LECTURE 4 : ARMA PROCESSES

Σχετικά έγγραφα
α & β spatial orbitals in

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem

A Class of Orthohomological Triangles

Finite Field Problems: Solutions

6.3 Forecasting ARMA processes

1 Complete Set of Grassmann States

EE512: Error Control Coding

4.6 Autoregressive Moving Average Model ARMA(1,1)

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Example Sheet 3 Solutions

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.

8.324 Relativistic Quantum Field Theory II

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population

C.S. 430 Assignment 6, Sample Solutions

ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα,

Concrete Mathematics Exercises from 30 September 2016

Introduction to the ML Estimation of ARMA processes

Solutions for Mathematical Physics 1 (Dated: April 19, 2015)

Matrices and Determinants

2 Composition. Invertible Mappings

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

LECTURE 2 : MODELS AND METHODS. Time-Series Models: Feedback Form and Transfer-Function Form

The challenges of non-stable predicates

The Simply Typed Lambda Calculus

Every set of first-order formulas is equivalent to an independent set

Solution Series 9. i=1 x i and i=1 x i.

Lecture 15 - Root System Axiomatics

Symplecticity of the Störmer-Verlet algorithm for coupling between the shallow water equations and horizontal vehicle motion

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Duals of the QCQP and SDP Sparse SVM. Antoni B. Chan, Nuno Vasconcelos, and Gert R. G. Lanckriet

Phasor Diagram of an RC Circuit V R

Homework 3 Solutions

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Lecture 26: Circular domains

Second Order Partial Differential Equations

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Estimators when the Correlation Coefficient. is Negative

Other Test Constructions: Likelihood Ratio & Bayes Tests

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

derivation of the Laplacian from rectangular to spherical coordinates

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

ST5224: Advanced Statistical Theory II

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

Neutralino contributions to Dark Matter, LHC and future Linear Collider searches

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Constant Elasticity of Substitution in Applied General Equilibrium

Statistical Inference I Locally most powerful tests

A Note on Intuitionistic Fuzzy. Equivalence Relation

Math221: HW# 1 solutions

Fractional Colorings and Zykov Products of graphs

Pricing of Options on two Currencies Libor Rates

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

2 Lagrangian and Green functions in d dimensions

Section 8.3 Trigonometric Equations

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

TMA4115 Matematikk 3

8.323 Relativistic Quantum Field Theory I

2. ARMA 1. 1 This part is based on H and BD.

Inverse trigonometric functions & General Solution of Trigonometric Equations

( y) Partial Differential Equations

Second Order RLC Filters

Reminders: linear functions

Journal of Theoretics Vol.4-5

PARTIAL NOTES for 6.1 Trigonometric Identities

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Numerical Analysis FMN011

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Appendix. Appendix I. Details used in M-step of Section 4. and expect ultimately it will close to zero. αi =α (r 1) [δq(α i ; α (r 1)

Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008

F19MC2 Solutions 9 Complex Analysis

Homework 8 Model Solution Section

Lecture 2. Soundness and completeness of propositional logic

Module 5. February 14, h 0min

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Areas and Lengths in Polar Coordinates

Stationary ARMA Processes

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Solutions to Exercise Sheet 5

( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Approximation of distance between locations on earth given by latitude and longitude

Lecture 13 - Root Space Decomposition II

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

On a four-dimensional hyperbolic manifold with finite volume

IIT JEE (2013) (Trigonomtery 1) Solutions

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

8. ΕΠΕΞΕΡΓΑΣΊΑ ΣΗΜΆΤΩΝ. ICA: συναρτήσεις κόστους & εφαρμογές

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Transcript:

LECTURE 4 : ARMA PROCESSES Movng-Average Processes The MA(q) process, s defned by (53) y(t) =µ ε(t)+µ 1 ε(t 1) + +µ q ε(t q) =µ(l)ε(t), where µ(l) =µ +µ 1 L+ +µ q L q and where ε(t) s whte nose An MA model should be nvertble such that µ 1 (L)y(t) =ε(t) Ths AR( ) representaton s s avalable f and only f all the roots of µ(z) =le outsde the unt crcle Example Consder the MA(1) process (54) y(t) =ε(t) θε(t 1)=(1 θl)ε(t) Provded that θ < 1, ths can be wrtten n autoregressve form as (55) ε(t) =(1 θl) 1 y(t) = { y(t)+θy(t 1) + θ y(t ) + } Imagne that θ > 1 nstead Then we have to wrte (56) y(t +1)=ε(t+1) θε(t) = θ(1 L 1 /θ)ε(t), where L 1 ε(t) =ε(t+ 1) Ths gves (57) ε(t) = θ 1 (1 L 1 /θ) 1 y(t +1) = θ 1{ y(t+1)/θ + y(t +)/θ + y(t 3)/θ 3 + } Normally, an expresson such as ths, whch embodes future values of y(t), would have no reasonable meanng 1

DSG POLLOCK : LECTURES IN THE CITY 4 The Autocovarances of an MA Process Consder (58) γ τ = E(y t y t τ ) { } = E µ ε t µ ε t τ = µ µ E(ε t ε t τ ) Snce ε(t) s whte nose, t follows that {, f τ + ; (59) E(ε t ε t τ )= σε, f = τ + Therefore (51) γ τ = σε µ µ +τ Now let τ =,1,,q Ths gves (511) γ = σε(µ + µ 1 + +µ q), γ 1 =σε(µ µ 1 +µ 1 µ + +µ q 1 µ q ), γ q =σ εµ µ q Also, γ τ = for all τ>q Example The MA(1) process y(t) = ε(t) θε(t 1) has (51) γ = σε(1 + θ ), γ 1 = σεθ, γ τ = f τ>1 Thus the dsperson matrx of y =[y 1,y,,y T ] s 1+θ θ θ 1+θ θ (513) D(y) =σε θ 1+θ 1+θ

LECTURE 4 : ARMA PROCESSES Autocovarance Generatng Functon Ths s denoted by (514) γ(z) = τ γ τ z τ ; wth τ = {, ±1, ±,} and γ τ = γ τ To fnd the autocovarance generatng functon of the MA(q) process, consder µ(z)µ(z 1 )= µ z µ z (515) From (1) t follows that = = τ µ µ z ( µ µ +τ )z τ, τ = (516) γ(z) =σ εµ(z)µ(z 1 ) 3

DSG POLLOCK : LECTURES IN THE CITY 4 Autoregressve Processes The AR(p) process, s defned by (517) α y(t)+α 1 y(t 1) + +α p y(t p)=ε(t) Ths can be wrtten as α(l)y(t) =ε(t), where α(l) =α +α 1 L+ +α p L p For the process to be statonary, the roots of α(z) = must le outsde the unt crcle In that case the AR process can be wrtten as an MA( ) process: y(t) =α 1 (L)ε(t) The autocovarance generatng functon for the AR(p) process s (53) γ(z) = σ ε α(z)α(z 1 ) Example Consder the AR(1) process defned by ε(t) =y(t) φy(t 1) (518) =(1 φl)y(t) Provded that φ < 1, ths can be represented n MA form as y(t) =(1 φl) 1 ε(t) (519) = { ε(t)+φε(t 1) + φ ε(t ) + } The autocovarances of the AR(1) process can be obtaned va the formula (1) for the autocovarances of an MA process Thus (5) and t follows from (9) that γ τ = E(y t y t τ ) { } = E φ ε t φ ε t τ = φ φ E(ε t ε t τ ); γ τ = σε φ φ +τ (51) = σ εφ τ 1 φ The dsperson matrx of y =[y 1,y,,y T ] s (5) D(y) = σ ε 1 φ 1 φ φ φ T 1 φ 1 φ φ T φ φ 1 φ T 3 φ T 1 φ T φ T 3 1 4

The Yule-Walker Equatons LECTURE 4 : ARMA PROCESSES For an alternatve way of fndng the AR autocovarances, consder multplyng α y t = ε t by y t τ and takng expectatons to gve (54) α E(y t y t τ )=E(ε t y t τ ) Gven that α = 1, t follows that { σ ε, f τ =; (55) E(ε t y t τ )=, f τ> Therefore, on settng E(y t y t τ )=γ τ, equaton (4) gves { σ ε, f τ =; (56) α γ τ =, f τ> The second of these s a homogeneous dfference equaton whch enables us to generate the sequence {γ p,γ p+1,} once p startng values γ,γ 1,,γ p 1 are known By lettng τ =,1,,p n (6), we generate a set of p + 1 equatons whch can be arrayed n matrx form as follows: (57) γ γ 1 γ γ p 1 γ 1 γ γ 1 γ p 1 α 1 γ γ 1 γ γ p α = γ p γ p 1 γ p γ α p These are called the Yule Walker equatons, and they can be used ether for generatng the values γ,γ 1,,γ p from the values α 1,,α p,σ ε or vce versa Example Consder the second-order autoregressve process We have γ γ 1 γ γ 1 γ γ 1 α α 1 = α γ α 1 α γ α α 1 α 1 γ γ γ 1 γ α α α 1 α γ 1 (58) γ = α α 1 α α 1 α +α γ γ 1 = σ ε α α 1 α γ Gven α = 1 and the values for γ,γ 1,γ, we can fnd σ ε and α 1,α Conversely, gven α,α 1,α and σ ε, we can fnd γ,γ 1,γ 5 σ ε

DSG POLLOCK : LECTURES IN THE CITY 4 The Partal Autocorrelaton Functon Let α r(r) be the coeffcent assocated wth y(t r) n an autoregressve process of order r whose parameters correspond to the autocovarances γ,γ 1,,γ r Then the sequence {α r(r) ; r =1,,}of such coeffcents, whose ndex corresponds to models of ncreasng orders, consttutes the partal autocorrelaton functon In effect, α r(r) ndcates the role n explanng the varance of y(t) whch s due to y(t r) when y(t 1),,y(t r+ 1) are also taken nto account The sequence of partal autocorrelatons may be computed effcently va the recursve Durbn Levnson Algorthm whch uses the coeffcents of the AR model of order r as the bass for calculatng the coeffcents of the model of order r +1 Imagne that we already have the values α (r) =1,α 1(r),,α r(r) Then, by extendng the set of rth-order Yule Walker equatons to whch these values correspond, we can derve the system γ γ 1 γ r γ r+1 1 σ (r) γ 1 γ γ r 1 γ r (59) α 1(r) = γ r γ r 1 γ γ 1 α r(r), γ r+1 γ r γ 1 γ g wheren (53) g = r α (r) γ r+1 wth α (r) =1 = The system can also be wrtten as γ γ 1 γ r γ r+1 γ 1 γ γ r 1 γ r (531) α r(r) γ r γ r 1 γ γ 1 α 1(r) γ r+1 γ r γ 1 γ 1 = g σ (r) The two systems of equatons (9) and (31) can be combned to gve γ γ 1 γ r γ r+1 1 σ(r) γ 1 γ γ r 1 γ r (53) α 1(r) + cα r(r) + cg = γ r γ r 1 γ γ 1 α r(r) + cα 1(r) γ r+1 γ r γ 1 γ c g + cσ(r) 6

LECTURE 4 : ARMA PROCESSES If we take the coeffcent of the combnaton to be (533) c = g σ(r), then the fnal element n the vector on the RHS becomes zero and the system becomes the set of Yule Walker equatons of order r + 1 The soluton of the equatons, from the last element α r+1(r+1) = c through to the varance term σ(r+1) s gven by (534) α r+1(r+1) = 1 { r } σ(r) α (r) γ r+1 = α 1(r+1) α r(r+1) = α 1(r) α r(r) + α r+1(r+1) α r(r) α 1(r) σ (r+1) = σ (r){ 1 (αr+1(r+1) ) } Thus the soluton of the Yule Walker system of order r + 1 s easly derved from the soluton of the system of order r, and there s scope for devsng a recursve procedure The startng values for the recurson are (535) α 1(1) = γ 1 /γ and σ (1) = γ { 1 (α1(1) ) } 7

DSG POLLOCK : LECTURES IN THE CITY 4 Autoregressve Movng Average Processes The ARMA(p, q) process, s defned by (536) α y(t)+α 1 y(t 1) + +α p y(t p) =µ ε(t)+µ 1 ε(t 1) + +µ q ε(t q) Ths can also be wrtten as α(l)y(t) =µ(l)ε(t) If the roots of α(z) = le outsde the unt crcle, then the process has an MA( ) form: y(t) = α 1 (L)µ(L)ε(t) If the roots of µ(z) = le outsde the unt crcle, then t has an AR( ) form: µ 1 (L)α(L)y(t) =ε(t) The autocovarance generatng functon for the ARMA process s (537) γ(z) =σ ε µ(z)µ(z 1 ) α(z)α(z 1 ) To fnd the autocovarances n practce, consder multplyng the equaton α y t = µ ε t by y t τ and takng expectatons Ths gves (538) α γ τ = µ δ τ, where γ τ = E(y t τ y t ) and δ τ = E(y t τ ε t ) Snce ε t s uncorrelated wth y t τ whenever t s subsequent to the latter, t follows that δ τ =f τ> Snce the ndex n the RHS of the equaton (38) runs from to q, t follows that (539) α γ τ = f τ>q Gven the q+1 nonzero values δ,δ 1,,δ q, and p ntal values γ,γ 1,,γ p 1, the equatons can be solved recursvely for {γ p,γ p+1,} To fnd the requste values δ,δ 1,,δ q, consder multplyng the equaton α y t = µ ε t by ε t τ and takng expectatons Ths gves (54) α δ τ = µ τ σε, where δ τ = E(y t ε t τ ) The equaton may be rewrtten as (541) δ τ = 1 ( µ τ σε δ τ ), α =1 and, by settng τ =,1,,q, we can generate recursvely the requred values δ,δ 1,,δ q 8

LECTURE 4 : ARMA PROCESSES Example Consder the ARMA(, ) model whch gves the equaton (54) α y t + α 1 y t 1 + α y t = µ ε t + µ 1 ε t 1 + µ ε t Multplyng by y t, y t 1 and y t and takng expectatons gves (543) γ γ 1 γ γ 1 γ γ 1 α α 1 = δ δ 1 δ δ δ 1 µ µ 1 γ γ 1 γ α δ µ Multplyng by ε t, ε t 1 and ε t and takng expectatons gves (544) δ δ 1 δ α α 1 = σ ε σε µ µ 1 δ δ 1 δ α σε µ When the latter equatons are wrtten as (545) α α 1 α δ δ 1 = σ µ ε µ 1, α α 1 α δ µ they can be solved recursvely for δ, δ 1 and δ on the assumpton that that the values of α, α 1, α and σε are known Notce that, when we adopt the normalsaton α = µ = 1, we get δ = σε When the equatons (43) are rewrtten as (546) α α 1 α α 1 α + α γ γ 1 = µ µ 1 µ µ 1 µ δ δ 1, α α 1 α γ µ δ they can be solved for γ, γ 1 and γ Thus the startng values are obtaned whch enable the equaton (547) α γ τ + α 1 γ τ 1 + α γ τ =; τ> to be solved recursvely to generate the succeedng values {γ 3, γ 4,} of the autocovarances 9