ΟΡΟΣ ΠΗΛΙΟ ΜΕ ΤΗ ΣΥΜΒΟΛΗ ΔΕΔΟΜΕΝΩΝ ΣΥΜΒΟΛΟΜΕΤΡΙΑΣ ΜΟΝΙΜΩΝ ΣΚΕΔΑΣΤΩΝ

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.

VBA Microsoft Excel. J. Comput. Chem. Jpn., Vol. 5, No. 1, pp (2006)

ER-Tree (Extended R*-Tree)

F19MC2 Solutions 9 Complex Analysis

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

Approximation of distance between locations on earth given by latitude and longitude

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

C.S. 430 Assignment 6, Sample Solutions

ADVANCED STRUCTURAL MECHANICS

5.4 The Poisson Distribution.

Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΠΑΝΑΣΧΕΔΙΑΣΜΟΣ ΓΡΑΜΜΗΣ ΣΥΝΑΡΜΟΛΟΓΗΣΗΣ ΜΕ ΧΡΗΣΗ ΕΡΓΑΛΕΙΩΝ ΛΙΤΗΣ ΠΑΡΑΓΩΓΗΣ REDESIGNING AN ASSEMBLY LINE WITH LEAN PRODUCTION TOOLS

[4] 1.2 [5] Bayesian Approach min-max min-max [6] UCB(Upper Confidence Bound ) UCT [7] [1] ( ) Amazons[8] Lines of Action(LOA)[4] Winands [4] 1

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Investigation of ORP (Oxidation-Reduction Potential) Measurement on Sulfur Springs and Its Application on Hot Spring Waters in Nozawa Onsen

1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]

Global energy use: Decoupling or convergence?

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

EE512: Error Control Coding

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Προβλήματα πρόσληψης της ορολογίας και θεωρίας στη μέση εκπαίδευση Καλλιόπη Πολυμέρου ΠΕΡΙΛΗΨΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

Transcript:

Technical Papers GA Simplex Crossover for Real-coded Genetic Algolithms 47 Takahide Higuchi Shigeyoshi Tsutsui Masayuki Yamamura Interdisciplinary Graduate school of Science and Engineering, Tokyo Institute of Technology higuchi@es.dis.titech.ac.jp Dept. of of Management and Information Science, Hannan University tsutsui@hannan-u.ac.jp Interdisciplinary Graduate school of Science and Engineering, Tokyo Institute of Technology my@dis.titech.ac.jp keywords: genetic algorithms, real-coded GA, simplex crossover, SPX, function optimization Summary In this paper, we perform theoretical analysis and experiments on the Simplex Crossover (SPX), which we have proposed. Real-coded GAs are expected to be a powerful function optimization technique for real-world applications where it is often hard to formulate the objective function. However, we believe there are two problems which will make such applications difficult; ) performance of real-coded GAs depends on the coordinate system used to express the objective function, and 2) it costs much labor to adjust parameters so that the GAs always find an optimum point efficiently. The result of our theoretical analysis and experiments shows that a performance of SPX is independent of linear coordinate transformation and that SPX always optimizes various test function efficiently when theoretical value for expansion rate, which is a parameter of SPX, is applied. We also show that BLX-α is equivalent to degenerate form of SPX. Experiments show that we have something misunderstood effect of epistasis on performance degradation of real-coded GAs...,, GA GA, GA. GA, [Salomon 96, Ono 97, 98b]. GA,, GA, GA,., [ 98, Kita 99] [ 98a],2 3 GA, (SPX) SPX 4. 5 SPX(SPX-n-m-ε), 6

48 6 Q 200 2. 2 GA, ( ), ( ),. GA, GA 2 2, GA. ( ),,, GA 2 3 GA / GA, [Davis 9] GA, GA BLX-α [Eshelman 93] UNDX[Ono 97] BLX-α p,p 2, c : c i = u(min(p i,p 2i ) αi,max(p i,p 2i )+αi) I = p i p 2i () c i,p i,p 2i c,p,p 2,u(x,y) [x,y] UNDX x c : n x c = x p + ξd + D η i e i (2) i= ξ N(0,α 2 ), η i N(0,( β i ) 2 ) x p,d 2, D 2 ( ) 3,e i,n,n(m,ρ 2 ) m, ρ BLX-α,, [Ono 97, Salomon 96]. UNDX[Ono 97],, (3 ) UNDX UNDX-m[ 98b],. 2 4 GA,. [ 98], GA, GA, GA. () GA,,

GA 49 (2),,, (), (2) GA,, GA.. () GA,,,,,, () ( )[ 98a], GA GA UNDX [Ono 97],, 2 5. SPX( )., GA. BLX-α α, (α =0.5). UNDX UNDX-m, BLX SPX, UNDX UNDX-m BLX SPX 3. GA. GA,,,,.,,, (A) GA, ( ), (B).,, GA ( A)., GA X A k???

50 6 Q 200 P2 P0 G P 2 SPX ( 3 ) X A k = A k X BLX-α UNDX,UNDX-m GA BLX-α UNDX (Simplex Crossover, SPX). [ 98a], SPX SPX (),. 4 2. 3 SPX R n n SPX [] (n +) P 0,..., P n. [2] G. n G = P i [3] i=0 x k = G + ε( P k G) (k =0,...,n) ( 3) 0 () C k = r k ( x k x k + C k ) (4) (k=,,n) x k, C k k =0,...,n. ε (Expansion Rate). r k [0,] u(0, ). r k =(u(0,)) k+ (k =0,...,n ) (5), k { 0 (k<0) r k = (6) (k n) [4] C. C = x n + C n (7) SPX, SPX. SPX SPX,SPX n+ n ε ( 2).. [ 89],. 3 2 SPX x = x. γ ij = (x i x i )(x j x j ). SPX 2 2( ) C P

GA 5 P k = P x k x k = 0. C k = r k C k C 0 = 0 C n = 0, C = C n + P n = P ( ) 3( ) m+, {γij C} {γij P } {γij} C = ( ) +ε 2 m {γ P m + m +2 ij} 2,. 3, m+ SPX { m + 2 (m =,2, ) ε = (8) (m=0) ε. 4., 3 2 ε. SPX,, 4 GA MGG [ 97] () p (2) (3) p 2. (4) (3) 2,,. 4 2,4 3 sphere-d f(x)= n (x i d) 2 ( 5.2 <x i < 5.2) i= 4 2 n, (d,...,d) 0. Rastrigin-d f(x)=0n + n {(x i d) 2 0cos(2π(x i d))} i= ( 5.2 <x i < 5.2) n, (d,...,d) 0. Rastrigin-d Rastrigin-d.,. Rosenbrock n f(x) = {00(x x 2 i ) 2 +(x i ) 2 } i=2 ( 2.048 <x i < 2.048) (,...,) 0. Scaled-Rosenbrock n f(x) = {00(x (ix i ) 2 ) 2 +(ix i ) 2 } i=2 ( 2.048/i < x i < 2.048/i), (, 2,, n ) 0. Scaled-Rosenbrock Rosenbrock. 3 2 ε,ε SPX n:0,20,30 : n 5, (Rastrigin ) n 90 :sphere-.0, Rastrigin-.0, Rosenbrock :n 0 :25 : (.0 0 7 ), ε = n +2( ) 2, ( ) (,...,)

52 6 Q 200 ε 0.9.0. sphere-.0 0 AVG 32404 5700 74780 SUC 25/25 25/25 25/25 20 AVG 705848 83452 02206 SUC 25/25 25/25 25/25 30 AVG 859672 226280 2902356 SUC 25/25 25/25 25/25 Rosenbrock 0 AVG 08577 275896 292576 SUC 25/25 25/25 25/25 20 AVG 396496 60624 SUC 0/25 25/25 25/25 30 AVG 379887 438356 SUC 0/25 25/25 25/25 Rastrigin-.0 0 AVG 4850 763828 2778348 SUC 20/25 25/25 25/25 20 AVG 7004557 959606 SUC 9/25 25/25 0/25 30 AVG 778353 2595923 SUC 6/25 24/25 0/25 2 ε 0.9,.0,..SUC, AVG, ε SPX ( ), ε, 2. sphere ε,,. Rastrigin ε., ε 3 2 4 3, (UNDX) :Rastrigin-0, Rastrigin-0, Rosenbrock, Scaled-Rosenbrock :Rosenbrock 300, Rastrigin 500 :20 : 00 00 SPX UNDX 0 e+06 2e+06 3e+06 4e+06 5e+06 6e+06 SPX UNDX 0 e+06 2e+06 3e+06 4e+06 5e+06 6e+06 3 Rastrigin ( ), Rastrigin ( ) SPX : ε = 22 ( ) UNDX :α =0.5,β =0.35( ) :200 :.0 0 7, 6.0 0 6 :25 3 4. UNDX SPX. SPX UNDX Rosenbrock,., SPX UNDX Rastrigin Rastrigin,. Rosenbrock Scaled-Rosenbrock,UNDX SPX SPX, 5. SPX BLX-α BLX-α SPX,, SPX BLX-α SPX, BLX-α. n (m )

GA 53 000 00 00 0 BLX-0.366 BLX-0.45 BLX-0.5 SPX UNDX 0. 0.00 e-05 0 e+06 2e+06 3e+06 4e+06 5e+06 6e+06 e-07 0 2e+06 4e+06 6e+06 8e+06 e+07 000 00 UNDX 00 0 0. 0.00 BLX-0.366 BLX-0.45 BLX-0.5 SPX e-05 0 e+06 2e+06 3e+06 4e+06 5e+06 6e+06 e-07 0 2e+06 4e+06 6e+06 8e+06 e+07 4 Rosenbrock( ),Scaled-Rosenbrock ( ) 5 Rastrigin ( ), Rastrigin ( ) m SPX. SPX-n-m-ε, [Tsutsui 99]. n R n,r n k R m., R n = R m... R }{{ m R } q k m ε k R m R q q SPX, SPX-n-m-ε. SPX-n-m-ε m =2 BLX-α. BLX-α α.,α = 2 ( ε),α α = 2 ( 3) 0.366, α =0.5. α 0.5 0.366 2 4 3. :Rastrigin-0, Rastrigin-0 :.0 0 7,.0 0 7 5, Rastrigin Rastrigin BLX-0.5(SPX- 20-2-2.0 ), BLX-0.366(SPX-20-2- 3, ) BLX-0.5, 4 2 SPX, 3, BLX-α,, GA,, 6., GA,,.,,[ 98a]. 5, BLX-α,,.

54 6 Q 200 [Davis 9] Davis, L.: The Handbook of Genetic Algorithms, Van Nostrand Reinhold, New York (99). [Eshelman 93] Eshelman, L. J. and Schaffer, J. D.: Real Coded Genetic Algorithms and Interval-Schemata, in Foundations of Genetic Algorithms 2, pp. 87 202 (993). [Kita 99] Kita, H. and Yamamura, M.: A Functional Spacialization Hypothesis for Designing Genetic Algorithms, in IEEE International Conference on Systems, Man, and Cybernetics, p. 250 (999). [Ono 97] Ono, I. and Kobayashi, S.: A Real-coded Genetic Algorithm for Function Optimization Using Unimodal Normal Distribution Crossover, in Proc. 7th ICGA, pp. 246 253 (997). [Salomon 96] Salomon, R.: Performance Degradation of Genetic Algorithms under Coodinate Rotation, in Proc. of the Fifth Annual Conference on Evolutionary Programming, pp. 55 6 (996). [Tsutsui 99] Tsutsui, S., Yamamura, M., and Higuchi, T.: Multi-parent Recombination with Simplex Crossover in Real Coded Genetic Algorithms, in Proc. of the Genetic and Evolutionary Computation Conference, Vol., pp. 657 664 (999). [ 98a],, GA, 42, pp. 9 0 (998). [ 98b],, GA, SICE, pp. 57 62 (998). [ 97],,,, Vol. 2, No. 5, pp. 734 744 (997). [ 98], SICE, pp. 5 20 (998). [ 89], (989). 2000 3 23 GA R. GA n, g kn,p kn,c kn k n,, S R,X R R,, k f k, x f k (x) R N R,fk (x)., L g n f, L k A k. A k A k g kn ( )i kn g n i n A k i kn = A k i n,f k (i kn )= f(a k i kn). GA n,g kn g k(n+). 8>< >: p kn = P S R g kn c kn = (X R p kn ) g k(n+) = g kn p kn + N R,fk (p kn + c kn ) S R p kn = S R A k g n = A k S R g n (A.) X R,A k A k X R = X R A k c kn = X (X R A k S R g n)=a k X (XR S R g n) f k (i kn )=f(a k i kn) N R,fk (p kn + c kn ) = N R,fk (A k S R g n + A k ( P (X R S R g n))) = A k N R,f (S R g n + P (X R S R g n)) A k g k(n+) = + g n S R g n N R,f (S R g n + (X R S R g n)) = g (n+) k, A k A k, GA A k, A k X R. GA. ( ) SPX (m+), s k s k =(r m r k ( r k )) (A.2),s k P, S = m s k P k P k [ 89]. (7) C = ε S +( ε) G (A.3), C S., C ( ) 3 (m+), t k t k = ε(r m r k ( r k )) + ( ε) m + (A.4) (7) (3)(4)(6) mp C = mx t k P k (A.5) t k = 2, x C i x C i t k x P k i t k (x P k i x P i ) a b (x a i x i)(x b j x j) =0 x C i xc i = m P x Pi = m P, γ C ij = (xc i xp i )(xc j xp j ) = = = * m X * X m * X m t k (x P k i t 2 k (xp k i t 2 k + γ P ij mx + x P i ) t k (x P k j x P j ) + x P i )(xp k j x P j ) (A.6)

GA 55 r k = 8>< >: 0 (k<0) k+ (k =0,..., m ) k+2 (k m) 8 > < rk 2 = > : 0 (k<0) k+ (k =0,..., m ) k+3 (k m) (A.4) * X m + t 2 k = +ε 2 m m + m +2 {γij C } = +ε 2 m {γij P m + m +2 } (A.7) (A.8) (A.9). ( ) 999, 969.,( )., 987,.,,,.993 996 2000 4 200 3,,,IEEE. 982 987,.,, 996,..,,