Handbook of Electrochemical Impedance Spectroscopy

Σχετικά έγγραφα
Handbook of Electrochemical Impedance Spectroscopy

Handbook of Electrochemical Impedance Spectroscopy

the total number of electrons passing through the lamp.

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Second Order RLC Filters

27 7 Vol. 27 No CHINESE JOURNAL OF APPLIED CHEMISTRY July CV SEM EIS DTD. MCMB / 0. 01% DTD MCMB /Li. 300 ma h /g 350 ma h /g

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Figure 1 T / K Explain, in terms of molecules, why the first part of the graph in Figure 1 is a line that slopes up from the origin.

Homework 8 Model Solution Section

Ι ΑΚΤΟΡΙΚΗ ΙΑΤΡΙΒΗ. Χρήστος Αθ. Χριστοδούλου. Επιβλέπων: Καθηγητής Ιωάννης Αθ. Σταθόπουλος

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

[1] P Q. Fig. 3.1

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

Supporting Information

CRASH COURSE IN PRECALCULUS

Areas and Lengths in Polar Coordinates

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

6.1. Dirac Equation. Hamiltonian. Dirac Eq.


Chapter 7 Transformations of Stress and Strain

Τεχνικές παρασκευής ζεόλιθου ZSM-5 από τέφρα φλοιού ρυζιού με χρήση φούρνου μικροκυμάτων και τεχνικής sol-gel

4.6 Autoregressive Moving Average Model ARMA(1,1)

Magnetically Coupled Circuits

Figure 3 Three observations (Vp, Vs and density isosurfaces) intersecting in the PLF space. Solutions exist at the two indicated points.

EE101: Resonance in RLC circuits

Αξιολόγηση Ημιαγώγιμων Υμενίων Σεληνιούχου Καδμίου Σε Υπόστρωμα Νικελίου Για Φωτοβολταϊκές Εφαρμογές

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Areas and Lengths in Polar Coordinates

College of Life Science, Dalian Nationalities University, Dalian , PR China.

6.003: Signals and Systems. Modulation

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

Νανοσύνθετα πολυαιθυλενίου υψηλής πυκνότητας (HDPE) / νανοϊνών χαλκού (Cu-nanofibers) με βελτιωμένη σταθερότητα στην υπεριώδη ακτινοβολία

SMD Power Inductor-VLH

Differential equations

derivation of the Laplacian from rectangular to spherical coordinates

is like multiplying by the conversion factor of. Dividing by 2π gives you the

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

B37631 K K 0 60

ITU-R BT ITU-R BT ( ) ITU-T J.61 (

Effect of Fluoroethylene Carbonate Additive on the Performance of Lithium Ion Battery

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

Thi=Τ1. Thο=Τ2. Tci=Τ3. Tco=Τ4. Thm=Τ5. Tcm=Τ6

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ "ΠΟΛΥΚΡΙΤΗΡΙΑ ΣΥΣΤΗΜΑΤΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ. Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΕΠΙΛΟΓΗΣ ΑΣΦΑΛΙΣΤΗΡΙΟΥ ΣΥΜΒΟΛΑΙΟΥ ΥΓΕΙΑΣ "

SMD Power Inductor-VLH

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και. Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του. Πανεπιστημίου Πατρών

Graded Refractive-Index

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

ΣΤΑΤΙΚΗ ΜΗ ΓΡΑΜΜΙΚΗ ΑΝΑΛΥΣΗ ΚΑΛΩ ΙΩΤΩΝ ΚΑΤΑΣΚΕΥΩΝ

Optimizing Microwave-assisted Extraction Process for Paprika Red Pigments Using Response Surface Methodology

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Experimental Study of Dielectric Properties on Human Lung Tissue


EL ECTROCHEMISTR Y ( PAN I) 3. 0 ev ev,. Mott2Schottky mol/ L K 3 Fe (CN) 6 / K 4 Fe (CN) 6 (p H = 8. 52) : A. ]. PAN I

Chapter 6 BLM Answers

. O 2 + 2H 2 O + 4e 4OH -

Matrices and Determinants

Simplex Crossover for Real-coded Genetic Algolithms

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ

16 1 Vol. 16 No ELECTROCHEMISTRY Feb MnO 6 Bir-Co5% Bir-Co10% Bir-Co15% Bir-Co20%. 3 3 Li mol L - 1 MgCl 2.

Second Order Partial Differential Equations

Διπλωματική Εργασία. Μελέτη των μηχανικών ιδιοτήτων των stents που χρησιμοποιούνται στην Ιατρική. Αντωνίου Φάνης

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction

Μειέηε, θαηαζθεπή θαη πξνζνκνίσζε ηεο ιεηηνπξγίαο κηθξήο αλεκνγελλήηξηαο αμνληθήο ξνήο ΓΗΠΛΩΜΑΣΗΚΖ ΔΡΓΑΗΑ

Homework 3 Solutions

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

Lifting Entry (continued)

ΠΑΡΑΜΕΤΡΟΙ ΕΠΗΡΕΑΣΜΟΥ ΤΗΣ ΑΝΑΓΝΩΣΗΣ- ΑΠΟΚΩΔΙΚΟΠΟΙΗΣΗΣ ΤΗΣ BRAILLE ΑΠΟ ΑΤΟΜΑ ΜΕ ΤΥΦΛΩΣΗ

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Strain gauge and rosettes

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΥΨΗΛΩΝ ΤΑΣΕΩΝ

Table of contents. 1. Introduction... 4

Σπανό Ιωάννη Α.Μ. 148

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

The Simply Typed Lambda Calculus

Supporting Information

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

DuPont Suva 95 Refrigerant

Trigonometry 1.TRIGONOMETRIC RATIOS

PARTIAL NOTES for 6.1 Trigonometric Identities

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

w o = R 1 p. (1) R = p =. = 1

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙO ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΞΙΟΠΟΙΗΣΗΣ ΦΥΣΙΚΩΝ ΠΟΡΩΝ & ΓΕΩΡΓΙΚΗΣ ΜΗΧΑΝΙΚΗΣ

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

38 Te(OH) 6 2NH 4 H 2 PO 4 (NH 4 ) 2 HPO 4

DuPont Suva 95 Refrigerant

2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν.

2 Composition. Invertible Mappings

Derivation of Optical-Bloch Equations

Transcript:

Handbook of Electrochemical Impedance Spectroscopy Im Z Re Z ELECTRICAL CIRCUITS CONTAINING CPEs ER@SE/LEPMI J.-P. Diard, B. Le Gorrec, C. Montella Hosted by Bio-Logic @ www.bio-logic.info March 9, 3

Contents Circuits containing one CPE 5. Constant Phase Element CPE, symbol Q............ 5. Circuit R+Q............................ 5.. Impedance.......................... 5.. Reduced impedance..................... 6.3 Circuit R/Q............................. 7.3. Impedance.......................... 7.3. Reduced impedance..................... 7.3.3 Pseudocapacitance #.................... 7.3.4 Pseudocapacitance #.................... 8.4 Circuit R/Q+R/Q+.. Voigt................. 9.5 Circuit R +R /Q........................ 9.5. Impedance...........................5. Reduced impedance......................6 Circuit R /R +Q.........................6. Impedance...........................6. Reduced impedance......................7 Transformation formulae betweenr+r/q and R/R+Q.............................7. α = α............................7. α α........................... Circuits made of two CPEs 3. Circuit Q +Q........................... 3.. α = α = α......................... 3.. α α............................ 3..3 Reduced impedance..................... 4. Circuit Q /Q........................... 6.. α = α = α......................... 6.. α α............................ 6..3 Reduced impedance..................... 6 3 Circuits made of one R and two CPEs 9 3. Circuit R /Q + Q....................... 9 3.. α = α = α......................... 9 3.. α α............................ 3. Circuit R + Q /Q....................... 3.. α = α = α......................... 3

4 CONTENTS 3.. α α............................ 4 Circuits made of two Rs and two CPEs 3 4. Circuit R /Q +R /Q..................... 3 4. Circuit R +R /Q /Q..................... 4 4.3 Circuit Q +R /Q /R..................... 5 4.4 Circuit Q +R /R /Q..................... 6 A Symbols for CPE 9

Chapter Circuits containing one CPE. Constant Phase Element CPE, symbol Q Figure.: Most often used symbol for CPE see also the Appendix A. Z = Q i ω α, Re Z = c α Q ω α, Im Z = s α Q ω α c α = cos π α, s α = sin π α Z = Q ω α, φ Z = π α The Q unit Fcm s α depends on α.. Circuit R+Q.. Impedance R + Different equations for CPE: Z = Q iω α, Re Z = R + c α Q ω α, Im Z = s α Q ω α Q i ω α [5], Z = Q i ω α [6]. 5

6 CHAPTER. CIRCUITS CONTAINING ONE CPE Im Z Α Π Re Z Im Y Α Π Re Y Figure.: Nyquist diagram of the impedance and admittance for the CPE element, plotted for α =.8. The arrows always indicate the increasing frequency direction. R Q Figure.3: Circuit R+Q... Reduced impedance The τ unit depends on α: u τ = s α. Z ω = Zω R = + τ i ω α, τ = R Q Z u = + i u α, u = ω τ/α - Im Z * u c = Im Y *.5 u c = Re Z * Re Y * Figure.4: Nyquist diagram of the reduced impedance and admittance Y = R Y for the R+Q circuit, plotted for α =.8.

.3. CIRCUIT R/Q 7.3 Circuit R/Q Q R Figure.5: Circuit R/Q..3. Impedance R + τ i ω α ; τ = R Q R + τ ω α c α R τ ω α s α Re + τ ω α + τ ω α ; Im c α + τ ω α + τ ω α c α.3. Reduced impedance Z ω = Zω R = + τ i ω α ; τ = R Q Re Z + τ ω α c α ω = + τ ω α + τ ω α ; Im Z τ ω α s α ω = c α + τ ω α + τ ω α c α dim Z ω dω = α τ ω +α + τ ω α s α + τ ω α + τ ω α c α = ω α c = /τ [6] Fig..6 s α Re Z ω c = /, Im Z ω c = + c α α = π arccos + + 4 Im Z ω c Z u = + i u α, u = ω τ /α.3.3 Pseudocapacitance # The value of the pseudocapacitance C C/F cm for the R/C circuit giving the same characteristic frequency than that of the R/Q circuit Fig..7 is obtained from: ω c = R Q = /α R C C = Q α R α

8 CHAPTER. CIRCUITS CONTAINING ONE CPE - Im Z *.5 u c = Im Y * u c = Re Z * Re Y * Figure.6: Nyquist diagram of the reduced impedance depressed semi-circle [] and admittance Y = R Y for the R/Q circuit, plotted for α =.8. Q C R R Ω c RQ Α Ω c RC R R Figure.7: R/Q and R/C circuits with the same characteristic frequency at the apex or summit of impedance arc..3.4 Pseudocapacitance # The value of the pseudocapacitance C C/F cm for the R C /C circuit giving the same impedance for the characteristic frequency of the R Q /Q circuit Fig..7 is obtained from [, 9]: with: C = Q /α R /α Q sinα π/, R C = τ RC/C = R Q Q /α tanα π/4 R Q cosα π/4

.4. CIRCUIT R/Q+R/Q+.. VOIGT 9 Q C R Q R C Im Z Ω c R Q Q Α R C R Q Re Z Figure.8: R Q/Q and R C/C circuits with the same impedance for the characteristic frequency of the R Q/Q circuit..4 Circuit R/Q+R/Q+.. Voigt Re n RQ i= n RQ i= n RQ Im R i + τ i i ω αi ; τ i = R i Q i i=.5 Circuit R +R /Q R i + τ i ω αi c αi + τ i ω αi + τ i ω αi c αi R i τ i ω αi s αi + τ i ω αi + τ i ω αi c αi Q R R Figure.9: Circuit R +R /Q.

CHAPTER. CIRCUITS CONTAINING ONE CPE.5. Impedance R + i ω α Q + R R + R + i ω α τ + i ω α τ, τ = R Q, τ = R R Q R + R.5. Reduced impedance Z u = Zu + T i uα =. R + R + i u α u = τ /α ω, T = τ /τ = R /R + R < Re Z u = T c α u α + c α u α + Tu α + c α u α + u α + Im Z u = s Tuα α c α u α + u α + Im Z Τ Α Ω c Τ Α Im Z T Α u c R R R Re Z T Re Z Figure.: Nyquist diagrams of the impedance and reduced impedance for the R +R /Q circuit..6 Circuit R /R +Q R Q R Figure.: Circuit R /R +Q.

.7. TRANSFORMATION FORMULAE BETWEENR+R/Q AND R/R+Q.6. Impedance R + τ i ω α, τ = R + R Q, τ = R Q + τ i ω α Re R cos πα τ + τ ω α + τ τ ω α + τ τ ω α + cos πα ω α + ω α sin πα R τ τ Im τ τ ω α + cos πα ω α +.6. Reduced impedance Z u = Zu R = + T i uα + i u α u = τ /α ω, T = τ /τ = R /R + R < cf. Eq.. and Fig....7 Transformation formulae betweenr+r/q and R/R+Q.7. α = α Q R R Q R R Figure.: The R+R/Q and R/R+Q circuits are non-distinguishable for α = α []. Transformations formulae R+R/Q R/R+Q R = R + R, R = R Q R + R, Q = R R + R Transformations formulae R/R+Q R+R/Q Q = Q R + R R, R = R R, R = R + R R R + R.7. α α The R+R/Q and R/R+Q circuits Fig.. are distinguishable for α α

CHAPTER. CIRCUITS CONTAINING ONE CPE

Chapter Circuits made of two CPEs. Circuit Q +Q Q Q Figure.: Circuit Q +Q... α = α = α + Q Q i ω α = Q i ω α, Q = Q Q Q + Q cf..... α α Impedance Q i ω + α Q i ω = Q i ω α + Q i ω α α Q Q i ω α+α ω α ω α Re cos πα Q + cos Im sin πα ω α sin Q Z Q = Z Q ω = ω c = Q Q πα Q πα Q ω α α α 3

4 CHAPTER. CIRCUITS MADE OF TWO CPES α < α Figs.. and.3 α > α ω Zω ω Zω Q i ω α, ω Zω Q i ω α Q i ω α, ω Zω Q i ω α 4 Im Z log Im Z Re Z 4 log Re Z Figure.: Nyquist and log Nyquist [8] diagrams of the impedance for the Q +Q circuit, plotted for Q = F cm s α, Q = F cm s α, α =.6, α =.9 α < α. Dots: ω c = Q /Q /α α. 5 Α 45 Α Π log Z Α Φ Z 5 5 Q Q Α Α 9 Α Π 5 5 Q Q Α Α logω rd s logω rd s Figure.3: Bode diagrams of the impedance for the Q +Q circuit. Same values of parameters as in Fig... α < α...3 Reduced impedance Z u = Q ω α c i u α + i u α, u = ω ω c

.. CIRCUIT Q +Q 5 3 Im Z log Im Z 3 Re Z log Re Z Figure.4: Nyquist and log Nyquist [8] diagrams of the reduced impedance for the Q +Q circuit, plotted for α =.6, α =.9 α < α. Dots: u c =. 3 Α 45 Α Π log Z Α Φ Z 3 3 3 9 Α Π 3 3 log u log u Figure.5: Bode diagrams of the impedance for the Q +Q circuit. Same values of parameters as in Fig..4. α < α.

6 CHAPTER. CIRCUITS MADE OF TWO CPES. Circuit Q /Q Q Q Figure.6: Circuit Q /Q... α = α = α cf... Q + Q i ω α = Q i ω α, Q = Q + Q.. α α Impedance Q i ω α + Q i ω α cos πα Q ω α + cos πα Q ω α Re Q + Q ωα + cos ωα π α α Q Q ω α+α sin πα Q ω α + sin πα Q ω α Im Q + Q ωα + cos ωα π α α Q Q ω α+α α < α Figs..7 and.8 α > α ω Zω ω Zω Q i ω α, ω Zω Q i ω α Q i ω α, ω Zω Q i ω α..3 Reduced impedance Z u = Q ωc α i u α + i u, u = ω α ω c

.. CIRCUIT Q /Q 7 3 Im Z 5 log Im Z 5 Re Z 3 log Re Z Figure.7: Nyquist and log Nyquist [8] diagrams of the impedance for the Q /Q circuit plotted for Q = F cm s α, Q = F cm s α, α =.6, α =.9 α < α. Dots: ω c = Q /Q /α α. 5 45 Α Π log Z Α Φ Z Α 5 5 Q Q Α Α 9 Α Π 5 5 Q Q Α Α logω rd s logω rd s Figure.8: Bode diagrams of the impedance for the Q /Q circuit. Same values of parameters as in Fig..7. α < α. Im Z log Im Z Re Z log Re Z Figure.9: Nyquist and log Nyquist [8] diagrams of the reduced impedance for the Q /Q circuit, plotted for α =.6, α =.9 α < α. Dots: u c =.

8 CHAPTER. CIRCUITS MADE OF TWO CPES 3 45 Α Π log Z Α Φ Z 3 Α 3 3 9 Α Π 3 3 log u log u Figure.: Bode diagrams of the impedance for the Q /Q circuit. Same values of parameters as in Fig..9. α < α.

Chapter 3 Circuits made of one R and two CPEs 3. Circuit R /Q + Q Q Q R Figure 3.: Circuit R /Q +Q. 3.. α = α = α Impedance + + Q i ω R α Q i ω α + i ω α τ i ω α Q + i ω α τ, τ = R Q, τ = Q + Q R, τ < τ Re cos πα τ τ ω α + ω α + cosπατ + τ Q τ τ ω α + cos πα ωα + Im sin πα τ τ ω α + ω α + sinπατ Q τ τ ω α + cos πα ωα + 9

CHAPTER 3. CIRCUITS MADE OF ONE R AND TWO CPES Reduced impedance Z u = Zu R = T + T i u α i u α + i u α 3. u = ω τ /α, T = τ /τ = + Q /Q > Re Z u = u α T + cosαπu α + Tu α + cos απ T cos απ uα + u α + Im Z u = u α T u α απ cos απ sin uα + u α + Im Z Re Z Figure 3.: Nyquist diagram of the reduced impedance for the R /Q +Q circuit Fig. 3., Eq. 3., plotted for T = 4, 9,9 and α =.85. The line thickness increases with increasing T. Dots: reduced characteristic angular frequency u c = ; circles: reduced characteristic angular frequency u c = /T /α φ uc = φ uc. 3.. α α Impedance Re cos πα ω α + Q Im + Q + Q i ω R α i ω α R cos πα Q R ω α + Q R Q R ω α + cos πα sin πα Q R ωα Q R Q R ω α + cos πα sin πα ω α + ω α + Q ω α

3.. CIRCUIT R + Q /Q Q Q R Figure 3.3: Circuit R +Q /Q. 3. Circuit R + Q /Q 3.. α = α = α Impedance i ω α Q + R + i ω α Q + Q R i ω α = i ω α Q + Q + i ωα Q Q R Q + Q + τ i ω α i ω α Q + Q + i ω α τ, τ = Q Q R, τ = Q R Q + Q Re ω α cosπαω α + τ ω α + cos πα τ ω α + cos πα ωα + ω α + Q + Q τ Im ω α sin πα cos πα ω α + τ ω α + cos πα ωα + ω α + Q + Q τ Reduced impedance Z u = Zu = T R T + T i u α i u α + i u α 3. u = ω τ /α, T = τ /τ = + Q /Q > Re Z u = T u α T + cosαπu α + Tu α + cos απ T cos απ uα + u α + Im Z u = T u α cos απ u α + Tu α + sin απ T cos απ uα + u α + 3.. α α + R i ω α Q i ω α Q + + R i ω α Q i ω α Q

CHAPTER 3. CIRCUITS MADE OF ONE R AND TWO CPES Im Z Re Z Figure 3.4: Nyquist diagram of the reduced impedance for the R +Q /Q circuit Fig. 3.3, Eq. 3., plotted for T = 4, 9,9 and α =.85. The line thickness increases with increasing T. Dots: reduced characteristic angular frequency u c = ; circles: reduced characteristic angular frequency u c = /T /α φ uc = φ uc. + τ i ω α i ω α Q + i ω α Q + τ i ω α+α Q, τ = R Q Re ω α c α + τ ω α + τ ω α c α Q + ω α τ ω α + c α Q / ω α + τ ω α + τ ω α c α Q + ω α+α τ ω α c α + c αmα Q Q + ω α Q π α α c αmα = cos Im ω α + τ ω α + τ ω α c α Q s α ω α Q s α / ω α + τ ω α + τ ω α α Q + ω α+α τ ω α c α + c αmα Q Q + ω α Q

Chapter 4 Circuits made of two Rs and two CPEs 4. Circuit R /Q +R /Q Q Q R R Figure 4.: Circuit R /Q +R /Q. i ω α Q + R + i ω α Q + R R R +, τ + i ω α τ + iω α = R Q, τ = R Q τ Re R + R + i ω α R τ + i ω α R τ + i ω α τ + i ω α τ R + ω α c α τ + ω α τ c α + ω α τ + R + ω α c α τ + ω α τ c α + ω α τ ω α R s α τ Im + ω α τ c α + ω α τ ω α R s α τ + ω α τ c α + ω α τ 3

4 CHAPTER 4. CIRCUITS MADE OF TWO RS AND TWO CPES Im Z.3 u c u c.5 Re Z Figure 4.: Nyquist diagrams of the reduced impedance for the R /Q +R /Q circuit Fig. 4.. R = R, α = α, Q Q..5 u c u c.5 u c u c Im Z Im Z.5 Re Z Π 4 Π 4.5 Re Z Figure 4.3: Unusual Nyquist diagrams of the reduced impedance for the R /Q +R /Q circuit Fig. 4.. R = R, Q = Q, α =. Left: α =.3, right: α =.5. 4. Circuit R +R /Q /Q i ω α Q + R + i ω α Q + R R + R + i ω α Q R R + i ω α Q R + R + i ω α Q R + i ω α+α Q Q R R Q Q R R Figure 4.4: Circuit R +R /Q /Q.

4.3. CIRCUIT Q +R /Q /R 5 Re R + R + ω α Q R + ω α C α Q R R + ω α C α Q R + R + ω α C α Q R R + R + ω α C α Q R + R / + ω α Q + ω α Q R C α + ω α Q R R + ω α Q R + R C α + ω α Q R + R + ω α Q R C α + ω α Q C αmα R + C α R C α + ω α Q R + R π α α c αmα = cos Im ω α Q ω α Q R R ω α C α Q R R R + R R + R S α ω α Q R S α / + ω α Q + ω α Q R C α + ω α Q R R + ω α Q R + R C α + ω α Q R + R + ω α Q R C α + ω α Q C αmα R + C α R C α + ω α Q R + R 4.3 Circuit Q +R /Q /R R Q Q R Figure 4.5: Circuit Q +R /Q /R. R + i ω α Q + i ω α Q + R R + i ω α Q R + i ω α Q R + i ω α Q R + R + i ω α Q R + i ω α+α Q Q R R

6 CHAPTER 4. CIRCUITS MADE OF TWO RS AND TWO CPES Re R + ω α Q R C α + ω α Q R + ω α Q R R + R + ω α C α Q R + ω α Q R C α + ω α C αmα Q R + C α R + ω α Q R C α + ω α Q R / + ω α Q + ω α Q R C α + ω α Q R R + ω α Q R + R C α + ω α Q R + R + ω α Q R C α + ω α Q C αmα R + C α R C α + ω α Q R + R Im ω α Q R S α + ω α Q R C α + ω α Q R S α + ω α Q R S α / + ω α Q + ω α Q R C α + ω α Q R R + ω α Q R + R C α + ω α Q R + R + ω α Q R C α + ω α Q C αmα R + C α R C α + ω α Q R + R R + τ i ω α + τ i ω α + + R /R τ iω α + τ i ω α + τ τ R /R i ω α+α τ = Q R, τ = Q R 4.4 Circuit Q +R /R /Q Q R Q R Figure 4.6: Circuit Q +R /R /Q. i ω α Q + + R + R i ω α Q R + iω α Q R + i ω α Q R + i ω α Q R + i ω α Q R + i ω α+α Q Q R R

4.4. CIRCUIT Q +R /R /Q 7 Re R + ω α Q ω α Q R R + R + C α R + R + ω α C α Q R + ω α Q R C α + ω α Q R / + ω α Q R + R C α + ω α Q R + R + ω α Q R + ω α Q R C α + ω α Q R + ω α Q R C α + ω α Q C αmα R + C α C α R + ω α C α Q R R + R Im R ω α Q + ω α Q R C α + ω α Q R S α ω α Q S α / + ω α Q R + R C α + ω α Q R + R + ω α Q R + ω α Q R C α + ω α Q R + ω α Q R C α + ω α Q C αmα R + C α C α R + ω α C α Q R R + R R + i ω α τ + i ω α τ + + R /R i ω α τ + i ω α+α τ τ τ = Q R, τ = Q R

8 CHAPTER 4. CIRCUITS MADE OF TWO RS AND TWO CPES

Appendix A Symbols for CPE 9

3 APPENDIX A. SYMBOLS FOR CPE A B C CPE D E F G H Q I J K L M N O P Q R S T Figure A.: Some CPE symbols, taken from A: [3], B: [9], C: [3], D: [5], E: [], F: [7], G: [8], H: [], I: [], J: [5], K: [], L: [, 9], M: [], N: [3, 4], O: [4], P: [4], Q, R [5], S [7], T [6].

Bibliography [] Berthier, F., Diard, J.-P., and Montella, C. Distinguishability of equivalent circuits containing CPEs. I. Theoretical part. J. Electroanal. Chem. 5,. [] Boillot, M. Validation expérimentale d outil de modélisation d une pile à combustible de type PEM. PhD thesis, INPL, Nancy, Oct. 5. [3] Bommersbach, P., Alemany-Dumont, C., Millet, J., and Normand, B. Formation and behaviour study of an environment-friendly corrosion inhibitor by electrochemical methods. Electrochim. Acta 5, 6 5, 76 84. [4] Bommersbach, P., Alemany-Dumont, C., Millet, J.-P., and Normand, B. Hydrodynamic effect on the behaviour of a corrosion inhibitor film: Characterization by electrochemical impedance spectroscopy. Electrochimica Acta 5, 9 6, 4 48. [5] Brug, G. J., van den Eeden, A. L. G., Sluyters-Rehbach, M., and Sluyters, J. H. The analysis of electrode impedance complicated by the presence of a constant phase element. J. Electroanal. Chem. 76 984, 75 95. [6] Chabli, A., Diaco, T., and Diard, J.-P. Détermination de la séquence de pondération d une pile leclanché à l aide d une méthode d intercorrélation. J. Applied Electrochem. 98, 66. [7] Ding, S.-J., Chang, B.-W., Wu, C.-C., Lai, M.-F., and Chang, H.- C. Impedance spectral studies of self-assembly of alkanethiols with different chain lengths using different immobilization strategies on au electrodes. Analytica Chimica Acta 554 5, 43 5. [8] Fournier, J., Wrona, P. K., Lasia, A., Lacasse, R., Lalancette, J.-M., Menard, H., and Brossard, L. J. Electrochem. Soc. 39 99, 37. [9] Franck-Lacaze, L., Bonnet, C., Besse, S., and Lapicque, F. Effect of ozone on the performance of a polymer electrolyte membrane fuel cell. Fuel Cells 9 9, 56 569. [] Han, D. G., and Choi, G. M. Computer simulation of the electrical conductivity of composites: the effect of geometrical arrangement. Solid State Ionics 6 998, 7 87. 3

3 BIBLIOGRAPHY [] Hernando, J., Lud, S. Q., Bruno, P., Gruen, D. M., Stutzmann, M., and Garrido, J. A. Electrochemical impedance spectroscopy of oxidized and hydrogen-terminated nitrogen-induced conductive ultrananocristalline diamond. Electrochim. Acta 54 9, 99 95. [] Holzapfel, M., Martinent, A., Alloin, F., B. Le Gorrec, Yazami, R., and Montella, C. First lithiation and charge/discharge cycles of graphite materials, investigated by electrochemical impedance spectroscopy. J. Electroanal. Chem. 546 3, 4 5. [3] Jansen, R., and Beck, F. Electrochim. Acta 39 994, 9. [4] Jonscher, A. K., and Bari, M. A. Admittance spectroscopy of sealed primary batteries. J. Electrochem. Soc. 35 988, 68 65. [5] Kulova, T. L., Skundin, A. M., Pleskov, Y. V., Terukov, E. I., and Kon kov, O. I. Lithium insertion into amorphous silicon thin-film electrode. J. Electroanal. Chem. 6 7, 7 5. [6] Laes, K., Bereznev, S., Land, R., Tverjanovich, A., Volobujeva, O., Traksmaa, R., Raadik, T., and Öpik, A. The impedance spectroscopy of photoabsorber films prepared by high vacuum evaporation technique. Energy Procedia,, 9 3. [7] Matthew-Esteban, J., and Orazem, M. E. On the application of the Kramers-Kronig relations to evaluate the consistency of electrochemical impedance data. J. Electrochem. Soc. 38 99, 67 76. [8] Messaoudi, B., Joiret, S., Keddam, M., and Takenouti, H. Anodic behaviour of manganese in alkaline medium. Electrochim. Acta 46, 487 498. [9] Orazem, M. E., Shukla, P. S., and Membrino, M. A. Extension of the measurement model approach for deconvolution of underlying distributions for impedance measurements. Electrochim. Acta 47, 7 34. [] Quintin, M., Devos, O., Delville, M. H., and Campet, G. Study of the lithium insertion-deinsertion mechanism in nanocrystalline γ-fe O 3 electrodes by means of electrochemical impedance spectroscopy. Electrochim. Acta 5 6, 646 6434. [] Seki, S., Kobayashi, Y., Miyashiro, H., Yamanaka, A., Mita, Y., and Iwahori, T. Degradation mechanism analysis of all solid-state lithium polymer rechargeable batteries. In IMBL Meeting 4, The Electrochemical Society. Abs. 386. [] Sluyters-Rehbach, M. Impedance of electrochemical systems: terminology, nomenclature and representation-part I: cells with metal electrodes and liquid solution IUPAC Recommendations 994. Pure & Appl. Chem. 66 994, 83 89. [3] Tomczyk, P., and Mosialek, M. Investigation of the oxygen electrode reaction in basic molten carbonates using electrochemical impedance spectroscopy. Electrochim. Acta 46, 33 33.

BIBLIOGRAPHY 33 [4] VanderNoot, T. J., and Abrahams, I. The use of genetic algorithms in the non-linear regression of immittance data. J. Electroanal. Chem. 448 998, 7 3. [5] Yang, B. Y., and Kim, K. Y. The oxidation behavior of Ni-5%Co alloy electrode in molten Li + K carbonate eutectic. Electrochim. Acta 44 999, 7 34. [6] Zoltowski, P. J. Electroanal. Chem. 443 998, 49.