The Properties of Fuzzy Relations

Σχετικά έγγραφα
Galois and Residuated Connections on Sets and Power Sets

Homomorphism in Intuitionistic Fuzzy Automata

Commutative Monoids in Intuitionistic Fuzzy Sets

A Note on Intuitionistic Fuzzy. Equivalence Relation

THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS. Daniel A. Romano

2 Composition. Invertible Mappings

Intuitionistic Fuzzy Ideals of Near Rings

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Homomorphism of Intuitionistic Fuzzy Groups

Congruence Classes of Invertible Matrices of Order 3 over F 2

Example Sheet 3 Solutions

Homomorphism and Cartesian Product on Fuzzy Translation and Fuzzy Multiplication of PS-algebras

Generating Set of the Complete Semigroups of Binary Relations

Every set of first-order formulas is equivalent to an independent set

Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008

C.S. 430 Assignment 6, Sample Solutions

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Reminders: linear functions

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Chapter 3: Ordinal Numbers

The k-α-exponential Function

A Lambda Model Characterizing Computational Behaviours of Terms

A Note on Characterization of Intuitionistic Fuzzy Ideals in Γ- Near-Rings

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

arxiv: v1 [math.gn] 24 Oct 2010

SOME PROPERTIES OF FUZZY REAL NUMBERS

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS

Fractional Colorings and Zykov Products of graphs

Intuitionistic Supra Gradation of Openness

Other Test Constructions: Likelihood Ratio & Bayes Tests

5. Choice under Uncertainty

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Statistical Inference I Locally most powerful tests

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

On the Galois Group of Linear Difference-Differential Equations

On Intuitionistic Fuzzy LI -ideals in Lattice Implication Algebras

Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

The k-bessel Function of the First Kind

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

GÖKHAN ÇUVALCIOĞLU, KRASSIMIR T. ATANASSOV, AND SINEM TARSUSLU(YILMAZ)

λρ-calculus 1. each λ-variable is a λρ-term, called an atom or atomic term; 2. if M and N are λρ-term then (MN) is a λρ-term called an application;

Tridiagonal matrices. Gérard MEURANT. October, 2008

Lecture 34 Bootstrap confidence intervals

Some new generalized topologies via hereditary classes. Key Words:hereditary generalized topological space, A κ(h,µ)-sets, κµ -topology.

Abstract Storage Devices

ST5224: Advanced Statistical Theory II

A General Note on δ-quasi Monotone and Increasing Sequence

Fuzzifying Tritopological Spaces

SEMIGROUP ACTIONS ON ORDERED GROUPOIDS. 1. Introduction and prerequisites

SOME INTUITIONISTIC FUZZY MODAL OPERATORS OVER INTUITIONISTIC FUZZY IDEALS AND GROUPS

4.6 Autoregressive Moving Average Model ARMA(1,1)

Uniform Convergence of Fourier Series Michael Taylor

1. Introduction and Preliminaries.

EE512: Error Control Coding

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

w o = R 1 p. (1) R = p =. = 1

Problem Set 3: Solutions

Space-Time Symmetries

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS

Affine Weyl Groups. Gabriele Nebe. Summerschool GRK 1632, September Lehrstuhl D für Mathematik

The Simply Typed Lambda Calculus

Cyclic or elementary abelian Covers of K 4

New bounds for spherical two-distance sets and equiangular lines

MINIMAL INTUITIONISTIC GENERAL L-FUZZY AUTOMATA

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Numerical Analysis FMN011

F A S C I C U L I M A T H E M A T I C I

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

On a four-dimensional hyperbolic manifold with finite volume

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

6.3 Forecasting ARMA processes

n=2 In the present paper, we introduce and investigate the following two more generalized

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Operation Approaches on α-γ-open Sets in Topological Spaces

ON FUZZY BITOPOLOGICAL SPACES IN ŠOSTAK S SENSE (II)

PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1)

Divergence for log concave functions

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method

CRASH COURSE IN PRECALCULUS

Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ΚΒΑΝΤΙΚΟΙ ΥΠΟΛΟΓΙΣΤΕΣ

Matrices and Determinants

Solutions to Exercise Sheet 5

D Alembert s Solution to the Wave Equation

Iterated trilinear fourier integrals with arbitrary symbols

Homework 8 Model Solution Section

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

On Annihilator of Fuzzy Subsets of Modules

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Spherical Coordinates

On the k-bessel Functions

Transcript:

International Mathematical Forum, 5, 2010, no. 8, 373-381 The Properties of Fuzzy Relations Yong Chan Kim Department of Mathematics, Gangneung-Wonju National University Gangneung, Gangwondo 210-702, Korea yck@gwnu.ac.kr Young Sun Kim Department of Applied Mathematics, Pai Chai University Dae Jeon, 302-735, Korea yskim@pcu.ac.kr Abstract We investigate the relations between fuzzy relations and maps on fuzzy sets. Moreover, we give their examples. Mathematics Subject Classification: 03E72, 03G10, 06A15, 06F07 Keywords: Complete residuated lattice, Fuzzy relations, -equivalence relation 1 Introduction Jacas and Recasens [7] introduced the notion of fuzzy T-equivalence relation on t-norm. Recently, Höhle [5,6] developed the algebraic structures and many valued topologies in a sense of quantales and cqm-lattices. Bělohlávek [1-3] investigate the properties of fuzzy relations and similarities on a residual lattice which supports part of foundation of theoretic computer science. In this paper, we investigate the relationships between fuzzy relations L ) and maps on fuzzy sets L ) L ) on a complete residuated lattice. Moreover, we give their examples. 2 Preliminaries Definition 2.1 [1-3,9] A triple L,, ) is called a complete residuated lattice iff it satisfies the following conditions:

374 Yong Chan Kim and Young Sun Kim L1) L =L,, 1, 0) is a complete lattice where 1 is the universal upper bound and 0 denotes the universal lower bound; L2) L,, 1) is a commutative monoid; L3) is distributive over arbitrary joins, i.e. a i ) b = i b). i Γ i Γa Define an operation as a b = {c L a c b}, for each a, b L. Example 2.2 [1-3,9] 1) Each frame L,, ) is a complete residuated lattice. 2) The unit interval with a left-continuous t-norm t, [0, 1],,t), is a complete residuated lattice. 3) Define a binary operation on [0, 1] by x y = max{0,x+ y 1}. Then [0, 1],, ) is a complete residuated lattice. Let L,, ) be a complete residuated lattice. A order reversing map : L L defined by a = a 0 is called a strong negation if a = a for each a L. Lemma 2.3 [1-3,9] Let L,, ) be a complete residuated lattice with a strong negation. For each x, y, z, x i,y i L, we have the following properties. 1) If y z, x y) x z), x y x z and z x y x. 2) x y x y. 3) x i Γ y i )= i Γx y i ). 4) i Γ x i ) y = i Γx i y). 5) x i Γ y i ) i Γx y i ). 6) i Γ x i ) y i Γx i y). 7) x y) z = x y z) =y x z). 8) x x y) y and x x y) y. 9) y x x y) and x x y z) y z. 10) x y) y z) x z. 11) x y =1iffx y. Definition 2.4 [1-3,7,9] Let be a set. A function R : L is called: R1) reflexive if Rx, x) = 1 for all x, R2) symmetric if Rx, y) =Ry, x), for all x, y, R3) transitive if Rx, y) Ry, z) Rx, z), for all x, y, z. If R satisfies R1) and R2), R is an -quasi-equivalence relation. If an -quasi-equivalence relation satisfies R2), R is an an -equivalence relation.

The properties of fuzzy relations 375 3 The Properties of Fuzzy Relations In this section, we investigate the relationships between L and L ) L on a complete residuated lattice L,,, ) with a strong negation. Theorem 3.1 We define a mapping Φ:L L ) L as follows: ΦR)λ)y) = λx) Rx, y). x Then we have the following properties: 1) Φ has a right adjoint mapping Λ:L ) L L as follows: Λφ )x, y) = λ L λx) φ λ)y) ). 2) ΦΛφ )) φ and Λ Φ=1 L Y. 3) Let RL )={R L Rx, x) =1, x } and E, ) = {φ L ) L λ φ λ), λ L }. Then Φ:RL ) E, ) and Λ:E, ) RL ) are well defined. 4) Let T L )={R L y Rx, y) Ry, z) Rx, z), x, z } and T, ) ={φ L ) L φ φ φ }. Then Φ:T L ) T, ) and Λ:T, ) T L ) are well defined. Proof. 1) Φ is join preserving because Φ i R i )λ)y) = x λx) i R i x, y) = i x λx) R i x, y)) = i ΦR i )λ)y). Hence Φ has a right adjoint mapping Λ as follows: Λφ )x, y) = {Rx, y) ΦR)λ)y) φ λ)y)} = {Rx, y) λx) Rx, y) φ λ)y)} = {Rx, y) Rx, y) λ L λx) φ λ)y) ) } = λ L λx) φ λ)y) ). 2) ΦΛφ ))λ)y) = x λx) Λφ )x, y) ) = x λx) ρ L ρx) φ ρ)y) )) x λx) λx) φ λ)y) )) φ λ)y).

376 Yong Chan Kim and Young Sun Kim ΛΦR))x, y) = λ Lλx) ΦR)λ)y)) = λ L λx) z λz) Rz, y)) ) ) λ L λx) λx) Rx, y)) Rx, y). Hence Λ Φ 1 L Y. Moreover, Λ Φ 1 L Y ΛΦR))x, y) 3) It easily proved. 4) from: = λ L λx) z λz) Rz, y)) ) 1 x x) z 1 x z) Rz, y)) ) =1 1 Rx, y)) = Rx, y). ΦR)ΦR))λ)y) = z ΦR)λ)z) Rz, y) = z x λx) Rx, z) ) Rz, y) = x λx) z Rx, z) Rz, y)) x λx) Rx, y)) = Φλ)y). Λφ )x, y) Λφ )y, z) = λ L λx) φ λ)y) ) ρ L ρy) φ ρ)z) ) λ L λx) φ λ)y) ) φ λ)y) φ φ λ))z) ) λ L λx) φ φ λ))z) ) λ L λx) φ λ)z) ) =Λφ )x, z). Theorem 3.2 We define a mapping Ψ:L L ) L ΨR)λ)y) = Rx, y) λx)). x as follows: Then we have the following properties: 1) Ψ has a right adjoint mapping Γ:L ) L L as follows: Γφ )x, y) = λ L 2) Ψ Γ 1 L ) L and Γ Ψ=1 L. φ λ)y) λx) ).

The properties of fuzzy relations 377 3) Let RL )={R L Rx, x) =1, x } and F, ) = {φ L ) L φ λ) λ, λ L }. Then Ψ:RL ) F, ) and Γ:F, ) RL ) are well defined. 4) Let T L )={R L y Rx, y) Ry, z) Rx, z), x, z } and I, ) ={φ L ) L φ φ φ }. Then Ψ:T L ) I, ) and Γ:I, ) T L ) are well defined. Proof. 1) Since Ψ i Γ R i )λ)y) = i Γ ΨR i )λ)y) = op i Γ ΨR i )λ)y), Ψ has a right adjoint mapping Γ with op = as follows: Γφ )x, y) = {Rx, y) ΨR)λ)y) op φ λ)y)} = {Rx, y) ΦR)λ)y) φ λ)y)} = {Rx, y) φ λ)y) Rx, y) λx)} = {Rx, y) Rx, y) λ L φ λ)y) λx)} = λ L φ λ)y) λx). 2) We have Ψ Γ 1 L ) L from ΨΓφ ))λ)y) = x Γφ )x, y) λx)) = x ρ L φ ρ)y) ρx)) λx) ) x φ λ)y) λx)) λx) ) φ λ)y). by Lemma 2.38)) We have Γ Φ 1 L Y from ΓΨR))x, y) = ) λ L ΨR)λ)y) λx) = λ L z Rz, y) λz)) λx) ) ) λ L Rx, y) λx)) λx) Rx, y). Put λ =1 x. Then ΓΨR))x, y) = λ L z Rz, y) λz)) λx) ) 3) It easily proved. 4) ΦΦR))λ)y) Rx, y) 1 x x)) 1 x x)) =Rx, y) 0) 0=Rx, y). = z Rz, y) ΦR)λ)z)) = z Rz, y) x Rx, z) λx)) = z x Rz, y) Rx, z) λx)) = x z Rz, y) Rx, z)) λx)) by Lemma 2.37)) = x z Rz, y) Rx, z)) λx)) x Rx, y) λx)) =ΦR)λ)y).

378 Yong Chan Kim and Young Sun Kim Γφ )x, y) Γφ )y, z) = λ L φ λ)y) λx) ) ρ L φ ρ)z) ρy) ) λ L φ λ)y) λx) ) φ φ λ))z) φ λ)y) ) λ L φ φ λ))z) λx) ) by Lemma 2.312)) λ L φ λ)z) λx) ) =Γφ )x, z). Theorem 3.3 We define a mapping Ω:L L ) L as follows: ΩR)λ)y) = λx) Rx, y)). x Then we have the following properties: 1) Ω has a left adjoint mapping Υ:L ) L L as follows: Υω )x, y) = λx) ω λ)y) ). λ L 2) Ω Υ 1 L ) L and Υ Ω=1 L. 3) Let RL )={R L Rx, x) =1} and G, ) ={φ L ) L λ x L λ xx) φ λ x )x) =1, x }. Then Ω:RL ) G, ) and Υ:G, ) RL ) are well defined. Proof. 1) Since Ω i Γ R i )λ)y) = i Γ ΩR i )λ)y), Ω has a left adjoint mapping Υ as follows: 2) Υω )x, y) = {Rx, y) ΩR)λ)y) ω λ)y), λ L } = {Rx, y) ω λ)y) λx) Rx, y), λ L } = {Rx, y) λx) ω λ)y) Rx, y), λ L } = λ L λx) ω λ)y). ΩΥω ))λ)y) = x λx) Υω )x, y)) = x λx) λ L λx) ω λ)y) ) x λx) λx) ω λ)y) ) = ω λ)y). Hence Ω Υ 1 L ) L. ΥΩR))x, y) = λ L λx) ΩR)λ)y) ) = λ L λx) z λz) Rz, y)) ) λ L λx) λx) Rx, y)) ) Rx, y). by Lemma 2.38))

The properties of fuzzy relations 379 Put λ =1 x. ΥΩR))x, y) = λ L λx) z λz) Rz, y)) ) λ L 1x x) z 1 x z) Rz, y)) ) = Rx, y). Hence Υ Ω=1 L. 3) Since 1 x x) ΩR)1 x )x) = 1 for R RL ) and x, ΩR) G, ). For ω G, ), Υω )x, x) = λ x L λ xx) ω λ x )x)) = 1. Hence Υω ) RL ). Example 3.4 Let [0, 1], ) be a complete residuated lattice defined as x y =x+y 1) 0. We obtain x y =1 x+y)1. Let = {x 1,x 2,x 3 } be a set and ρx 1 )=0.6,ρx 2 )=0.8,ρx 3 )=0.5. 1) We define φ ρ : L L as follows: φ ρ λ) = 1 if λ = 1, ρ if 1 λ ρ, 0 otherwise. Since φ ρ λ) λ and φ ρ φ ρ λ)) = φ ρ λ) for all λ L, by Theorem 3.23), φ ρ F, ),I, ). Since Γφ ρ )x, y) = λ L φ ρ λ)y) λx) ),we obtain a reflexive and transitive matrix Γφ ρ ) as follows: In general, Ψ Γ 1 L Since ΨΓφ ρ )) Λφ ρ )x, y) = Υφ ρ λx 1 ) λx 2 ) λx 3 ) )x, y) = λ L Λφ ρ )= Γφ ρ )= λ L because = 1 0.8 1 0.9 0.7 1 λx 1 ) λx 2 ) 0.1+λx 3 )) 0.2+λx 1 )) λx 2 ) 0.3+λx 3 )) λx 1 ) λx 2 ) λx 3 ) λx) φ ρ λ)y) ) =1 x x) φ ρ 1 x )y) =0, λx) φ ρ λ)y) ) = 1x) φ ρ Υφ ρ )= 1)y) =1,

380 Yong Chan Kim and Young Sun Kim 2) We define ψ ρ : L L as follows: ψ ρ λ) = 0 if λ = 0, ρ if 0 λ ρ, 1 otherwise. Since ψρ λ) λ and ψ ρ ψ ρ λ)) = ψ ρ λ) for all λ L, by Theorem 3.13,4), φ ρ E, ),T, ). Since Λψρ )x, y) = λ L λx) ψρ λ)y)), we obtain a reflexive and transitive matrix Λψρ ) as follows: In general, Φ Λ 1 L Since ΦΛψ ρ )) Γψ ρ )x, y) = λx 1 ) λx 2 ) λx 3 ) λ L Λψ ρ )= because = 1 1 0.9 0.8 1 0.7 λx 1 ) λx 2 ) 0.2) λx 3 ) λx 1 ) λx 2 ) λx 3 ) λx 1 ) 0.1) λx 2 ) 0.3) λx 3 ) ψ ρ λ)y) λx) ) = ψ ρ 1 y )y) 1 y x) =0, x y, Γψρ )x, x) =ψ ρ 1 y)x) 1 y x) =0, x y, Υψρ )x, y) = λx) ψ ρ λ)y) ) = 1x) ψρ 1)y) =1, Γψ ρ )= λ L Υψ ρ )= 3) We define ω : L L as follows: ω λ) = { ρi if λ = ρ i, 0 otherwise. where ρ 1 x 1 )=1,ρ 1 x 2 )=0.8,ρ 1 x 3 )=0.7, ρ 2 x 1 )=0.6,ρ 2 x 2 )=1,ρx 3 )= 0.9 and ρ 3 x 1 )=1,ρ 3 x 2 )=0.8,ρx 3 ) = 1. We obtain a reflexive and transitive matrix Υω )= 1 0.8 1 0.8 1 0.9 1 0.9 1

The properties of fuzzy relations 381 Moreover, ΩΥω )) Λω )= λx 1 ) λx 2 ) λx 3 ) = Γω )= 2 λx 1 )) 1.8 λx 2 )) 2 λx 3 )) 1 1.8 λx 1 )) 2 λx 2 )) 1.9 λx 3 )) 1 2 λx 1 )) 1.9 λx 2 )) 2 λx 3 )) 1 References [1] R. Bělohlávek, Similarity relations in concept lattices, J. Logic and Computation, 106) 2000), 823-845. [2] R. Bělohlávek, Fuzzy equational logic, Arch. Math. Log., 41 2002), 83-90. [3] R. Bělohlávek, Similarity relations and BK-relational products, Information Sciences, 126 2000), 287-295. [4] P. Hájek, Metamathematices of Fuzzy Logic, Kluwer Academic Publishers, Dordrecht 1998). [5] U. Höhle, Many valued topology and its applications, Kluwer Academic Publisher, Boston, 2001). [6] U. Höhle, E. P. Klement, Non-classical logic and their applications to fuzzy subsets, Kluwer Academic Publisher, Boston, 1995. [7] J. Jacas, J. Recasens, Fuzzy T-transitive relations: eigenvectors and generators, Fuzzy Sets and Systems, 72 1995), 147-154. [8] S. E. Rodabaugh, E. P. Klement, Toplogical And Algebraic Structures In Fuzzy Sets, The Handbook of Recent Developments in the Mathematics of Fuzzy Sets, Trends in Logic 20, Kluwer Academic Publishers, Boston/Dordrecht/London) 2003). [9] E. Turunen, Mathematics Behind Fuzzy Logic, A Springer-Verlag Co., 1999. Received: September, 2009