Higher Order Visual Processing in the primate brain
Projection of the visual field on the retina Retina
Οπτικό νεύρο περιέχει ίνες που προέρχονται από ένα μάτι Οπτικό χίασμα αλλά μεταφέρουν πληροφορία και από τα δύο οπτικά ημιπεδία Οπτική ταινία: περιέχει ίνες που προέρχονται και από τα δύο μάτια αλλά μεταφέρουν πληροφορία από το ετερόπλευρο οπτικό ημιπεδίο
Υποθάλαμος Έξω γονατώδες σώμα Προτετραδιμυκός πυρήνας (pretectum) Άνω διδύμιο
Visual deficits from damage at different points along the primary visual pathway
Visual deficits from damage at different points along the primary visual pathway
Visual deficits from damage at different points along the primary visual pathway Bitemporal (heteronomous) hemianopsia
Visual deficits from damage at different points along the primary visual pathway Bitemporal (heteronomous) hemianopsia Left homonymous hemianopsia
Course of the optic radiation to the striate cortex
Visual deficits from damage at different points along the primary visual pathway Bitemporal (heteronomous) hemianopsia Left homonymous hemianopsia Left superior quadrantanopsia
Organizational Principles of Visual Projections Retinotopy Neighboring cells in the retina feed information to neighboring places in their target structures
Visual field representation in V1 Retinotopy but..: Distortion (e.g. central vs peripheral representation) When the retina is stimulated by a point of light the activity in striate cortex is a broad distribution with a peak at the corresponding retinotopic location
Φυσιολογία V1 Διοφθάλμια υποδεκτικά πεδία κύτταρα αποκρίνονται σε ερεθισμό και των δύο ματιών. Επιλεκτικότητα για προσανατολισμό ερεθίσματος. Επιλεκτικότητα για κατεύθυνση κίνησης. Απλά και Πολύπλοκα υποδεκτικά πεδία (simple and complex) Ανάλυση χρώματος blobs Οργάνωση σε στήλες (οφθαλμικής επικράτησης, προσανατολισμού)
Cytoarchitectonic subdivisions of the cerebral cortex motor cortex primary somatosensory cortex early 1900s Brodmann primary visual cortex
Macaque Cortex CORTEX: 52% visual, 10% somatosensory, 3% auditory, 8% motor, 1% olfactory) Van Essen, The Visual Neurosciences, Chapter 32, 2004
Human Cortex CORTEX: 27% visual, 7% somatosensory, 8% auditory, 7% motor)
Felleman and Van Essen 1991 Van Essen, Anderson and Felleman Science 1992
Too many visual areas (24, 32, 10-12) WHY?
Color Shape Depth Motion
Two visual pathways Dorsal and Ventral
Two visual pathways Dorsal and Ventral Posterior Parietal MST MT V3 V2 V1 Inferior Temporal (IT) V4
Posterior Parietal MST MT V3 V2 V1 Inferior Temporal (IT) V4
PRIMARY VISUAL CORTEX (V1) (cytochrome oxidase histology) blobs: color processing interblobs: high spatial resolution form processing layer 4B: direction-selectivity interblob blob
Parallel streams of visual processing V1 V2 blob Layer 4B thin stripe interblob interstripe thick stripe
Parallel streams of visual processing V1 V2 V4, MT blob Layer 4B thin stripe interblob interstripe thick stripe V4 MT
Parallel streams of visual processing
Ventral Pathway Parallel streams of visual processing Dorsal Pathway Posterior Parietal Lobe
Mixing of K, P and M pathways within V1 and origins of projections to higher areas Shipp Vis Neurosci 2005
The dorsal and ventral cortical streams cannot be viewed as an extension of the M and P retinogeniculate pathways Predominance of M or P input in the dorsal and ventral pathways, respectively. Experiment?????
WHERE spatial localization Ungerleider and Mishkin (1982) WHAT object recognition
identity vs location Mishkin, Ungerleider and Macko Trends Neurosci 1983
HOW Vision for action WHAT Vision for perception Milner and Goodale 1992
Goodale and Milner Nature 1991
V1 V2 V3 MT V4 Ραχιαία Οδός: ΠΟΥ, ΟΠΤΙΚΗ ΠΛΗΡΟΦΟΡΙΑ ΓΙΑ ΡΑΣΗ Οπίσθιος βρεγματικός λοβός Κάτω κροταφικός λοβός (ΙΤ) Κοιλιακή Οδός: ΤΙ, ΑΝΑΓΝΩΡΙΣΗ ΑΝΤΙΚΕΙΜΕΝΩΝ
Visual Illusions Muller-Lyer illusion Kanizsa triangle
Responses of V2 cells to illusory contours
Posterior Parietal MST MT V3 V2 V1 Inferior Temporal (IT) V4
MT Middle Temporal area (V5) 95% of the neurons selective for the direction of motion Receives input from layer 4B of V1 as well as from the thick stripes of V2 RFs ten times wider than those of cells in V1 directional specificity organized into vertical columns
The aperture problem
Microstimulation of ΜΤ affects perception of motion
Two techniques that can assess causal relationship between brain activity and behavior lesions (necessary) microstimulation (sufficient)
Posterior Parietal MST MT V3 V2 V1 Inferior Temporal (IT) V4
V4 Receives input from the blob and interblob regions of striate cortex via a relay in V2 RFs are larger than those in V1 and V2 Cells display orientation and color selectivity => shape and color perception Lesions in the human analogue of V4 result in achromatopsia
Posterior Parietal MST MT V3 V2 V1 Inferior Temporal (IT) V4
IT No clear retinotopic organization Very large RFs covering both visual hemifields => position invariance Sensitive to shape and color Cells respond to abstract shapes and complex stimuli (e.g. hands, faces) Damage in IT results in prosopagnosia
Face selective cells in IT
Face selective cells in IT
Face selective cells in IT
Fusiform Face Area (FFA) in humans
How does visual perception come about from the concerted action of individual neurons? Which neurons in which areas determine what we perceive? How and where does integration take place?
Going higher in the visual hierarchy we encounter larger RFs and processing of more complex stimuli Rolls, ET, Visual Neurosciences 1992
A hierarchy of visual areas in the macaque based on laminar patterns of anatomical connections Van Essen, Anderson and Felleman Science 1992
Multiple visual areas defined on the basis of anatomy and function Two visual pathways with different properties and functions but with extensive crossconnections. Parallel processing throughout the visual system=> division of labor for perception: within a given cortical area many broadly tuned cells may serve to represent features of objects
Contralateral (hemispatial) neglect syndrome Inability to report or respond to stimuli presented on the side opposite to the lesion. Usually a result of damage to the RIGHT parietal lobe
Optic ataxia