Revisiting the S-matrix approach to the open superstring low energy eective lagrangian

Σχετικά έγγραφα
Higher Derivative Gravity Theories

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Space-Time Symmetries

2 Composition. Invertible Mappings

Math221: HW# 1 solutions

The Simply Typed Lambda Calculus

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

derivation of the Laplacian from rectangular to spherical coordinates

4.6 Autoregressive Moving Average Model ARMA(1,1)

Example Sheet 3 Solutions

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

A Hierarchy of Theta Bodies for Polynomial Systems

Approximation of distance between locations on earth given by latitude and longitude

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Concrete Mathematics Exercises from 30 September 2016

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Homework 3 Solutions

Finite Field Problems: Solutions

Section 8.3 Trigonometric Equations

The challenges of non-stable predicates

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

6.3 Forecasting ARMA processes

Three coupled amplitudes for the πη, K K and πη channels without data

TMA4115 Matematikk 3

Section 7.6 Double and Half Angle Formulas

C.S. 430 Assignment 6, Sample Solutions

Math 6 SL Probability Distributions Practice Test Mark Scheme

SPECIAL FUNCTIONS and POLYNOMIALS

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016

Notes on the Open Economy

12. Radon-Nikodym Theorem

Matrices and Determinants

Second Order Partial Differential Equations

Abstract Storage Devices

Συστήματα Διαχείρισης Βάσεων Δεδομένων

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Reminders: linear functions

Other Test Constructions: Likelihood Ratio & Bayes Tests

Statistical Inference I Locally most powerful tests

Strain gauge and rosettes

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Symmetric Stress-Energy Tensor

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

Περίληψη (Executive Summary)

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

ST5224: Advanced Statistical Theory II

Every set of first-order formulas is equivalent to an independent set

( y) Partial Differential Equations

Variational Wavefunction for the Helium Atom

CRASH COURSE IN PRECALCULUS

If we restrict the domain of y = sin x to [ π 2, π 2

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

EE512: Error Control Coding

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «ΘΕΜΑ»

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Homework 8 Model Solution Section

On a four-dimensional hyperbolic manifold with finite volume

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

Assalamu `alaikum wr. wb.

Laplace s Equation in Spherical Polar Coördinates

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Congruence Classes of Invertible Matrices of Order 3 over F 2

Spherical Coordinates

Distances in Sierpiński Triangle Graphs

ΚΑΘΟΡΙΣΜΟΣ ΠΑΡΑΓΟΝΤΩΝ ΠΟΥ ΕΠΗΡΕΑΖΟΥΝ ΤΗΝ ΠΑΡΑΓΟΜΕΝΗ ΙΣΧΥ ΣΕ Φ/Β ΠΑΡΚΟ 80KWp

The ε-pseudospectrum of a Matrix

5.4 The Poisson Distribution.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

Lecture 10 - Representation Theory III: Theory of Weights

Lecture 21: Scattering and FGR

Derivation of Optical-Bloch Equations

Srednicki Chapter 55

the total number of electrons passing through the lamp.

Symmetries and Feynman Rules for Ramond Sector in WZW-type Superstring Field Theories

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Local Approximation with Kernels

«ΑΓΡΟΤΟΥΡΙΣΜΟΣ ΚΑΙ ΤΟΠΙΚΗ ΑΝΑΠΤΥΞΗ: Ο ΡΟΛΟΣ ΤΩΝ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΣΤΗΝ ΠΡΟΩΘΗΣΗ ΤΩΝ ΓΥΝΑΙΚΕΙΩΝ ΣΥΝΕΤΑΙΡΙΣΜΩΝ»

Lecture 2. Soundness and completeness of propositional logic

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

Inverse trigonometric functions & General Solution of Trigonometric Equations

Fractional Colorings and Zykov Products of graphs

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

(Biomass utilization for electric energy production)

Ερώτηση και Αίτηση Κατάθεσης Εγγράφων Προς τον κ. Υπουργό Ανάπτυξης και Ανταγωνιστικότητας

Αναερόβια Φυσική Κατάσταση

α & β spatial orbitals in

Partial Trace and Partial Transpose

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΒΑΛΕΝΤΙΝΑ ΠΑΠΑΔΟΠΟΥΛΟΥ Α.Μ.: 09/061. Υπεύθυνος Καθηγητής: Σάββας Μακρίδης

Additional Results for the Pareto/NBD Model

Transcript:

Revisiting the S-matrix approach to the open superstring low energy eective lagrangian IX Simposio Latino Americano de Altas Energías Memorial da América Latina, São Paulo. Diciembre de 2012. L. A. Barreiro (UNESP, Rio Claro - Brasil) R. Medina (UNIFEI, Itajubá - Brasil) 1

Revisiting the S-matrix approach to the open superstring low energy eective lagrangian JHEP10 (2012) 108 arxiv:1208.6066 L. A. Barreiro (UNESP, Rio Claro - Brasil) R. Medina (UNIFEI, Itajubá - Brasil) 2

Revisiting the S-matrix approach to the open superstring low energy eective lagrangian JHEP10 (2012) 108 arxiv:1208.6066 (... and work in progress...) L. A. Barreiro (UNESP, Rio Claro - Brasil) R. Medina (UNIFEI, Itajubá - Brasil) 3

A. (Extremely) Brief review of the tree level open string scattering amplitudes 4

(Tree level) N-point amplitude of gauge bosons 5

(Tree level) N-point amplitude of gauge bosons A N = i(2π) D δ D (k 1 +... + k N ) [ tr(λ a 1 λ a 2... λ a N ) A(1, 2,..., N) + ( non-cyclic permutations ) ] 6

(Tree level) N-point amplitude of gauge bosons A N = i(2π) D δ D (k 1 +... + k N ) [ tr(λ a 1 λ a 2... λ a N ) A(1, 2,..., N) + ( non-cyclic permutations ) ] A(1, 2,..., N) = g N 2 dµ(z) < ˆV 1 (z 1, k 1 ) ˆV 2 (z 2, k 2 )... ˆV N (z N, k N ) >, 7

(Tree level) N-point amplitude of gauge bosons A N = i(2π) D δ D (k 1 +... + k N ) [ tr(λ a 1 λ a 2... λ a N ) A(1, 2,..., N) + ( non-cyclic permutations ) ] A(1, 2,..., N) = g N 2 dµ(z) < ˆV 1 (z 1, k 1 ) ˆV 2 (z 2, k 2 )... ˆV N (z N, k N ) >, ˆV j (z j, k j ) Open string vertex operator. 8

For the BOSONIC open string: A(1, 2,..., N) = 1 xn 2 g N 2 dx N 2 dx N 3... 0 0 exp N i<j x3 0 dx 2 2α ζ i ζ j (x j x i ) N 2 i j N i<j (x j x i ) 2α k i k j 2α k j ζ i (x j x i ) linear 9

For the BOSONIC open string: A(1, 2,..., N) = 1 xn 2 g N 2 dx N 2 dx N 3... 0 0 exp N i<j x3 0 dx 2 2α ζ i ζ j (x j x i ) N 2 i j N i<j (x j x i ) 2α k i k j 2α k j ζ i (x j x i ) linear For the SUPERSYMMETRIC open string: A(1, 2,..., N) = 2 gn 2 (2α ) 2(x N 1 x 1 )(x N x 1 ) exp xn 1 0 N i j xn 2 dx N 2 dx N 3... dθ 1... dθ N 2 0 N i<j x3 0 dx 2 (x j x i θ j θ i ) 2α k i k j dφ 1... dφ N (2α ) 1 (θ j θ i )φ j (ζ j k i ) 1/2 (2α ) 1 φ j φ i (ζ j ζ i ) x j x i θ j θ i 10

Example 1 : 3-point amplitude 11

Example 1 : 3-point amplitude i) Open BOSONIC string A b (1, [ 2, 3) = 2g (ζ 1 k 2 )(ζ 2 ζ 3 ) + (ζ 2 k 3 )(ζ 3 ζ 1 ) + (ζ 3 k 1 )(ζ 1 ζ 2 ) ] + + 2g (2α ) (ζ 1 k 2 )(ζ 2 k 3 )(ζ 3 k 1 ) 12

Example 1 : 3-point amplitude i) Open BOSONIC string A b (1, [ 2, 3) = 2g (ζ 1 k 2 )(ζ 2 ζ 3 ) + (ζ 2 k 3 )(ζ 3 ζ 1 ) + (ζ 3 k 1 )(ζ 1 ζ 2 ) ] + + 2g (2α ) (ζ 1 k 2 )(ζ 2 k 3 )(ζ 3 k 1 ) ii) Open SUPERSYMMETRIC string A s (1, [ 2, 3) = 2g (ζ 1 k 2 )(ζ 2 ζ 3 ) + (ζ 2 k 3 )(ζ 3 ζ 1 ) + (ζ 3 k 1 )(ζ 1 ζ 2 ) ] 13

Example 2 : 4-point amplitude 14

Example 2 : 4-point amplitude i) Open BOSONIC string A b (1, 2, 3, 4) = 8 g 2 α 2 Γ( 1 α s)γ( 1 α t) Γ(2 α s α t) K b (ζ 1, k 1 ; ζ 2, k 2 ; ζ 3, k 3 ; ζ 4, k 4 ; α ) 15

Example 2 : 4-point amplitude i) Open BOSONIC string A b (1, 2, 3, 4) = 8 g 2 α 2 Γ( 1 α s)γ( 1 α t) Γ(2 α s α t) K b (ζ 1, k 1 ; ζ 2, k 2 ; ζ 3, k 3 ; ζ 4, k 4 ; α ) ii) Open SUPERSYMMETRIC string A s (1, 2, 3, 4) = 8 g 2 α 2Γ( α s)γ( α t) Γ(1 α s α t) K s (ζ 1, k 1 ; ζ 2, k 2 ; ζ 3, k 3 ; ζ 4, k 4 ), 16

where s = (k 1 + k 2 ) 2, t = (k 1 + k 4 ) 2, u = (k 1 + k 3 ) 2 are the Mandelstam variables 17

where s = (k 1 + k 2 ) 2, t = (k 1 + k 4 ) 2, u = (k 1 + k 3 ) 2 are the Mandelstam variables and K s = 1 4 [ ts(ζ 1 ζ 3 )(ζ 2 ζ 4 ) + ] +su(ζ 2 ζ 3 )(ζ 1 ζ 4 ) + ut(ζ 1 ζ 2 )(ζ 3 ζ 4 ) + + 1 [(ζ 2 s 1 k 4 )(ζ 3 k 2 )(ζ 2 ζ 4 ) + (ζ 2 k 3 )(ζ 4 k 1 )(ζ 1 ζ 3 ) + ] +(ζ 1 k 3 )(ζ 4 k 2 )(ζ 2 ζ 3 ) + (ζ 2 k 4 )(ζ 3 k 1 )(ζ 1 ζ 4 ) + + 1 [(ζ 2 t 2 k 1 )(ζ 4 k 3 )(ζ 3 ζ 1 ) + (ζ 3 k 4 )(ζ 1 k 2 )(ζ 2 ζ 4 ) + ] +(ζ 2 k 4 )(ζ 1 k 3 )(ζ 3 ζ 4 ) + (ζ 3 k 1 )(ζ 4 k 2 )(ζ 2 ζ 1 ) + + 1 [(ζ 2 u 1 k 2 )(ζ 4 k 3 )(ζ 3 ζ 2 ) + (ζ 3 k 4 )(ζ 2 k 1 )(ζ 1 ζ 4 ) + ] +(ζ 1 k 4 )(ζ 2 k 3 )(ζ 3 ζ 4 ) + (ζ 3 k 2 )(ζ 4 k 1 )(ζ 1 ζ 2 ). 18

α expansion of the 4-point momentum factor: α 2Γ( α s)γ( α t) Γ(1 α s α t) = 19

α expansion of the 4-point momentum factor: α 2Γ( α s)γ( α t) Γ(1 α s α t) = 1 st π2 6 α 2 ζ(3)(s + t) α 3 π4 360 (4s2 + st + 4t 2 ) α 4 + [ ] π 2 + 6 ζ(3) st(s + t) ζ(5)(s3 + 2s 2 t + 2st 2 + t 3 ) α 5 + [ 1 + 2 ζ(3)2 st(s + t) 2 ] π6 15120 (16s4 + 12s 3 t + 23s 2 t 2 + 12st 3 + 16t 4 ) α 6 + + O(α 7 ). 20

B. (Extremely) Brief review of the low energy eective lagrangian 21

General Structure L e = 1 [ g 2 tr F 2 + (2α )F 3 + (2α ) 2 F 4 + (2α ) 3( F 5 + D 2 F 4) + +(2α ) 4( F 6 + D 2 F 5 + D 4 F 4) + O ( (2α ) 4) ] 22

General Structure L e = 1 [ g 2 tr F 2 + (2α )F 3 + (2α ) 2 F 4 + (2α ) 3( F 5 + D 2 F 4) + +(2α ) 4( F 6 + D 2 F 5 + D 4 F 4) + O ( (2α ) 4) ] + (fermions) 23

General Structure L e = 1 g 2 tr [ F 2 + (2α )F 3 + (2α ) 2 F 4 + (2α ) 3( F 5 + D 2 F 4) + +(2α ) 4( F 6 + D 2 F 5 + D 4 F 4) + O ( (2α ) 4) ] + + (fermions) i) Low energy eective lagrangian up to α 2 terms L e = 1 g 2tr [ 1 4 F µν F µν + (2α ) 1 a 1 F λ µ F ν λ F µ ν + + (2α ) 2 ( a 3 F µλ F ν λf ρ µ F νρ + a 4 F µ λ F λ ν F νρ F µρ + ) + a 5 F µν F µν F λρ F λρ + a 6 F µν F λρ F µν F λρ + ] + O((2α ) 3 ). 24

General Structure L e = 1 g 2 tr [ F 2 + (2α )F 3 + (2α ) 2 F 4 + (2α ) 3( F 5 + D 2 F 4) + +(2α ) 4( F 6 + D 2 F 5 + D 4 F 4) + O ( (2α ) 4) ] + + (fermions) i) Low energy eective lagrangian up to α 2 terms L e = 1 g 2tr [ 1 4 F µν F µν + (2α ) 1 a 1 F λ µ F ν λ F µ ν + + (2α ) 2 ( a 3 F µλ F ν λf ρ µ F νρ + a 4 F µ λ F λ ν F νρ F µρ + ) + a 5 F µν F µν F λρ F λρ + a 6 F µν F λρ F µν F λρ + ] + O((2α ) 3 ). 1 coecient at α 1 order : a 1 25

General Structure L e = 1 g 2 tr [ F 2 + (2α )F 3 + (2α ) 2 F 4 + (2α ) 3( F 5 + D 2 F 4) + +(2α ) 4( F 6 + D 2 F 5 + D 4 F 4) + O ( (2α ) 4) ] + + (fermions) i) Low energy eective lagrangian up to α 2 terms L e = 1 g 2tr [ 1 4 F µν F µν + (2α ) 1 a 1 F λ µ F ν λ F µ ν + + (2α ) 2 ( a 3 F µλ F ν λf ρ µ F νρ + a 4 F µ λ F λ ν F νρ F µρ + ) + a 5 F µν F µν F λρ F λρ + a 6 F µν F λρ F µν F λρ + ] + O((2α ) 3 ). 1 coecient at α 1 order : a 1 4 coecients at α 2 order: a 3, a 4, a 5, a 6. 26

ii) Low energy eective lagrangian at α 3 order [ tr a 10 F ν µ Fν λ L e (3) = (2α ) 3 F ρ λ F ρ σ F σ µ + a 12 Fµ ν Fν λ F σ µ F ρ λ F ρ σ + a 14 F ν µ F λ ν F µ λ F ρ σ g 2 + a 11 F ν µ Fν λ + a 13 F ν F ρ λ F µ σ F σ ρ + F λ ν F µ σ F ρ λ µ Fρ σ µ Fν λ Fρ σ F µ λ F σ ρ + ρ + Fσ ρ + a 15 F ν ( ) + a 16 Dµ Fν λ (D µ F ρ λ ) F σ ν F σ ( ) + a 17 Dµ Fν λ F ν σ (D µ F ρ λ ) F ρ σ + ( ) + a 18 Dµ Fν λ (D µ Fλ ν ) Fρ σ Fσ ρ + ( ) + a 19 Dµ Fν λ F σ ρ (D µ Fλ ν Fσ ρ + ( ) + a 20 Dσ Fµ ν F ρ ( ) λ D µ Fν λ F σ ρ + ( ) + a 21 Fµ ν D µ Fν λ F σ ρ (D σ F ρ λ ) + + a 22 Fµ ν (D µ F ρ λ ) ( ) ] D σ Fν λ F σ ρ 27

ii) Low energy eective lagrangian at α 3 order [ tr a 10 F ν µ Fν λ L e (3) = (2α ) 3 F ρ λ F ρ σ F σ µ + a 12 Fµ ν Fν λ F σ µ F ρ λ F ρ σ + a 14 F ν µ F λ ν F µ λ F ρ σ g 2 + a 11 F ν µ Fν λ + a 13 F ν F ρ λ F µ σ F σ ρ + F λ ν F µ σ F ρ λ µ Fρ σ µ Fν λ Fρ σ F µ λ F σ ρ + ρ + Fσ ρ + a 15 F ν ( ) + a 16 Dµ Fν λ (D µ F ρ λ ) F σ ν F σ ( ) + a 17 Dµ Fν λ F ν σ (D µ F ρ λ ) F ρ σ + ( ) + a 18 Dµ Fν λ (D µ Fλ ν ) Fρ σ Fσ ρ + ( ) + a 19 Dµ Fν λ F σ ρ (D µ Fλ ν Fσ ρ + ( ) + a 20 Dσ Fµ ν F ρ ( ) λ D µ Fν λ F σ ρ + ( ) + a 21 Fµ ν D µ Fν λ F σ ρ (D σ F ρ λ ) + + a 22 Fµ ν (D µ F ρ λ ) ( ) ] D σ Fν λ F σ ρ 13 coecients at α 3 order 28

C. Basics of the S-matrix approach to the (tree level) open string low energy eective lagrangian 29

Matching the open string amplitudes with the ones from the LEL: 30

Matching the open string amplitudes with the ones from the LEL: i) Case of the 3-point amplitude: Bosonic string: a 1 = i/3. Supersymmetric string: a 1 = 0. 31

Matching the open string amplitudes with the ones from the LEL: i) Case of the 3-point amplitude: Bosonic string: a 1 = i/3. Supersymmetric string: a 1 = 0. ii) Case of the 4-point amplitude: Coecient Bosonic Supersymmetric open string theory open string theory a 3 π 2 /12 π 2 /12 a 4 π 2 /24 π 2 /24 a 5 π 2 /48 1/8 π 2 /48 a 6 π 2 /96 + 1/8 π 2 /96 32

Matching the open string amplitudes with the ones from the LEL: i) Case of the 3-point amplitude: Bosonic string: a 1 = i/3. Supersymmetric string: a 1 = 0. ii) Case of the 4-point amplitude: Coecient Bosonic Supersymmetric open string theory open string theory a 3 π 2 /12 π 2 /12 a 4 π 2 /24 π 2 /24 a 5 π 2 /48 1/8 π 2 /48 a 6 π 2 /96 + 1/8 π 2 /96 It is exactly 33

Matching the open string amplitudes with the ones from the LEL: i) Case of the 3-point amplitude: Bosonic string: a 1 = i/3. Supersymmetric string: a 1 = 0. ii) Case of the 4-point amplitude: Coecient Bosonic Supersymmetric open string theory open string theory a 3 π 2 /12 π 2 /12 a 4 π 2 /24 π 2 /24 a 5 π 2 /48 1/8 π 2 /48 a 6 π 2 /96 + 1/8 π 2 /96 It is exactly the SAME method 34

Matching the open string amplitudes with the ones from the LEL: i) Case of the 3-point amplitude: Bosonic string: a 1 = i/3. Supersymmetric string: a 1 = 0. ii) Case of the 4-point amplitude: Coecient Bosonic Supersymmetric open string theory open string theory a 3 π 2 /12 π 2 /12 a 4 π 2 /24 π 2 /24 a 5 π 2 /48 1/8 π 2 /48 a 6 π 2 /96 + 1/8 π 2 /96 It is exactly the SAME method applied to two dierent expressions for A(1, 2,..., N). 35

D. Our revisited S-matrix approach to the (tree level) open string low energy eective lagrangian 36

Main observation 37

Main observation In the case of the superstring 38

Main observation In the case of the superstring A(1,..., N) does not contain (ζ k) N terms 39

Main observation In the case of the superstring A(1,..., N) does not contain (ζ k) N terms This is probably due to D=10 Supersymmetry 40

i) α 2 calculation 41

i) α 2 calculation a 3 = 8 a 6, a 4 = 4 a 6, a 5 = 2 a 6. 42

i) α 2 calculation a 3 = 8 a 6, a 4 = 4 a 6, a 5 = 2 a 6. L e = 1 g 2tr [ 1 4 F µν F µν + a 6 (2α ) 2 ( 8 F µλ F ν λf ρ µ F νρ ) 4 F µ λ F ν λ F νρ F µρ + 2 F µν F µν F λρ F λρ + F µν F λρ F µν F λρ + ] +O((2α ) 3 ). 43

i) α 2 calculation a 3 = 8 a 6, a 4 = 4 a 6, a 5 = 2 a 6. L e = 1 g 2tr [ 1 4 F µν F µν + a 6 (2α ) 2 ( 8 F µλ F ν λf ρ µ F νρ ) 4 F µ λ F ν λ F νρ F µρ + 2 F µν F µν F λρ F λρ + F µν F λρ F µν F λρ + ] +O((2α ) 3 ). At α 2 order there is only 1 coecient: a6. 44

i) α 2 calculation a 3 = 8 a 6, a 4 = 4 a 6, a 5 = 2 a 6. L e = 1 g 2tr [ 1 4 F µν F µν + a 6 (2α ) 2 ( 8 F µλ F ν λf ρ µ F νρ ) 4 F µ λ F ν λ F νρ F µρ + 2 F µν F µν F λρ F λρ + F µν F λρ F µν F λρ + ] +O((2α ) 3 ). At α 2 order there is only 1 coecient: a6. a 6 = π2 96 45

ii) α 3 calculation 46

ii) α 3 calculation 2a 16 = 2a 17 = 8a 19 = a 20 = a 22, a 18 = a 21 = 0. a 11 = a 13 = 2a 15 = i a 22, a 10 = a 12 = a 14 = 0. 47

ii) α 3 calculation 2a 16 = 2a 17 = 8a 19 = a 20 = a 22, a 18 = a 21 = 0. a 11 = a 13 = 2a 15 = i a 22, a 10 = a 12 = a 14 = 0. L (3) e = (2α ) 3 a 22 [ g 2 tr i Fµ ν Fν λ F ρ λ F σ µ Fρ σ + i F ν + 1 2 i 2 F ν µ Fν λ ( ) Dµ Fν λ F ν σ + ( ) D σ Fµ ν F ρ λ F σ ρ F µ λ F ρ σ + 1 2 (D µ F ρ λ ) F σ ( ) D µ Fν λ F σ ρ ρ 1 8 µ Fρ σ F λ ν F µ σ F ρ λ ( ) Dµ Fν λ (D µ F ρ λ ) F σ ν Fρ σ ( ) Dµ Fν λ F σ ρ (D µ Fλ ν ) Fσ ρ Fµ ν (D µ F ρ λ ) ( ) D σ Fν λ F σ ρ ] 48

ii) α 3 calculation 2a 16 = 2a 17 = 8a 19 = a 20 = a 22, a 18 = a 21 = 0. a 11 = a 13 = 2a 15 = i a 22, a 10 = a 12 = a 14 = 0. L (3) e = (2α ) 3 a 22 [ g 2 tr i Fµ ν Fν λ F ρ λ F σ µ Fρ σ + i F ν + 1 2 i 2 F ν µ Fν λ ( ) Dµ Fν λ F ν σ + ( ) D σ Fµ ν F ρ λ F σ ρ F µ λ F ρ σ + 1 2 (D µ F ρ λ ) F σ ( ) D µ Fν λ F σ ρ ρ 1 8 µ Fρ σ F λ ν F µ σ F ρ λ ( ) Dµ Fν λ (D µ F ρ λ ) F σ ν Fρ σ ( ) Dµ Fν λ F σ ρ (D µ Fλ ν ) Fσ ρ Fµ ν (D µ F ρ λ ) ( ) D σ Fν λ F σ ρ At α 3 order there is only 1 coecient: a22. ] 49

ii) α 3 calculation 2a 16 = 2a 17 = 8a 19 = a 20 = a 22, a 18 = a 21 = 0. a 11 = a 13 = 2a 15 = i a 22, a 10 = a 12 = a 14 = 0. L (3) e = (2α ) 3 a 22 [ g 2 tr i Fµ ν Fν λ F ρ λ F σ µ Fρ σ + i F ν + 1 2 i 2 F ν µ Fν λ ( ) Dµ Fν λ F ν σ + ( ) D σ Fµ ν F ρ λ F σ ρ F µ λ F ρ σ + 1 2 (D µ F ρ λ ) F σ ( ) D µ Fν λ F σ ρ ρ 1 8 µ Fρ σ F λ ν F µ σ F ρ λ ( ) Dµ Fν λ (D µ F ρ λ ) F σ ν Fρ σ ( ) Dµ Fν λ F σ ρ (D µ Fλ ν ) Fσ ρ Fµ ν (D µ F ρ λ ) ( ) D σ Fν λ F σ ρ At α 3 order there is only 1 coecient: a22. ] a 22 = 2ζ(3) 50

iii) α 4 calculation: 51

iii) α 4 calculation: L e (4) = (2α ) 4 π 4 g 2 ( LF 6 + L D 2 F 5 + L D 4 F 4 ), where 52

L F 6 = 1 46080 t µ 1ν 1 µ 2 ν 2 µ 3 ν 3 µ 4 ν 4 µ 5 ν 5 µ 6 ν 6 (12) tr ( F µ1 ν 1 F µ2 ν 2 F µ3 ν 3 F µ4 ν 4 F µ5 ν 5 F µ6 ν 6 ), L D 2 F 5 = 56 i 46080 tµ 1ν 1 µ 2 ν 2 µ 3 ν 3 µ 4 ν 4 µ 5 ν 5 (10) tr ( F µ1 ν 1 F µ2 ν 2 F µ3 ν 3 D α F µ4 ν 4 D α F µ5 ν 5 ) + + i 46080 (η t (8)) µ 1ν 1 µ 2 ν 2 µ 3 ν 3 µ 4 ν 4 µ 5 ν 5 tr ( 169 D α F µ1 ν 1 F µ2 ν 2 F µ3 ν 3 F µ4 ν 4 D α F µ5 ν 5 + +68 D α F µ1 ν 1 D α F µ2 ν 2 F µ3 ν 3 F µ4 ν 4 F µ5 ν 5 + +237 F µ1 ν 1 D α F µ2 ν 2 D α F µ3 ν 3 F µ4 ν 4 F µ5 ν 5 + +237 F µ1 ν 1 D α F µ2 ν 2 F µ3 ν 3 D α F µ4 ν 4 F µ5 ν 5 + +267 F µ1 ν 1 F µ2 ν 2 D α F µ3 ν 3 D α F µ4 ν 4 F µ5 ν 5 + ) +16 F µ1 ν 1 F µ2 ν 2 F µ3 ν 3 D α F µ4 ν 4 D α F µ5 ν 5 i 5760 tµ 1ν 1 µ 2 ν 2 µ 3 ν 3 µ 4 ν 4 (8) { 17 ( ) tr D µ 5 F µ1 ν 1 F µ2 ν 2 F µ3 ν 3 D ν 5 F µ4 ν 4 F µ5 ν 5 + +2 tr ( F µ1 ν 1 D µ 5 F µ2 ν 2 D ν 5 F µ3 ν 3 F µ4 ν 4 F µ5 ν 5 ) }, L D 4 F 4 = 1 11520 tµ 1ν 1 µ 2 ν 2 µ 3 ν 3 µ 4 ν 4 (8) tr ( D α F µ1 ν 1 D (α D β) F µ2 ν 2 D β F µ3 ν 3 F µ4 ν 4 + +8 D α F µ1 ν 1 D α F µ2 ν 2 D β F µ3 ν 3 D β F µ4 ν 4 ). 53

E. Summary of our revisited S-matrix method 54

1. There now is an improved (revisited) version of the S-matrix approach to the Open Superstring low energy eective lagrangian, L e. 55

1. There now is an improved (revisited) version of the S-matrix approach to the Open Superstring low energy eective lagrangian, L e. 2. It incorporates a kinematic requiremenent in the gauge boson scattering amplitudes, (presumably) due to Supersymmetry. 56

1. There now is an improved (revisited) version of the S-matrix approach to the Open Superstring low energy eective lagrangian, L e. 2. It incorporates a kinematic requiremenent in the gauge boson scattering amplitudes, (presumably) due to Supersymmetry. 3. It has been successfully used to obtain the bosonic terms of L e up to α 4 order. 57

4. Our revisited S-matrix method suggests that, demanding: I. The kinematical constraints (absence of (ζ k) N terms) + II. The Open Superstring 4-point amplitude 58

4. Our revisited S-matrix method suggests that, demanding: I. The kinematical constraints (absence of (ζ k) N terms) + II. The Open Superstring 4-point amplitude are enough requirements to obtain COMPLETELY L e (order by order in α ). 59

4. Our revisited S-matrix method suggests that, demanding: I. The kinematical constraints (absence of (ζ k) N terms) + II. The Open Superstring 4-point amplitude are enough requirements to obtain COMPLETELY L e (order by order in α ). JHEP10 (2012) 108 60

5. Important remark: 61

5. Important remark: In the literature there already exists another method which only uses the open superstring 4-point amplitude and that succeeds in nding the α terms of L e up to α 4 order: 62

5. Important remark: In the literature there already exists another method which only uses the open superstring 4-point amplitude and that succeeds in nding the α terms of L e up to α 4 order: The method of BPS congurations 63

5. Important remark: In the literature there already exists another method which only uses the open superstring 4-point amplitude and that succeeds in nding the α terms of L e up to α 4 order: The method of BPS congurations It is due to Koerber and Sevrin (2001-2004). 64

5. Important remark: In the literature there already exists another method which only uses the open superstring 4-point amplitude and that succeeds in nding the α terms of L e up to α 4 order: The method of BPS congurations It is due to Koerber and Sevrin (2001-2004). Our results agree with the ones of Koerber and Sevrin up to α 3 order and probably also agree at α 4 order. 65

F.... As for the scattering amplitudes... 66

F.... As for the scattering amplitudes... (Work in progress) 67

F.... As for the scattering amplitudes... (Work in progress, to be soon sent to the hep-th ArXiv) 68

Interesting question: 69

Interesting question: Does the (tree level) N-point formula, in Open Superstring Theory, 70

Interesting question: Does the (tree level) N-point formula, in Open Superstring Theory, A(1, 2,..., N) = 2 gn 2 (2α ) 2(x N 1 x 1 )(x N x 1 ) exp xn 1 0 N i j xn 2 dx N 2 dx N 3... dθ 1... dθ N 2 0 N i<j x3 0 dx 2 (x j x i θ j θ i ) 2α k i k j dφ 1... dφ N (2α ) 1 (θ j θ i )φ j (ζ j k i ) 1/2 (2α ) 1 φ j φ i (ζ j ζ i ) x j x i θ j θ i 71

Interesting question: Does the (tree level) N-point formula, in Open Superstring Theory, A(1, 2,..., N) = 2 gn 2 (2α ) 2(x N 1 x 1 )(x N x 1 ) exp xn 1 0 N i j xn 2 dx N 2 dx N 3... dθ 1... dθ N 2 0 N i<j x3 0 dx 2 (x j x i θ j θ i ) 2α k i k j dφ 1... dφ N (2α ) 1 (θ j θ i )φ j (ζ j k i ) 1/2 (2α ) 1 φ j φ i (ζ j ζ i ) x j x i θ j θ i admit a closed expression for any N? 72

Interesting question: Does the (tree level) N-point formula, in Open Superstring Theory, A(1, 2,..., N) = 2 gn 2 (2α ) 2(x N 1 x 1 )(x N x 1 ) exp xn 1 0 N i j xn 2 dx N 2 dx N 3... dθ 1... dθ N 2 0 N i<j x3 0 dx 2 (x j x i θ j θ i ) 2α k i k j dφ 1... dφ N (2α ) 1 (θ j θ i )φ j (ζ j k i ) 1/2 (2α ) 1 φ j φ i (ζ j ζ i ) x j x i θ j θ i admit a closed expression for any N? Answer: 73

Interesting question: Does the (tree level) N-point formula, in Open Superstring Theory, A(1, 2,..., N) = 2 gn 2 (2α ) 2(x N 1 x 1 )(x N x 1 ) exp xn 1 0 N i j xn 2 dx N 2 dx N 3... dθ 1... dθ N 2 0 N i<j x3 0 dx 2 (x j x i θ j θ i ) 2α k i k j dφ 1... dφ N (2α ) 1 (θ j θ i )φ j (ζ j k i ) 1/2 (2α ) 1 φ j φ i (ζ j ζ i ) x j x i θ j θ i admit a closed expression for any N? Answer: Yes! 74

Interesting question: Does the (tree level) N-point formula, in Open Superstring Theory, A(1, 2,..., N) = 2 gn 2 (2α ) 2(x N 1 x 1 )(x N x 1 ) exp xn 1 0 N i j xn 2 dx N 2 dx N 3... dθ 1... dθ N 2 0 N i<j x3 0 dx 2 (x j x i θ j θ i ) 2α k i k j dφ 1... dφ N (2α ) 1 (θ j θ i )φ j (ζ j k i ) 1/2 (2α ) 1 φ j φ i (ζ j ζ i ) x j x i θ j θ i admit a closed expression for any N? Answer: Yes! Mafra, Schlotterer, Stieberger, arxiv:0909.0256 75

Mafra, Schlotterer and Stieberger's result: 76

Mafra, Schlotterer and Stieberger's result: A(1, 2,..., N) = F (N) 1 A Y M (1, 2,..., N 1, N) +... + F (N) (N 3)! A Y M(1, N 2,..., N 1, N), 77

Mafra, Schlotterer and Stieberger's result: A(1, 2,..., N) = F (N) 1 A Y M (1, 2,..., N 1, N) +... + F (N) (N 3)! A Y M(1, N 2,..., N 1, N), where F (N) 1,..., F (N) are the momentum (N 3)! factors, which contain the α dependence. 78

Mafra, Schlotterer and Stieberger's result: A(1, 2,..., N) = F (N) 1 A Y M (1, 2,..., N 1, N) +... + F (N) (N 3)! A Y M(1, N 2,..., N 1, N), where F (N) 1,..., F (N) are the momentum (N 3)! factors, which contain the α dependence. Examples: 79

Mafra, Schlotterer and Stieberger's result: A(1, 2,..., N) = F (N) 1 A Y M (1, 2,..., N 1, N) +... + F (N) (N 3)! A Y M(1, N 2,..., N 1, N), where F (N) 1,..., F (N) are the momentum (N 3)! factors, which contain the α dependence. Examples: i) N=4 : 80

Mafra, Schlotterer and Stieberger's result: A(1, 2,..., N) = F (N) 1 A Y M (1, 2,..., N 1, N) +... + F (N) (N 3)! A Y M(1, N 2,..., N 1, N), where F (N) 1,..., F (N) are the momentum (N 3)! factors, which contain the α dependence. Examples: i) N=4 : where A(1, 2, 3, 4) = F (4) 1 A Y M (1, 2, 3, 4), F (4) 1 = α 12 1 0 dx 2 x 2 2α α 12 1 (1 x 2 ) 2α α 23, 81

Mafra, Schlotterer and Stieberger's result: A(1, 2,..., N) = F (N) 1 A Y M (1, 2,..., N 1, N) +... + F (N) (N 3)! A Y M(1, N 2,..., N 1, N), where F (N) 1,..., F (N) are the momentum (N 3)! factors, which contain the α dependence. Examples: i) N=4 : where A(1, 2, 3, 4) = F (4) 1 A Y M (1, 2, 3, 4), F (4) 1 = α 12 1 0 dx 2 x 2 2α α 12 1 (1 x 2 ) 2α α 23, F (4) 1 = Γ(1 + 2α α 12 )Γ(1 + 2α α 23 ) Γ(1 + 2α α 12 + 2α α 23 ), 82

Mafra, Schlotterer and Stieberger's result: A(1, 2,..., N) = F (N) 1 A Y M (1, 2,..., N 1, N) +... + F (N) (N 3)! A Y M(1, N 2,..., N 1, N), where F (N) 1,..., F (N) are the momentum (N 3)! factors, which contain the α dependence. Examples: i) N=4 : where A(1, 2, 3, 4) = F (4) 1 A Y M (1, 2, 3, 4), F (4) 1 = α 12 1 0 dx 2 x 2 2α α 12 1 (1 x 2 ) 2α α 23, F (4) 1 = Γ(1 + 2α α 12 )Γ(1 + 2α α 23 ) Γ(1 + 2α α 12 + 2α α 23 ), F (4) 1 = 1 (2α ) 2 ζ(2)α 12 α 23 (2α ) 3 ζ(3)α 12 α 23 (α 12 + α 23 ) + +O((2α ) 4 ) 83

A(1, 2, 3, 4) = F (4) 1 A Y M (1, 2, 3, 4) vs A s (1, 2, 3, 4) = 8 g 2 α 2Γ( α s)γ( α t) Γ(1 α s α t) K s (ζ 1, k 1 ; ζ 2, k 2 ; ζ 3, k 3 ; ζ 4, k 4 ), 84

A(1, 2, 3, 4) = F (4) 1 A Y M (1, 2, 3, 4) vs A s (1, 2, 3, 4) = 8 g 2 α 2Γ( α s)γ( α t) Γ(1 α s α t) K s (ζ 1, k 1 ; ζ 2, k 2 ; ζ 3, k 3 ; ζ 4, k 4 ), (Both expressions are equivalent) 85

Mafra, Schlotterer and Stieberger's result: A(1, 2,..., N) = F (N) 1 A Y M (1, 2,..., N 1, N) +... + F (N) (N 3)! A Y M(1, N 2,..., N 1, N), where F (N) 1,..., F (N) are the momentum (N 3)! factors, which contain the α dependence. Examples: i) N=4 : where A(1, 2, 3, 4) = F (4) 1 A Y M (1, 2, 3, 4), F (4) 1 = α 12 1 0 dx 2 x 2 2α α 12 1 (1 x 2 ) 2α α 23, F (4) 1 = Γ(1 + 2α α 12 )Γ(1 + 2α α 23 ) Γ(1 + 2α α 12 + 2α α 23 ), F (4) 1 = 1 (2α ) 2 ζ(2)α 12 α 23 (2α ) 3 ζ(3)α 12 α 23 (α 12 + α 23 ) + +O((2α ) 4 ) 86

Mafra, Schlotterer and Stieberger's result: A(1, 2,..., N) = F (N) 1 A Y M (1, 2,..., N 1, N) +... + F (N) (N 3)! A Y M(1, N 2,..., N 1, N). 87

Mafra, Schlotterer and Stieberger's result: A(1, 2,..., N) = F (N) 1 A Y M (1, 2,..., N 1, N) +... + F (N) (N 3)! A Y M(1, N 2,..., N 1, N). Examples: ii) N=5 : A(1, 2, 3, 4, 5) = = F (5) 1 A Y M (1, 2, 3, 4, 5) + F (5) 2 A Y M (1, 3, 2, 4, 5), 88

Mafra, Schlotterer and Stieberger's result: A(1, 2,..., N) = F (N) 1 A Y M (1, 2,..., N 1, N) +... + F (N) (N 3)! A Y M(1, N 2,..., N 1, N). Examples: ii) N=5 : A(1, 2, 3, 4, 5) = = F (5) 1 A Y M (1, 2, 3, 4, 5) + F (5) 2 A Y M (1, 3, 2, 4, 5), where F (5) 1 = α 12 α 34 1 0 dx 3 x3 0 dx 2 x 2 2α α 12 1 x 3 2α α 13 (1 x 2 ) 2α α 24 (1 x 3 ) 2α α 34 1 (x 3 x 2 ) 2α α 23 89

Mafra, Schlotterer and Stieberger's result: A(1, 2,..., N) = F (N) 1 A Y M (1, 2,..., N 1, N) +... + F (N) (N 3)! A Y M(1, N 2,..., N 1, N). Examples: ii) N=5 : A(1, 2, 3, 4, 5) = = F (5) 1 A Y M (1, 2, 3, 4, 5) + F (5) 2 A Y M (1, 3, 2, 4, 5), where F (5) 1 = α 12 α 34 1 0 dx 3 x3 0 dx 2 x 2 2α α 12 1 x 3 2α α 13 (1 x 2 ) 2α α 24 (1 x 3 ) 2α α 34 1 (x 3 x 2 ) 2α α 23 F (5) 1 = 1 (2α ) 2 ζ(2) ( (α 12 α 34 α 34 α 45 α 12 α 51 ) (2α ) 3 ζ(3) α12 2 α 34 + 2 α 12 α 23 α 34 + α 12 α34 2 + O((2α ) 4 ) α 2 34 α 45 α 34 α 2 45 α 2 12 α 51 α 12 α 2 51 ) 90

Mafra, Schlotterer and Stieberger's result: A(1, 2,..., N) = F (N) 1 A Y M (1, 2,..., N 1, N) +... + F (N) (N 3)! A Y M(1, N 2,..., N 1, N). 91

Mafra, Schlotterer and Stieberger's result: A(1, 2,..., N) = F (N) 1 A Y M (1, 2,..., N 1, N) +... + F (N) (N 3)! A Y M(1, N 2,..., N 1, N). Examples: iii) N=6 : A(1, 2, 3, 4, 5, 6) = = F (6) 1 A Y M (1, 2, 3, 4, 5, 6) + F (6) 2 A Y M (1, 3, 2, 4, 5, 6) + + F (6) 3 A Y M (1, 2, 4, 3, 5, 6) + F (6) 4 A Y M (1, 3, 4, 2, 5, 6) + + F (6) 5 A Y M (1, 4, 2, 3, 5, 6) + F (6) 6 A Y M (1, 4, 3, 2, 5, 6) 92

Mafra, Schlotterer and Stieberger's result: A(1, 2,..., N) = F (N) 1 A Y M (1, 2,..., N 1, N) +... + F (N) (N 3)! A Y M(1, N 2,..., N 1, N). Examples: iii) N=6 : A(1, 2, 3, 4, 5, 6) = = F (6) 1 A Y M (1, 2, 3, 4, 5, 6) + F (6) 2 A Y M (1, 3, 2, 4, 5, 6) + where + F (6) 3 A Y M (1, 2, 4, 3, 5, 6) + F (6) 4 A Y M (1, 3, 4, 2, 5, 6) + + F (6) 5 A Y M (1, 4, 2, 3, 5, 6) + F (6) 6 A Y M (1, 4, 3, 2, 5, 6) F (6) 1 = α 12 α 45 1 0 x4 x3 2α dx 4 dx 3 dx 2 x α 12 1 2α 2 x α 13 3 0 0 x 4 2α α 14 (1 x 2 ) 2α α 25 (1 x 3 ) 2α α 35 (1 x 4 ) 2α α 45 1 (x 3 x 2 ) 2α α 23 (x 4 x 2 ) 2α α 24 (x 4 x 3 ) 2α α 34 [ α13 + α ] 23. x 3 x 3 x 2 93

F (6) 1 = α 12 α 45 1 0 x4 x3 2α dx 4 dx 3 dx 2 x α 12 1 2α 2 x α 13 3 0 0 x 4 2α α 14 (1 x 2 ) 2α α 25 (1 x 3 ) 2α α 35 (1 x 4 ) 2α α 45 1 (x 3 x 2 ) 2α α 23 (x 4 x 2 ) 2α α 24 (x 4 x 3 ) 2α α 34 [ α13 + α ] 23. x 3 x 3 x 2 94

F (6) 1 = α 12 α 45 1 F (6) 1 = 1 (2α ) 2 ζ(2) 0 + (2α ) 3 ζ(3) x4 x3 2α dx 4 dx 3 dx 2 x α 12 1 2α 2 x α 13 3 ( 0 0 x 4 2α α 14 (1 x 2 ) 2α α 25 (1 x 3 ) 2α α 35 (1 x 4 ) 2α α 45 1 (x 3 x 2 ) 2α α 23 (x 4 x 2 ) 2α α 24 (x 4 x 3 ) 2α α 34 [ α13 + α ] 23. x 3 x 3 x 2 ( α 45 α 56 + α 12 α 61 α 45 t 123 α 12 t 345 + t 123 t 345 ) + 2 α 12 α 23 α 45 + 2 α 12 α 34 α 45 + + α 2 45 α 56 + α 45 α 2 56 + α 2 12 α 61 + α 12 α 2 61 2 α 34 α 45 t 123 α 2 45 t 123 α 45 t 2 123 + O((2α ) 4 ), 2 α 12 α 45 t 234 α12 2 t 345 2 α ) 12 α 23 t 345 + t 2 123 t 345 α 12 t 2 345 + t 123 t 2 345 + where α ij = k i k j and t mnp = α mn + α mp + α np. 95

Another interesting question: 96

Another interesting question: What can the revisited S-matrix method say about Mafra-Schlotterer-Stieberger's result, A(1, 2,..., N) = F (N) 1 A Y M (1, 2,..., N 1, N) +... + F (N) (N 3)! A Y M(1, N 2,..., N 1, N)??? 97

Another interesting question: What can the revisited S-matrix method say about Mafra-Schlotterer-Stieberger's result, A(1, 2,..., N) = F (N) 1 A Y M (1, 2,..., N 1, N) +... + F (N) (N 3)! A Y M(1, N 2,..., N 1, N)??? Answer: 98

Another interesting question: What can the revisited S-matrix method say about Mafra-Schlotterer-Stieberger's result, A(1, 2,..., N) = F (N) 1 A Y M (1, 2,..., N 1, N) +... + F (N) (N 3)! A Y M(1, N 2,..., N 1, N)??? Answer: It can be re-derived from it! 99

Yes, 100

Yes, demanding: I. The kinematical constraints (absence of (ζ k) N terms) + II. The Open Superstring 4-point amplitude 101

Yes, demanding: I. The kinematical constraints (absence of (ζ k) N terms) + II. The Open Superstring 4-point amplitude + 102

Yes, demanding: I. The kinematical constraints (absence of (ζ k) N terms) + II. The Open Superstring 4-point amplitude + III. (on-shell) Gauge invariance + IV. Cyclic symmetry + V. Unitarity 103

Yes, demanding: I. The kinematical constraints (absence of (ζ k) N terms) + II. The Open Superstring 4-point amplitude + III. (on-shell) Gauge invariance + IV. Cyclic symmetry + V. Unitarity Properties of gauge boson amplitudes 104

Mafra-Schlotterer-Stieberger's result, A(1, 2,..., N) = F (N) 1 A Y M (1, 2,..., N 1, N) +... + F (N) (N 3)! A Y M(1, N 2,..., N 1, N), can be re-derived. 105

Mafra-Schlotterer-Stieberger's result, A(1, 2,..., N) = F (N) 1 A Y M (1, 2,..., N 1, N) +... + F (N) (N 3)! A Y M(1, N 2,..., N 1, N), can be re-derived. At least we have succeeded in the cases of N=5 and N=6 : 106

Mafra-Schlotterer-Stieberger's result, A(1, 2,..., N) = F (N) 1 A Y M (1, 2,..., N 1, N) +... + F (N) (N 3)! A Y M(1, N 2,..., N 1, N), can be re-derived. At least we have succeeded in the cases of N=5 and N=6 (also N=7?) : 107

Mafra-Schlotterer-Stieberger's result, A(1, 2,..., N) = F (N) 1 A Y M (1, 2,..., N 1, N) +... + F (N) (N 3)! A Y M(1, N 2,..., N 1, N), can be re-derived. At least we have succeeded in the cases of N=5 and N=6 (also N=7?) : F (5) 1 = 1 (2α ) 2 ζ(2) (α 12 α 34 α 34 α 45 α 12 α 51 ) ( (2α ) 3 ζ(3) α12 2 α 34 + 2 α 12 α 23 α 34 + α 12 α34 2 ) α34 2 α 45 α 34 α45 2 α12 2 α 51 α 12 α51 2 + + O((2α ) 4 ), 108

Mafra-Schlotterer-Stieberger's result, A(1, 2,..., N) = F (N) 1 A Y M (1, 2,..., N 1, N) +... + F (N) (N 3)! A Y M(1, N 2,..., N 1, N), can be re-derived. At least we have succeeded in the cases of N=5 and N=6 (also N=7?) : F (5) 1 = 1 (2α ) 2 ζ(2) (α 12 α 34 α 34 α 45 α 12 α 51 ) ( (2α ) 3 ζ(3) α12 2 α 34 + 2 α 12 α 23 α 34 + α 12 α34 2 ) α34 2 α 45 α 34 α45 2 α12 2 α 51 α 12 α51 2 + + O((2α ) 4 ), F (6) 1 = 1 (2α ) 2 ζ(2) + (2α ) 3 ζ(3) + O((2α ) 4 ). ( ( α 45 α 56 + α 12 α 61 α 45 t 123 α 12 t 345 + t 123 t 345 ) + 2 α 12 α 23 α 45 + 2 α 12 α 34 α 45 + + α 2 45 α 56 + α 45 α 2 56 + α 2 12 α 61 + α 12 α 2 61 2 α 34 α 45 t 123 α 2 45 t 123 α 45 t 2 123 2 α 12 α 45 t 234 α12 2 t 345 2 α 12 α 23 t 345 + ) + t 2 123 t 345 α 12 t 2 345 + t 123 t 2 345 + 109

G. Global summary 110

1. Our revisited S-matrix approach, which deals with the RNS description of the open superstring, proposes a CONCRETE SHORTCUT to: 111

1. Our revisited S-matrix approach, which deals with the RNS description of the open superstring, proposes a CONCRETE SHORTCUT to: i) The construction of the LEL, L e. 112

1. Our revisited S-matrix approach, which deals with the RNS description of the open superstring, proposes a CONCRETE SHORTCUT to: i) The construction of the LEL, L e. L e = 1 [ g 2 tr F 2 + (2α )F 3 + (2α ) 2 F 4 + (2α ) 3( F 5 + D 2 F 4) + +(2α ) 4( F 6 + D 2 F 5 + D 4 F 4) + O ( (2α ) 4) ] 113

1. Our revisited S-matrix approach, which deals with the RNS description of the open superstring, proposes a CONCRETE SHORTCUT to: i) The construction of the LEL, L e. 114

1. Our revisited S-matrix approach, which deals with the RNS description of the open superstring, proposes a CONCRETE SHORTCUT to: i) The construction of the LEL, L e. ii) The construction of the (tree level) N-point amplitude of gauge bosons, A(1, 2,..., N). 115

1. Our revisited S-matrix approach, which deals with the RNS description of the open superstring, proposes a CONCRETE SHORTCUT to: i) The construction of the LEL, L e. ii) The construction of the (tree level) N-point amplitude of gauge bosons, A(1, 2,..., N). A(1, 2,..., N) = F (N) 1 A Y M (1, 2,..., N 1, N) +... + F (N) (N 3)! A Y M(1, N 2,..., N 1, N), 116

1. Our revisited S-matrix approach, which deals with the RNS description of the open superstring, proposes a CONCRETE SHORTCUT to: i) The construction of the LEL, L e. ii) The construction of the (tree level) N-point amplitude of gauge bosons, A(1, 2,..., N). 117

1. Our revisited S-matrix approach, which deals with the RNS description of the open superstring, proposes a CONCRETE SHORTCUT to: i) The construction of the LEL, L e. ii) The construction of the (tree level) N-point amplitude of gauge bosons, A(1, 2,..., N). This is acheived by using 118

1. Our revisited S-matrix approach, which deals with the RNS description of the open superstring, proposes a CONCRETE SHORTCUT to: i) The construction of the LEL, L e. ii) The construction of the (tree level) N-point amplitude of gauge bosons, A(1, 2,..., N). This is acheived by using I. The kinematical constraints (absence of (ζ k) N terms) + II. The Open Superstring 4-point amplitude 119

2. Although at this moment, 120

2. Although at this moment, neither L e 121

2. Although at this moment, neither L e nor the momentum factors F (N) j, of A(1, 2,..., N), 122

2. Although at this moment, neither L e nor the momentum factors F (N) j, of A(1, 2,..., N), are known at any α order, 123

2. Although at this moment, neither L e nor the momentum factors F (N) j, of A(1, 2,..., N), are known at any α order, our revisited S-matrix method suggests an explicit construction of both of them, 124

2. Although at this moment, neither L e nor the momentum factors F (N) j, of A(1, 2,..., N), are known at any α order, our revisited S-matrix method suggests an explicit construction of both of them, bypassing the computation of α expansion of worldsheet integrals that arise in N 5 point amplitudes, 125

2. Although at this moment, neither L e nor the momentum factors F (N) j, of A(1, 2,..., N), are known at any α order, our revisited S-matrix method suggests an explicit construction of both of them, bypassing the computation of α expansion of worldsheet integrals that arise in N 5 point amplitudes, like, for example, for N=6 : 1 0 x4 x3 2α dx 4 dx 3 dx 2 x α 12 2α 2 x α 13 2α 3 x α 14 1 4 (x 3 x 2 ) 2α α 23 1 0 0 (x 4 x 2 ) 2α α 24 (x 4 x 3 ) 2α α 34 1 (1 x 2 ) 2α α 25 1 (1 x 3 ) 2α α 35 (1 x 4 ) 2α α 45 126

1 0 x4 x3 2α dx 4 dx 3 dx 2 x α 12 2α 2 x α 13 2α 3 x α 14 1 4 (x 3 x 2 ) 2α α 23 1 0 0 (x 4 x 2 ) 2α α 24 (x 4 x 3 ) 2α α 34 1 (1 x 2 ) 2α α 25 1 (1 x 3 ) 2α α 35 (1 x 4 ) 2α α 45 [( 1 1 + (2α ) 3 α 23 α 16 t 234 + ζ(2) [ ( α16 + α 56 (2α ) 1 α 23 t 234 + O((2α ) 0 ) ( 1 + α 23 + 1 α 34 = ) ( )] 1 1 1 + + + α 34 α 56 t 234 α 34 α 16 t 234 α 23 α 56 t 234 ) ( 1 + + 1 ) ( α23 + α ) 34 + t 234 α 34 α 56 α 16 t 234 α 56 t 234 α ) ( 16 α23 + α ) ( 34 α12 + α ) 45 t 234 α 16 t 234 α 56 α 56 α 34 α 23 α ( 16 α56 + α ) ( 16 t345 + t )] 123 + α 23 t 234 t 234 α 34 α 34 α 16 α 23 α 56 where α ij = k i k j and t mnp = α mn + α mp + α np. 127

2. Although at this moment, neither L e nor the momentum factors F (N) j, of A(1, 2,..., N), are known at any α order, our revisited S-matrix method suggests an explicit construction of both of them, bypassing the computation of α expansion of worldsheet integrals that arise in N 5 point amplitudes. 128

2. Although at this moment, neither L e nor the momentum factors F (N) j, of A(1, 2,..., N), are known at any α order, our revisited S-matrix method suggests an explicit construction of both of them, bypassing the computation of α expansion of worldsheet integrals that arise in N 5 point amplitudes. 3. Our revisited S-matrix method, also has a version for the fermionic terms of L e. 129

2. Although at this moment, neither L e nor the momentum factors F (N) j, of A(1, 2,..., N), are known at any α order, our revisited S-matrix method suggests an explicit construction of both of them, bypassing the computation of α expansion of worldsheet integrals that arise in N 5 point amplitudes. 3. Our revisited S-matrix method, also has a version for the fermionic terms of L e. This result will appear on a forthcoming work. 130

2. Although at this moment, neither L e nor the momentum factors F (N) j, of A(1, 2,..., N), are known at any α order, our revisited S-matrix method suggests an explicit construction of both of them, bypassing the computation of α expansion of worldsheet integrals that arise in N 5 point amplitudes. 3. Our revisited S-matrix method, also has a version for the fermionic terms of L e. This result will appear on a forthcoming work. Obrigado! 131