Μάθημα 4 α) Άλφα διάσπαση β) Σχάση και σύντηξη

Σχετικά έγγραφα
Μάθημα 4 α) QUIZ στην τάξη β) Κοιλάδα β-σταθερότητας γ) Άλφα διάσπαση δ) Σχάση και σύντηξη

Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου. Μάθημα 7

Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό ) Τμήμα T3: Κ. Κορδάς & Σ. Ε. Τζαμαρίας. Μάθημα 7 α-διάσπαση

Μάθημα 12 α-διάσπαση

Πυρηνική και Στοιχειώδη Ι (5ου εξαμήνου) α-διάσπαση

α - διάσπαση Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

Πυρηνική και Στοιχειώδη Ι (5ου εξαμήνου) Επανάληψη μέσω ασκήσεων #2: Κοιλάδα σταθερότητας, ενέργεια σύνδεσης, φράγμα Coulomb

Ασκήσεις #1 επιστροφή 11/11/2011

Μάθημα 3 α) QUIZ στην τάξη. Μέγεθος πυρήνα από μιονικά άτομα β) Μοντέλο σταγόνας: Hμιεμπειρικός τύπος Weitzecker Κοιλάδα β-σταθερότητας

Ασκήσεις #1 επιστροφή 11/11/2011

Μάθημα 6 Μοντέλο σταγόνας: Hμιεμπειρικός τύπος Weitzecker Κοιλάδα β-σταθερότητας

Μάθημα 5 Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας

Ασκήσεις #1 επιστροφή 15/10/2012

Μάθημα 5 α) QUIZ στην τάξη β) Σχάση και σύντηξη γ) Πρώτο σετ ασκήσεων δ) β-διάσπαση (μέρος Α')

Μάθημα 2 α) QUIZ. Ενεργός διατομή β) Μέγεθος του πυρήνα γ) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας

Ακήσεις #1 Μήκος κύματος σωματιδίων, χρόνος ζωής και ραδιοχρονολόγηση, ενεργός διατομή, μέγεθος πυρήνων

Μάθημα 4 Mέγεθος πυρήνα

Μάθημα 2 Πείραμα Rutherford και μέγεθος πυρήνων, Πυρήνες-συμβολισμοί

Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου. Μάθημα 6β

Μάθημα 2 α) QUIZ. Ενεργός διατομή β) Μέγεθος του πυρήνα γ) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας

Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου. Μάθημα 8

Μάθημα 4 Mέγεθος πυρήνα

Μάθημα 2 α) QUIZ στην τάξη. Ενεργός διατομή β) Μέγεθος του πυρήνα γ) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας

Μάθημα 6 Μοντέλο σταγόνας: Hμιεμπειρικός τύπος μάζας (ή τύπος του Weitzecker). Κοιλάδα β-σταθερότητας

Μάθημα 4 α) QUIZ στην τάξη β) Κοιλάδα β-σταθερότητας γ) Άλφα διάσπαση δ) Σχάση και σύντηξη

Μάθημα 2 α) Μέγεθος του πυρήνα β) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας γ) Ασκήσεις σετ #2 - εκφωνήσεις

Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο Τμήμα T3: Χ. Πετρίδου. Μάθημα 9

Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου. Μάθημα 6

Μάθημα 2 Σχετικιστική μηχανική, μoνάδες, εκτίμηση μεγέθους ατόμων και πυρήνων, πυρήνες-συμβολισμοί

Μάθημα 5 α) β-διάσπαση β) Ασκήσεις

Μάθημα 3α Ενεργός διατομή και μέση ελεύθερη διαδρομή

Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου. Μάθημα 15

Μάθημα 2 α) QUIZ στην τάξη. Ενεργός διατομή β) Μέγεθος του πυρήνα γ) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας

Μάθημα 2 α) Μέγεθος του πυρήνα β) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας γ) Ασκήσεις σετ #2 - εκφωνήσεις

Μάθημα 15 β-διάσπαση Α' μέρος (νετρίνα και ενεργειακές συνθήκες)

Ασκήσεις #2 Μέγεθος και Μάζα πυρήνα. Ενέργεια σύνδεσης και το Q μιάς αντίδρασης. Κοιλάδα σταθερότητας.

Μάθημα 17 Σχάση, σύντηξη.

Μάθημα 2-3 Σχετικιστική μηχανική, μoνάδες, εκτίμηση μεγέθους ατόμων και πυρήνων, πυρήνες-συμβολισμοί

Μάθημα Σχάση, σύντηξη.

Μάθημα 5 α) Μέγεθος του πυρήνα β) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας γ) Ασκήσεις σετ #2 - εκφωνήσεις

Πυρηνική και Στοιχειώδη Ι (5ου εξαμήνου) Eπανάληψη μέσω ασκήσεων #1 μέγεθος πυρήνα, ενέργεια σύνδεσης, η μάζα ως μορφή ενέργειας

Μάθημα 15 β-διάσπαση B' μέρος (διατήρηση σπίν, επιτρεπτές και απαγορευμένες

Σχετικιστική Κινηματική

Δ. Σαμψωνίδης & Κ.Κορδάς. Ανιχνευτές : Μάθημα 1α Ενεργός διατομή αλληεπίδρασης σωματιδίων, μέση ελεύθερη διαδρομή σωματιδίου

Μάθημα 5 Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας

Διάλεξη 5: Αποδιέγερσεις α και β

Μάθημα 5 α) Μέγεθος του πυρήνα β) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας γ) Ασκήσεις σετ #2 - εκφωνήσεις

Μάθηµα 2 Πείραµα Rutherford και µέγεθος πυρήνων, Πυρήνες-συµβολισµοί

Εισαγωγή στην Πυρηνική Φυσική και τα Στοιχειώδη Σωμάτια

Μάθημα 1 α) Ύλη, τρόπος διαβάσματος και εξέτασης β) Εισαγωγή στο αντικείμενο γ) Πείραμα Rutherford, μονάδες, χρόνος ζωής ενεργός διατομή και ορισμοί

Μάθημα 2c Ενεργός διατομή, μέση ελεύθερη διαδρομή και ρυθμός διασπάσεων

Ενεργός διατοµή Χρυσός Κανόνας του Fermi

Μάθημα 1 α) Ύλη, τρόπος διαβάσματος και εξέτασης β) Εισαγωγή στο αντικείμενο γ) Πείραμα Rutherford, μονάδες, χρόνος ζωής ενεργός διατομή και ορισμοί

Μάθημα 3 Πείραμα Rutherford, ορισμοί, χρόνος ζωής ενεργός διατομή

Μάθημα 7 Διαγράμματα Feynman

Μάθημα 7 α) QUIZ β-διάσπαση β) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό γ) Πυρηνικό μοντέλο των φλοιών

Πυρηνικές διασπάσεις. Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό ) Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου

γ - διάσπαση Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

γ - διάσπαση Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

Μάθημα 7 α) QUIZ β-διάσπαση β) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό γ) Πυρηνικό μοντέλο των φλοιών

Διάλεξη 11-12: Ασκήσεις στην Πυρηνική Φυσική

Μάθημα 7 α) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό β) Πυρηνικό μοντέλο των φλοιών

Μάθημα 7 α) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό β) Πυρηνικό μοντέλο των φλοιών

Μάθημα 6 α) β-διάσπαση β) Χαρακτηριστικά πυρήνων, πέρα από μέγεθος και μάζα

α - διάσπαση Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

Μάθημα 12, 13, 14 Πυρηνικό μοντέλο των φλοιών

Niels Bohr ( ) ΘΕΜΑ Α

ΘΕΜΑ 1 ο Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα, που αντιστοιχεί στη σωστή απάντηση.

ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2006 ΕΚΦΩΝΗΣΕΙΣ

Aσκήσεις. Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

ΠΥΡΗΝΙΚΗ 5ου εξαμήνου. 10 διευκρινήσεις και σημαντικά σημεία (όχι σ' όλη την ύλη) Κ. Κορδάς, ακ. έτος

γ-διάσπαση Διάλεξη 17η Πετρίδου Χαρά Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου

Δ. Σαμψωνίδης & Κ.Κορδάς. Ανιχνευτές : Μάθημα 1 Ενεργός διατομή αλληεπίδρασης σωματιδίων, μέση ελεύθερη διαδρομή σωματιδίου

Το µοντέλο της υγρής σταγόνας

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ

Ασκήσεις #7 αποδιεγέρσεις γ

Εισαγωγή στην Πυρηνική Φυσική και τα Στοιχειώδη Σωμάτια Θεόδωρος Μερτζιμέκης, July 15, Προβλήματα διαλέξεων

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 15 ΜΑΡΤΙΟΥ 2015

β διάσπαση II Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 20 ΜΑΪΟΥ 2015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο Τμήμα T3: Χ. Πετρίδου. Μάθημα 6

ΘΕΜΑ 1 ο Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα, που αντιστοιχεί στη σωστή απάντηση.

β - διάσπαση Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

ΕΠΑ.Λ. Β ΟΜΑ ΑΣ ΦΥΣΙΚΗ I ΕΚΦΩΝΗΣΕΙΣ

AΠO ΤΑ ΠΡΩΤΟΝΙΑ & ΤΑ ΝΕΤΡΟΝΙΑ ΣΤΟΥΣ ΠΥΡΗΝΕΣ

Ο Πυρήνας του Ατόμου

Μάθημα 14 β-διάσπαση B' μέρος

α) Θα χρησιμοποιήσουμε το μοντέλο του Bohr καθώς για την ενέργεια δίνει καλά αποτελέσματα:

Θέµατα Φυσικής Γενικής Παιδείας Γ Λυκείου 2000

ΖΗΤΗΜΑ 2 ο 220. µετατρέπεται σε βισµούθιο -212 ( Bi) διασπάσεων: 220. Α. Το ραδόνιο 220 ( 1. Να συµπληρώσετε τις παραπάνω εξισώσεις.

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Σχάση. X (x, y i ) Y 1, Y 2 1.1

ΕΚΦΩΝΗΣΕΙΣ. Στις παρακάτω ερωτήσεις 1-4, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα, το γράµµα που αντιστοιχεί στη σωστή απάντηση.

Γ' ΤΑΞΗ ΓΕΝ.ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ

Θέµατα Φυσικής Γενικής Παιδείας Γ Λυκείου 2000

Γενικά χαρακτηριστικά των πυρήνων (Φορτίο, Μάζα, Σταθερότητα) Ισότοπα και Πυρηνικές αντιδράσεις Ραδιενέργεια. Α. Λιόλιος Μάθημα Πυρηνικής Φυσικής

ΕΚΦΩΝΗΣΕΙΣ. Στις παρακάτω ερωτήσεις 1-4, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα, το γράµµα που αντιστοιχεί στη σωστή απάντηση.

Transcript:

Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2013-14) Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 4 α) Άλφα διάσπαση β) Σχάση και σύντηξη Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Πυρηνική & Στοιχειώδη Ι, Αριστοτέλειο Παν. Θ/νίκης, 4 Νοεμβρίου 2013

Tην προηγούμενη φορά είδαμε: α) την κοιλάδα β-σταθερότητας (= ποιό είναι το σταθερότερο Ζ για κάθε συγκεκριμένο Α) και β) την ενέργεια σύνδεσης ανά νουκλεόνιο (=έχοντας διαλέξει το σταθερότερο Ζ για κάθε Α, ποιό είναι το σταθερότερο Α από όλα;) Α.Π.Θ - 4 Νοε. 2013 Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 4α: άλφα διάσπαση 2

Κοιλάδα β-σταθερότητας Σχήμα 4.6 στο βιβλίο σας Ν Ζ < Α/2 Για κάθε Α, τα β-σταθερά νουκλίδια είναι στη μαύρη ζώνη ( κοιλάδα σταθερότητας - valuey of stability ). Αυτά που είναι μακρυά απ'την κοιλάδα, πάνε προς αυτήν με διασπάσεις β + (= e + ) ή β - (= e - ) Για A=σταθερό: Οι πυρήνες διαφέρουν ως προς το Ζ (και N) Ζ N unstable to β- decay valley of stability unstable to β+ decay (or e- capture) Z Α.Π.Θ - 4 Νοε. 2013 Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 4α: άλφα διάσπαση 3

Ενέργεια σύνδεσης ανά νουκλεόνιο 5 6 Fe Α.Π.Θ - 4 Νοε. 2013 Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 4α: άλφα διάσπαση 4

α και β διάσπαση: οι πυρήνες αλλάζουν Η α διάσπαση μας μεταφέρει πάνωκάτω στην κοιλάδα σταθερότητας Η β διάσπαση μας μεταφέρει προς την κοιλάδα σταθερότητας Ραδιενεργή σειρά του 2 3 8 9 2 U Αριθμός νετρονίων Ν+1 Ν Ν-1 Ν - 2 β α β + Ζ - 2 Ζ Ζ+1 ή σύλληψη ηλεκτρονίου Αριθμός πρωτονίων Ζ Υπάρχουν επίσης οι σειρές των: 2 3 7 9 3 Np, 2 3 5 9 2 U, 2 3 5 9 0 Th Α.Π.Θ - 4 Νοε. 2013 Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 4α: άλφα διάσπαση 5

α-διάσπαση Σήμερα Βιβλίο C&G, Κεφ. 6, παρ. 6.1, 6.2 και 6.3 Σημειώσεις Πυρηνικής, Κεφ. 5, παρ 5.1 Αυθόρμητη σχάση Βιβλίο C&G, Κεφ. 6, παρ. 6.3, Επαγώμενη σχάση παρ. 9.1 Σημειώσεις Πυρηνικής, Κεφ. 7 Σύντηξη Βιβλίο C&G, Κεφ. 10, παρ. 10.1 Ιστοσελίδα: http://www.physics.auth.gr/course/show/125 Α.Π.Θ - 4 Νοε. 2013 Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 4α: άλφα διάσπαση 6

Διασπάσεις α Τι βλέπουμε απ' έξω α-διάσπαση: M(A,Z) M(A-4, Z-2) + α + Q ( Μητρικός Θυγατρκός + α + Q ) Οπότε: Z Mp + N Mn B(A,Z) = (Z-2) Mp + (N-2) Mn B(A-4,Z-2) + 2 Mp + 2 Mn B( 4 He) Κι έτσι: + Q Από τον πίνακα 4.2 του βιβλίου σας Q = B(A-4,Z-2) + 28.3 MeV B(A,Z) Α.Π.Θ - 4 Νοε. 2013 Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 4α: άλφα διάσπαση 7

α-διάσπαση Πώς συμβαίνει; Θα δούμε πρώτα την περίπτωση ενός σωματιδίου α που κινείται προς έναν πυρήνα Με τι ενέργεια έρχεται το α? Τι δυναμικό βλέπει? Σε τι απόσταση φτάνει? Μετά: α-διάσπαση πυρήνων και χρόνοι ζωής τους Α.Π.Θ - 4 Νοε. 2013 Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 4α: άλφα διάσπαση 8

Άκσηση1: α από Πολώνιο-210 σε στόχο μολύβδου-206 Άσκηση 1 α) Υπολογίστε από τον ημιεμπειρικό τύπο μάζας την κινητική ενέργεια σωματιδίου α που εκπέμπεται από 2 1 0 8 4 Po 2 0 6 8 2 Pb + α β) Συγκρίνετε με την πειραματική τιμή και χρησιμοποιήστε την πειραματική τιμή εφ' εξής γ) Παμετροποιήστε τις κινητικές ενέργειες των α, σαν συνάρτηση του Ζ των μητρικών πυρήνων. δ) Ποιά είναι η πλησιέστερη απόσταση που μπορεί να φτάσει ένα τέτοιο σωμάτιο α σε πυρήνες μολύβδου 2 0 6 8 2 Pb? ε) Πόσο μεγάλο είναι το φράγμα Coulomb που συναντά το σωμάτιο α πλησιάζοντας τον πυρήνα μολύβδου? Δίνονται: το βιβλίο σας - Παρ. 4.4, 4.5, 4.6, 6.1, 6.2 - m(n) = 939.57 MeV, m(p) = 938.27 MeV Α.Π.Θ - 4 Νοε. 2013 Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 4α: άλφα διάσπαση 9

1α,β) Διασπάση α: 2 1 0 8 4 Po 2 0 6 8 2 Pb + α Q = B(A-4,Z-2) + 28.3 MeV B(A,Z) Από τον ημιεμπειρικό τύπο μάζας (δηλ., ενέργειας σύνδεσης): B( 2 0 6 Pb) = B(Z=82, A= 206) = 1611.874 MeV 8 2 B( 2 1 0 Po) = B(Z=84, A= 210) = 1636.054 MeV 8 4 Q = 1611.874 + 28.3 1636.054 = 4.12 MeV Πώς συγκρίνεται αυτός ο υπολογισμός με την πειραματική τιμή; 5.41 MeV Από φασματογράφους μάζας και την απόσταση που διανύουν τα α μέχρι να χάσουν όλη τους την ενέργεια με ιονισμούς ατόμων στο διάβα τους (de/dx) Α.Π.Θ - 4 Νοε. 2013 Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 4α: άλφα διάσπαση 10

1γ) α-διάσπαση: παραμετροποίηση των Q-values Q = B(A-4,Z-2) + 28.3 MeV B(A,Z) Β(Α,Ζ) = a A - b A 2 / 3 - s (Α-2Z) 2 / A - d Z 2 / A 1 / 3 - δ / A 1 / 2 Q = f(a,z), δηλ. συνάρτηση των Α και Ζ Α.Π.Θ - 4 Νοε. 2013 Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 4α: άλφα διάσπαση 11

1γ) α-διάσπαση: παραμετροποίηση των Q-values Q = B(A-4,Z-2) + 28.3 MeV B(A,Z) Β(Ζ,Ν) = a A - b A 2 / 3 - s (Α-2Z) 2 / A - d Z 2 / A 1 / 3 - δ / A 1 / 2 Για πυρήνες στην κοιλάδα β-σταθερότητας: A Z = 1.983 0.0153 A 2 / 3 Q = f(a) δηλ. συνάρτηση μόνο του Α Αγνοώντας τον όρο ζευγαρώματος, παίρνουμε τη συνάρτηση που παραμετροποιεί τα Q-values σαν συνάρτηση του Α Α.Π.Θ - 4 Νοε. 2013 Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 4α: άλφα διάσπαση 12

1γ) α-διάσπαση: παραμετροποίηση των Q-values Q = B(A-4,Z-2) + 28.3 MeV B(A,Z) Β(Ζ,Ν) = a A - b A 2 / 3 - s (Α-2Z) 2 / A - d Z 2 / A 1 / 3 - δ / A 1 / 2 Για πυρήνες στην κοιλάδα β-σταθερότητας: A Z = 1.983 0.0153 A 2 / 3 Q = f(a) δηλ. συνάρτηση μόνο του Α (ή μόνο του Ζ, αφού τα Α και Ζ συνδέονται) Αγνοώντας τον όρο ζευγαρώματος, παίρνουμε τη συνάρτηση που παραμετροποιεί τα Q-values σαν συνάρτηση του Α ή του Ζ των μητρικών πυρήνων που βρίσκονται στην κοιλάδα β-σταθερότητας Α.Π.Θ - 4 Νοε. 2013 Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 4α: άλφα διάσπαση 13

1γ) α-διάσπαση: παραμετροποίηση των Q-values Q = B(A-4,Z-2) + 28.3 MeV B(A,Z) Β(Α,Ζ) = a A - b A 2 / 3 - s (Α-2Z) 2 / A - d Z 2 / A 1 / 3 - δ / A 1 / 2 Για πυρήνες στην κοιλάδα β-σταθερότητας: A Z = 1.983 0.0153 A 2 / 3 Σύμφωνα με την προσσέγγιση που κάναμε: στοιχεία με Z<63 (A<151) δίνουν Q<0 και δεν κάνουν α-διάσπαση Αγνοώντας τον όρο ζευγαρώματος, παίρνουμε τη γραμμή που παραμετροποιεί τα Q-values σαν συνάρτηση του Ζ των μητρικών πυρήνων. Σχήμα 6.1 στο βιβλίο σας Α.Π.Θ - 4 Νοε. 2013 Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 4α: άλφα διάσπαση 14

1γ) Ποιοί πυρήνες μπορούν (κατ' αρχήν) να κάνουν α-διάσπαση ; Q<0 Q>0 5 6 Fe A<151 Z<63 A>151 Z>63 Α.Π.Θ - 4 Νοε. 2013 Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 4α: άλφα διάσπαση 15

Άσκηση 1α,β: α-διάσπαση (Po), κινητική ενέργεια του α Τα σωμάτια α από την πηγή Πολωνίου (Po: Z=84, A=210) έχουν κινητική ενέργεια Τ ~ 4.1 MeV (πειραματικά είναι 5.41 MeV) (σχήμα 6.1 για Ζ=84, και πίνακας 6.1, υποθέτοντας Q=Τ του α) Πινακας 6.1 στο βιβλίο σας Α.Π.Θ - 4 Νοε. 2013 Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 4α: άλφα διάσπαση 16

Παρένθεση: γιατί λέμε ότι το α παίρνει όλο το Q-value της αντίδρασης; H ενέργεια Q μοιράζεται στα προϊόντα της διάσπασης (D,α) T D T α = M A, Z M A 4, Z 2 M 4,2 c 2 =Q (θεωρώντας μή σχετικιστικές ενέργειες) διατήρηση ενέργειας: διατήρηση ορμής: T D = 1 2 M D u D 2 T α = 1 2 M α u α 2 M D u D =M α u α u D = M α M D u α T α = A 4 A Q T D = 4 A Q T α >> T D Α.Π.Θ - 4 Νοε. 2013 Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 4α: άλφα διάσπαση 17

Άσκηση 1δ-ε: Δυναμικό που βλέπει το α καθώς πλησιάζει το Pb Το α έρχεται από δεξιά με κινητική ενέργεια T~Q, συναντά την ηλερομαγνητική άπωση του πυρήνα και σταματά σε απόσταση r C μη μπροοντας να σκαρφαλώσει το φράγμα Coulomb Η δυναμική ενέργεια Coulomb γίνεται μέγιστη, με τιμή V B, όταν οι δύο πυρήνες (Pb και α) εφάπτονται σε απόσταση r s : από εκεί και μετά η ισχυρή αλληλεπίδραση γίνεται σημαντική και αν το α περνούσε θα βρισκόνταν στο πηγάδι δυναμικού του πυρήνα Pb α V B Πυρήνας α Α.Π.Θ - 4 Νοε. 2013 Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 4α: άλφα διάσπαση 18

Άσκηση 1δ: Απόσταση εγγύτερης προσέγγισης στο Pb Το α προχωράει μέχρι που όλη η κινητική του ενέργεια (Τ ~ Q) να γίνει δυναμική ενέργεια Coulomb Q= Q=a 2 Z ħ c r C 2 e Ze r C Q= e2 ħ c 2 Z ħ c r C r C =a 2 Z ħ c Q = 1 137 α=1/137 =a 2 Z ħ c r C 2 82 197 MeV fm 5.41 MeV r C =43.6 fm Pb α Πυρήνας α Το σωμάτιο α προσεγγίζει πολύ πιό κοντά από την ακτίνα του ατόμου (R=10000 fm), αλλά δεν "ακουμπάει τον πυρήνα (R=6.5 fm) Α.Π.Θ - 4 Νοε. 2013 Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 4α: άλφα διάσπαση 19

Άσκηση 1ε: Φράγμα Coulomb Pb και α Πόσο μεγάλο είναι το φράγμα (V B ) σε ενέργεια? Μπορεί το α να το σκαρφαλώσει και να περάσει μέσα στον πυρήνα? Το δυναμικό Coulomb είναι μέγιστο ( φράγμα V B ) όταν το α εφάπτεται στον πυρήνα. Δηλαδή όταν η απόσταση από το κέντρο του α μέχρι το κέντρο του πυρήνα έιναι R a + R Pb, όπου R a και R Pb είναι οι ακτίνες των πυρήνων α και Pb, αντίστοιχα. R=1.1 A 1 /3 fm R Pb =1.1 2061/ 3 fm=6.5 fm R a =1.1 4 1 /3 fm=1.7 fm r s =R a = R Pb =8.2 fm V B = 2 e Ze r s =a 2 Z ħ c r s = 1 137 2 82 197 MeV fm 8.2 fm =28.8 MeV Κλασσικά: όταν ένα σωματίδιο α έχει κινητική ενέργεια Τ<V B Τ<28.8 MeV, τότε δεν μπορεί να μπεί στον πυρήνα... (ή να βγεί από αυτόν, αν είναι ήδη μέσα) Α.Π.Θ - 4 Νοε. 2013 Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 4α: άλφα διάσπαση 20

α-διάσπαση: σχηματισμός και εκπομπή Δύο νετρόνια και δύο πρωτόνια συσωματόνονται σε ένα α Τα νετρόνια φεύγουν από το δικό τους πηγάδι δυναμικού και τα πρωτόνια από το δικό τους Σχηματισμός του α: ενεργειακά προτιμιτέος σχηματισμός Έτσι μπορούμε να σκεφτούμε τον αρχικό πυρήνα (Α,Ζ) να έχει γίνει δύο αντικείμενα: Μ(Α,Ζ) Μ(Α-4, Ζ-2) + α + Q Α.Π.Θ - 4 Νοε. 2013 Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 4α: άλφα διάσπαση 21

α-διάσπαση: σχηματισμός και εκπομπή Δύο νετρόνια και δύο πρωτόνια συσωματόνονται σε ένα α Τα νετρόνια φεύγουν από το δικό τους πηγάδι δυναμικού και τα πρωτόνια από το δικό τους Σχηματισμός του α: ενεργειακά προτιμιτέος σχηματισμός Έτσι μπορούμε να σκεφτούμε τον αρχικό πυρήνα (Α,Ζ) να έχει γίνει δύο αντικέιμενα: Μ(Α,Ζ) Μ(Α-4, Ζ-2) + α + Q Το α όμως έχει ενέργεια λίγη ενέργεια (Q ~ 5MeV) σε σχέση με το φράγμα Coulomb (V B ~30 MeV) βλέπε άσκηση 8 πριν. Άρα, μόνο με το κβαντομηχανικό φαινόμενο σύραγγας μπορεί να βγεί, και από την απόσταση r s να βρεθεί ελεύθερο στην επιτρεπτή περιοχή r > r C Α.Π.Θ - 4 Νοε. 2013 Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 4α: άλφα διάσπαση 22

φαινόμενο σύραγγας Α.Π.Θ - 4 Νοε. 2013 Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 4α: άλφα διάσπαση 23

α-διάσπαση: φαινόμενο σύραγγας Εκθετική μείωση ψ r πυρήνας φράγμα Ροή σωματιδίων α Α.Π.Θ - 4 Νοε. 2013 Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 4α: άλφα διάσπαση 24

α-διάσπαση: φαινόμενο σύραγγας Α.Π.Θ - 4 Νοε. 2013 Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 4α: άλφα διάσπαση 25

α-διάσπαση: σχηματισμός και εκπομπή Sn=Sp = Eδιαχωρ 6 MeV ανά νουκλεόνιο για βαρείς πυρήνες Β( 4 2α)=28.3 MeV > 4*6MeV Κλασσικά απαγορευμένη περιοχή για το α r s r C Neutrons Protons Alphas Α.Π.Θ - 4 Νοε. 2013 Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 4α: άλφα διάσπαση 26

α-διάσπαση: εκπομπή Το α μπορεί να ελευθερωθεί μόνο με το κβαντομηχανικό φαινόμενο σύραγγας, και από την απόσταση r s να βρεθεί ελεύθερο στην επιτρεπτή περιοχή r > r C Πιθανότητα να περάσει την κλασσικά απαγορευμένη περιοχή = (πιθανότητα να βρεθει σε r C ) / (πιθανότητα να βρεθεί σε r s ) = f(r) = πλάτoς κυμματοσυνάρτησης στη θέση r To G εξαρτάται απ'την ενέργεια Q του α Α.Π.Θ - 4 Νοε. 2013 Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 4α: άλφα διάσπαση 27

α-διάσπαση: εκπομπή Το α μπορεί να ελευθερωθεί μόνο με το κβαντομηχανικό φαινόμενο σύραγγας, και από την απόσταση r s να βρεθεί ελεύθερο στην επιτρεπτή περιοχή r > r C Πιθανότητα να περάσει την κλασσικά απαγορευμένη περιοχή = (πιθανότητα να βρεθει σε r C ) / (πιθανότητα να βρεθεί σε r s ) = f(r) = πλάτoς κυμματοσυνάρτησης στη θέση r G To G εξαρτάται απ'την ενέργεια Q του α r C =a 2 Z ħ c Q Α.Π.Θ - 4 Νοε. 2013 Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 4α: άλφα διάσπαση 28

α-διάσπαση: χρόνοι ζωής μητρικών Πιθανότητα α-διασπασης ανά μονάδα χρόνου (1/τ) = Πιθανότητα σχηματισμού του σωματιδίου α ανά μονάδα χρόνου (1/τ 0 ) * πιθανότητα διέλευσης από φράγμα Coulomb με φαινόμενο σύραγγας (e -G ) 1 τ = 1 e G τ =τ 0 e G τ 0 Μέσος χρόνος ζωής (παρ. 2.3) μητρικού πυρήνα Μεγάλη εξάρτηση από ενέργεια (Q) του α Πειραματικά, από προσαρμογή στις μετρήσεις: τ 0 =7 10 23 s Α.Π.Θ - 4 Νοε. 2013 Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 4α: άλφα διάσπαση 29

α-διάσπαση: χρόνοι ζωής μητρικών Πιθανότητα α-διασπασης ανά μονάδα χρόνου (1/τ) = Πιθανότητα σχηματισμού του σωματιδίου α ανά μονάδα χρόνου (1/τ 0 ) * πιθανότητα διέλευσης από φράγμα Coulomb με φαινόμενο σύραγγας (e -G ) 1 τ = 1 e G τ =τ 0 e G τ 0 Μέσος χρόνος ζωής (παρ. 2.3) μητρικού πυρήνα Μεγάλη εξάρτηση από ενέργεια (Q) του α Geiger-Nuttal Plot (xρόνος ημίσειας ζωής vs. Q) Πειραματικά, από προσαρμογή στις μετρήσεις: τ 0 =7 10 23 s Για Q<4 MeV, μέχρι και το Bi (Z=83), οι χρόνοι ζωής είναι πολύ μεγαλύτεροι της ηλικίας της γής Q Α.Π.Θ - 4 Νοε. 2013 Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 4α: άλφα διάσπαση 30

α-διάσπαση: χρόνοι ζωής μητρικών Πινακας 6.1 στο βιβλίο σας Μετρήσεις Θεωρία τ =τ 0 e G Σημείωση: γενικά πολύ καλή περιγραφή, αλλά συνεισφορές από φαινόμενα σχετικά με τους πυρηνικούς φλοιούς O(1 MeV) μπορούν να αλλάξουν αρκετά τα Q-values ή τη σταθερότητα ώστε οι χρόνοι ζωής να είναι πολύ διαφορετικοί από την πρόβλεψη Α.Π.Θ - 4 Νοε. 2013 Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 4α: άλφα διάσπαση 31

α-διάσπαση: χρόνοι ζωής μητρικών Πινακας 6.1 στο βιβλίο σας Μετρήσεις Θεωρία τ =τ 0 e G Α Ραδιενεργή σειρά του 2 3 8 9 2 U Σημείωση: γενικά πολύ καλή περιγραφή, αλλά συνεισφορές από φαινόμενα σχετικά με τους πυρηνικούς φλοιούς O(1 MeV) μπορούν να αλλάξουν αρκετά τα Q-values ή τη σταθερότητα ώστε οι χρόνοι ζωής να είναι πολύ διαφορετικοί από την πρόβλεψη Ζ Υπάρχουν επίσης οι σειρές των: 2 3 7 9 3 Np, 2 3 5 9 2 U, 2 3 5 9 0 Th Α.Π.Θ - 4 Νοε. 2013 Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 4α: άλφα διάσπαση 32

α-διάσπαση: γραμμικό φάσμα Μ(Α,Ζ) Μ(Α-4, Ζ-2) + α + Q Φάσμα α = γραμμικό (σε αντίθεση με συνεχές ) τιμές του Q = συγκεκριμένες Μονοενεργειακές, αν οι πυρήνες ήταν πάντα στη βασική κατάσταση: η ενέργεια του α, μας λέει από ποιά διάσπαση προήλθε Α.Π.Θ - 4 Νοε. 2013 Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 4α: άλφα διάσπαση 33

α-διάσπαση: γραμμικό φάσμα Τα εκπεμόμενα α είναι μονοενεργειακά, αν οι πυρήνες ήταν πάντα στη βασική κατάσταση: αλλά δεν είναι πάντα έτσι μπορείς να έχεις μια ομάδα σωματίων α με διακριτές τιμές ενεργειών: Αν το α εκπέμπεται από διεγερμένη κατάσταση του μητρικού (ή πρός διεγερμένη κατάσταση του θυγατρικού), τότε το Q είναι λίγο μεγαλύτερο (ή μικρότερο), κατά συγκεριμένη ποσότητα όμως Αναλογία με τα φωτόνια που εκπέμπονται από τις κβαντισμένες ενεργειακές στάθμες των ατόμων, κι έτσι έχουν συγκεκριμένες ενέργειες. Α.Π.Θ - 4 Νοε. 2013 Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 4α: άλφα διάσπαση 34

Σχετικιστική κινηματική: Σχετικιστική κινηματική E = mc 2 = η ενέργεια πού έχω επειδή απλά και μόνο έχω μάζα m ενέργεια μάζα c = ταχύτητα του φωτός Η μάζα είναι μια μορφή ενέργειας γενικά, με κινητική ενέργεια Κ, έχουμε : E =Κ m c 2 E=m γ c 2, όπου γ = 1, και β= υ/c, με υ=ταχύτητα 2 1 β μ p=m γ υ =m γ β c, ό π ο υ p= ο ρ μή σω ατιδίου E 2 = pc 2 m c 2 2 E [MeV], p [MeV/c], m [MeV/c 2 ] Σ η μ ε ί ω σ η : μ εc = 1, γράφουε μ : E 2 =p 2 +m 2, κ λ π. Α.Π.Θ - 4 Νοε. 2013 Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 4α: άλφα διάσπαση 35

Μονάδες c= 3 10 8 m/s μ ονάδα ταχύτητας 1 μ ονάδαενέργειας ev =1.6 10 19 Cb V =1.6 10 19 Joule Συνήθως χρησιμοποιούμε το MeV (= 10 6 ev) Σταθερά του Plank = h = ħ c=197 MeVfm, ό π ο ħ= υ h 6.626 x 10-3 4 J s 2π μ ονάδαδράσης ενέργειας χρόνου 1 α= e 2 e2 [mks ]= 4 πε 0 ħ c ħ c [cgs]= 1 137 α = η σταθερά λεπής υφής = 1/137 Θα χρησιμοποιούμε παντού: ev για ενέργεια (ή MeV στην πυρηνική), 1/4πε 0 = 1 σε όλους τους τύπους, και θα βάζουμε: e 2 =αħ c, όπου α=1/137 Μετράμε: ħ c=197 MeV fm Μάζα: MeV/c 2 (αφού Ε = mc 2 ) Ορμή: MeV/c (αφού p = mγβc) Χρόνο σε: 1/MeV (αφού η μονάδα δράσης = Ενέργεια * Xρόνος = 1) Μήκος σε: μονάδες χρόνου = 1/MeV (αφού η μονάδα ταχύτητας=1) 1 amu = 1/12 μάζας ουδέτρου ατόμου 12 C = 931.5 MeV/c 2 Mάζα ηλεκτρονίου = 0.511 MeV/c 2 Μάζα πρωτονίου = 938.3 MeV/c 2, Μάζα νετρονίου = 939.6 MeV/c 2 Α.Π.Θ - 4 Νοε. 2013 Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 4α: άλφα διάσπαση 36