2. Weighted Log-rank statistics. Y 2 (u) 1. Perspective 1: weighted difference in cumulative hazard functions

Σχετικά έγγραφα
ST5224: Advanced Statistical Theory II

Survival Analysis: One-Sample Problem /Two-Sample Problem/Regression. Lu Tian and Richard Olshen Stanford University

Μηχανική Μάθηση Hypothesis Testing

Statistical Inference I Locally most powerful tests

Other Test Constructions: Likelihood Ratio & Bayes Tests

ECE598: Information-theoretic methods in high-dimensional statistics Spring 2016

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Problem Set 3: Solutions

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

EE512: Error Control Coding

HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer:

5.4 The Poisson Distribution.

557: MATHEMATICAL STATISTICS II HYPOTHESIS TESTING

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

Lecture 7: Overdispersion in Poisson regression

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Solution Series 9. i=1 x i and i=1 x i.

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

557: MATHEMATICAL STATISTICS II RESULTS FROM CLASSICAL HYPOTHESIS TESTING

Parametrized Surfaces

Theorem 8 Let φ be the most powerful size α test of H

Exercise 2: The form of the generalized likelihood ratio

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

The Simply Typed Lambda Calculus

An Introduction to Signal Detection and Estimation - Second Edition Chapter II: Selected Solutions

Fractional Colorings and Zykov Products of graphs

Mean-Variance Analysis

Lecture 21: Properties and robustness of LSE

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Solutions to Exercise Sheet 5

Continuous Distribution Arising from the Three Gap Theorem

Matrices and Determinants

6. MAXIMUM LIKELIHOOD ESTIMATION

Exercises to Statistics of Material Fatigue No. 5

6.3 Forecasting ARMA processes

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

FORMULAS FOR STATISTICS 1

APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679

C.S. 430 Assignment 6, Sample Solutions

Supplementary Appendix

CE 530 Molecular Simulation

Lecture 13 - Root Space Decomposition II

w o = R 1 p. (1) R = p =. = 1

Example Sheet 3 Solutions

Table 1: Military Service: Models. Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 num unemployed mili mili num unemployed

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

derivation of the Laplacian from rectangular to spherical coordinates

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

Δεδομένα (data) και Στατιστική (Statistics)

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Uniform Convergence of Fourier Series Michael Taylor

12. Radon-Nikodym Theorem

Introduction to the ML Estimation of ARMA processes

Biostatistics for Health Sciences Review Sheet

Lecture 34 Bootstrap confidence intervals

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

Probability and Random Processes (Part II)

Srednicki Chapter 55

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Optimal Parameter in Hermitian and Skew-Hermitian Splitting Method for Certain Two-by-Two Block Matrices

Homework 3 Solutions

Local Approximation with Kernels

Second Order Partial Differential Equations

Approximation of distance between locations on earth given by latitude and longitude

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

5. Choice under Uncertainty

Homework 8 Model Solution Section

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y

PARTIAL NOTES for 6.1 Trigonometric Identities

Math 6 SL Probability Distributions Practice Test Mark Scheme

Statistics & Research methods. Athanasios Papaioannou University of Thessaly Dept. of PE & Sport Science

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Lecture 2. Soundness and completeness of propositional logic

These derivations are not part of the official forthcoming version of Vasilaky and Leonard

Risk! " #$%&'() *!'+,'''## -. / # $

The challenges of non-stable predicates

Multi-dimensional Central Limit Theorem

Section 9.2 Polar Equations and Graphs

Congruence Classes of Invertible Matrices of Order 3 over F 2

STAT200C: Hypothesis Testing

Bayesian modeling of inseparable space-time variation in disease risk

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Concrete Mathematics Exercises from 30 September 2016

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Spherical Coordinates

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Queensland University of Technology Transport Data Analysis and Modeling Methodologies

TMA4115 Matematikk 3

Math221: HW# 1 solutions

Mean-Variance Hedging on uncertain time horizon in a market with a jump

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Every set of first-order formulas is equivalent to an independent set

2 Composition. Invertible Mappings

Transcript:

2. Weighted Log-rank statistics Weighted Log-rank statistic W = 0 W (u) Y 1(u)Y 2 (u) Y 1 (u) + Y 2 (u) { dn1 (u) Y 1 (u) dn } 2(u) Y 2 (u) How do we view it? 1. Perspective 1: weighted difference in cumulative hazard functions 2. Perspective 2: weighted sum of (ad bc) of the 2 2 tables over time

An equivalent form: W = = W (u) Y 0(u)Y 1 (u) 0 Y 0 (u) + Y 1 (u) 0 W (u) { dn1 (u) Y 1 (u) dn 0(u) Y 0 (u) { Y0 (u) Y (u) dn 1(u) Y 1(u) Y (u) dn 0(u) Z i = 0/1 in group 0/1, respectively Y 1 (u) = n Z i Y i (u) } } Y 1 (u) Y (u) = n Z i Y i (u) n Y i (u) = Z(u) Y 0 (u) Y (u) = 1 Z(u)

After substitution, W = = = = 0 W (u) { Y0 (u) Y (u) dn 1(u) Y } 1(u) Y (u) dn 0(u) W (u) { [1 Z(u)]dN 1 (u) + [0 Z(u)]dN 0 (u) } 0 n W (u) { Zi Z(u) } dn i (u) 0 n 0 W (u) { Z i Z(u) } dn i (u) Perspective 3: weighted difference on covariates, because Z(u) = n Z i Y i (u) n Y i (u) E[ZI(X u)] Pr(X u) = E(Z X u) = µ Z (u)

Story continues: W = = + n n n 0 W (u) { Z i Z(u) } dn i (u) 0 W (u) { Z i Z(u) } [dn i (u) Y i (u)λ(u)du] 0 W (u) { Z i Z(u) } Y i (u)λ(u)du the second sum is zero, because n { Zi Z(u) } Y i (u) = { n Z i n Z i Y i (u) n Y i (u) } Y i (u) = 0

Eureka! W = n 0 W (u){ Z i Z(u) } dm i (u) cf. linear regression model y i = β 0 + β 1 x i + e i LS estimation of the second equation w.r.t. β 1 : n x i (y i ŷ i ) = n x i ê i = n (x i x)ê i

Asymptotics under H 0 : λ(t Z i ) = λ(t) U n (t) = n 1/2 n t 0 W (u) { Z i Z(u) } dm i (u) weighted Log-rank statistic: W = n 1/2 U n (τ) F t = σ{n i (u), Y i (u), Z i ; i = 1, 2,... n, 0 u t} M i ( ) are F t -martingales H i (u) = n 1/2 W (u) { Z i Z(u) } are F t -predictable U n (t) = n t0 H i (u)dm i (u)

Martingale CLT U n (t) = n t0 n 1/2 W (u) { Z i Z(u) } dm i (u) < U n, U n > (t) should be n t [ n 1/2 W (u) { Z i Z(u) }] 2 Yi (u)λ(u)du = t 0 1 n 0 n Assume that W (u) w(u) W (u) 2 { Z i Z(u) } 2 Yi (u)λ(u)du < U n, U n > (t) P t 0 w(u)2 E =α(t) [ {Z µ Z (u)} 2 ] I(X u) λ(u)du

< U n,ɛ, U n,ɛ > (t) P 0, because n t 0 [ n 1/2 W (u) { Z i Z(u) }] 2 I { n 1/2 W (u) { Z i Z(u) } ɛ } Yi (u)λ(u)du therefore, U n U var[u(t)] =α(t) = = = t 0 w(u)2 E t 0 w(u)2e t [ {Z µ Z (u)} 2 I(X u) λ(u)du [ {Z µz (u)} 2 I(X u) ] ] EI(X u)λ(u)du EI(X u) 0 w(u)2 var(z X u)ei(x u)λ(u)du

Weighted Log-rank statistic: W = n 1/2 U n (τ) n 1/2 W D N (0, α(τ)) Standardized weighted Log-rank test statistic: n 1/2 W α(τ) D N (0, 1) How to estimate α(τ)?

We know α(t) equals t 0 w(u)2 var(z X u)ei(x u)λ(u)du λ(t)dt = d Λ(t) = dn(t)/y (t) ÊI(X u) = Y (u)/n var(z X u) = p q, where p = Ê(Z X u) = Z(u) α(τ) is estimated by n 1 t 0 W (u)2 Z(u)[1 Z(u)]dN(u)

Standardized weighted Log-rank statistics n 1/2 W α(τ) = n τ0 W (u) { Z i Z(u) } dn i (u) { n τ0 W (u) 2 Z(u)[1 Z(u)]dN i (u)} 1/2 goes to N (0, 1) Reject H 0 when n 1/2 W α(τ) > 1.96 for type-i error of 5%

What is weighted Log-rank test statistic anyway? n 1/2 W α(τ) = n τ0 W (u) { Z i Z(u) } dn i (u) { n τ0 W (u) 2 Z(u)[1 Z(u)]dN i (u)} 1/2 if i = 0, then dn i (u) = 0 if i = 1, dn i (t) = 1 at t = X i and 0 elsewhere τ 0 W (u) { Z i Z(u) } dn i (u) = W (X i ){Z i Y 1 (X i )/Y (X i )} = w i {Z i Y i1 /Y i } Numerator is n w i i (Z i Y i1 /Y i ) Denominator is { n w 2 i iy i1 Y i0 /Y 2 i }1/2

Numerator is n w i i (Z i Y i1 /Y i ) Denominator is { n w 2 i iy i1 Y i0 /Y 2 i }1/2 2 2 table for ith failure, i = 1 t Z dn(t) = 1 Y (t) dn(t) Y (t) X i Z i = 1 1 Y i1 1 Y i1 Z i = 0 0 Y i0 Y i0 1 Y i 1 Y i X i Z i = 1 0 Y i1 Y i1 Z i = 0 1 Y i0 1 Y i0 1 Y i 1 Y i O i = Z i = 0/1, E i = 1 Y i1 /Y i var(o i ) = 1 (Y i 1) Y i1 Y i0 /[Y i 2 (Y i 1)]

Power analysis of weighted Log-rank test statistics 1. type-i error: α = 5% 2. power level 3. alternative hypothesis 4. error bound Under H 0 : λ 0 (t) = λ 1 (t) = λ(t), n 1/2 W N (0, α(τ))

Alternative hypothesis H 1 : λ 1 (t) = λ 0 (t)e β n θ(t) log[λ 1 (t Z i )/λ 0 (t)] = β n Z i θ(t) θ(t): take into account of nonproportionality β n : distance between the null and an alternative 1. n 1/2 β n ξ (0, ) 2. local alternatives: β n 0 Given a sample size n, { Power = Pr n 1/2 W / α(τ) > z 1 α/2 H 1 }

Aysmptotic distribution of n 1/2 W under H 1 n 1/2 W = n 1/2 n τ0 W (u) { Z i Z(u) } dn i (u) under H 1, E[dN i (u) F u ] = Y i (u)λ i (u)du = Y i (u)λ 0 (u)e β nz i θ(u) du n 1/2 W = n 1/2 +n 1/2 n τ n τ 0 W (u){ Z i Z(u) } dm i (u) 0 W (u){ Z i Z(u) } Y i (u)λ 0 (u)e β nz i θ(u) du apply MCLT

Aysmptotic distribution of n 1/2 W under H 1 n 1/2 W = n 1/2 n τ0 W (u) { Z i Z(u) } dn i (u) under H 1, E[dN i (u) F u ] = Y i (u)λ i (u)du = Y i (u)λ 0 (u)e β nz i θ(u) du n 1/2 W = n 1/2 +n 1/2 n τ =Term I + Term II n τ 0 W (u){ Z i Z(u) } dm i (u) 0 W (u){ Z i Z(u) } Y i (u)λ 0 (u)e β nz i θ(u) du

Term I: predictable variation τ 0 n 1 n W (u) 2{ Z i Z(u) } 2 Yi (u)λ 0 (u)e β nz i θ(u) du β n 0 e β nz i θ(u) 1 and H 1n H 0 Term I τ 0 w(u) 2 E[(Z i µ Z (u)) 2 I(X u)]λ 0 (u)du Term I asymptotically N (0, τ 0 w(u)2 E H0 [(Z i µ Z (u)) 2 I(X u)]λ 0 (u)du)

Term II: n 1/2 n τ 0 W (u){ Z i Z(u) } Y i (u)λ 0 (u)e β nz i θ(u) du Taylor expansion: e β nz i θ(u) = 1 + β n Z i θ(u) + O(β 2 n ) O(β 2 n )/β2 n is bounded Term II = Term IIa + Term IIb + Term IIc Term IIa n 1/2 n τ 0 W (u){ Z i Z(u) } Y i (u)λ 0 (u)du = 0

Term IIb = = =ξ n 1/2 n τ τ 0 W (u)n 1 τ 0 W (u)n 1 τ 0 W (u){ Z i Z(u) } Z i Y i (u)β n θ(u)λ 0 (u)du n n { Zi Z(u) } Z i Y i (u) n 1/2 β n θ(u)λ 0 (u)du { Zi Z(u) } 2 Yi (u) n 1/2 β n θ(u)λ 0 (u)du 0 w(u)e H 0 [(Z i µ Z (u)) 2 I(X u)] ξ θ(u)λ 0 (u)du τ 0 w(u)θ(u)e H 0 [(Z i µ Z (u)) 2 I(X u)]λ 0 (u)du

Term IIc O(βn 2)/β2 n < M no(β2 n ) = O(nβ2 n ) n 1/2 O(βn) 2 = n 1/2 O(nβn) 2 = o(n 1/2 ) = 0 n 1/2 n τ 0 τ 0 W (u)n 1 { Zi Z(u) } Y i (u)o(β 2 n )λ 0(u)du n { Zi Z(u) } Y i (u)o(n 1/2 )λ 0 (u)du

Term II = Term IIa + Term IIb + Term IIc converges to ξ τ 0 w(u)θ(u)e H 0 [(Z i µ Z (u)) 2 I(X u)]λ 0 (u)du Recall on Term I N (0, τ 0 w(u)2 E H0 [(Z i µ Z (u)) 2 I(X u)]λ 0 (u)du) Under H 1n : A(w 2 ) = τ 0 w(u) 2 E H0 [(Z i µ Z (u)) 2 I(X u)]λ 0 (u)du) n 1/2 W N (ξa(θw), A(w))

Recap on power calculation of weighted Log-rank n 1/2 W = n 1/2 n τ0 W (u) { Z i Z(u) } dn i (u) Under H 0, n 1/2 W N (0, α(τ)) Alternative hypothesis: H 1n : λ 1 (t) = λ 0 (t)e β n θ(t) A breakdown n 1/2 W = n 1/2 +n 1/2 n τ =Term I + Term II n τ 0 W (u){ Z i Z(u) } dm i (u) 0 W (u){ Z i Z(u) } Y i (u)λ 0 (u)e β nz i θ(u) du

Term I: mean zero contribute random variation Term I asymptotically N (0, τ 0 w(u)2 E H0 [(Z i µ Z (u)) 2 I(X u)]λ 0 (u)du)

Term II: n 1/2 n τ 0 W (u){ Z i Z(u) } Y i (u)λ 0 (u)e β nz i θ(u) du Taylor expansion: e β nz i θ(u) = 1 + β n Z i θ(u) + O(βn 2) Term II = Term IIa + Term IIb + Term IIc

Term IIa is zero: n 1/2 n τ 0 W (u){ Z i Z(u) } Y i (u)λ 0 (u)du = 0 Term IIb converges to ξ τ 0 w(u)θ(u)e H 0 [(Z i µ Z (u)) 2 I(X u)]λ 0 (u)du Term IIc converges to zero

Term I converges in distribution to N (0, τ 0 w(u)2 E H0 [(Z i µ Z (u)) 2 I(X u)]λ 0 (u)du Term II converges in probability to ξ τ 0 w(u)θ(u)e H 0 [(Z i µ Z (u)) 2 I(X u)]λ 0 (u)du Let s define: A(w 2 ) = τ 0 w(u)2 E H0 [(Z i µ Z (u)) 2 I(X u)]λ 0 (u)du Under H 1n : n 1/2 W N (ξa(θw), A(w 2 ))

Summary on n 1/2 W Under H 0 : n 1/2 W N (0, A(w 2 )) Under H 1n : n 1/2 W N (ξa(θw), A(w 2 )) Binary versus Time-to-event Binary Time-to-event T.S. p 1 p 0 weighted Log-rank H 0 p 1 = p 0 λ 1 (t) = λ 0 (t) Dist n N (0, σ0 2) N (0, A(w2 )) H 1 p 1 = p 0 + d λ 1 (t) = λ 0 (t)e β nθ(u) Dist n N (d, σ1 2) N (ξa(θw), A(w2 ))

Power 2 0 2 4 6 P = Φ ( ξa(θw) A(w 2 ) 1/2 z 1 α/2 ) t Probability density 0.0 0.1 0.2 0.3 0.4 0.5 0.6

What would affect power? ξa(θw) A(w 2 ) 1/2 increases, power increases ξ: usually predetermined w(u): weight functions How do we choose w to maximize A(θw) A(w 2 ) 1/2

Consider A( ): for any constant b A[(w bθ) 2 ] 0 A[(w bθ) 2 ] =A(w 2 2bwθ + b 2 θ 2 ) =A(θ 2 )b 2 2bA(wθ) + A(w 2 ) 0 A(wθ) 2 A(θ 2 )A(w 2 ) 0 equality satisfied only when Cauchy-Schwarz Inequality A(θw) A(w 2 ) 1/2 A(θ2 ) 1/2 w(u) = θ(u).

Some examples of optimal w(u) in nonproportional alternatives Additive hazards model (Lin & Ying, 1994, BMKA): λ(t Z) = λ 0 (t) + βz λ 0 (t)e βz λ 0 (t) w(u) = 1 λ 0 (u) Accelerated hazards model (Chen & Wang, 1999, JASA): λ(t Z) = λ 0 (te βz ) λ 0 (t)+λ 0 (t)tβz w(u) = λ 0 (u)u λ 0 (u)

Why n 1/2 β n ξ suppose n k β n ξ for some k 0 n 1/2 β n = n 1/2 k n k β n n 1/2 k ξ, we can verify in Term IIb if k > 1/2, n 1/2 β n 0; Term II goes to 0 no power whatsoever if k < 1/2, n 1/2 β n ; Term II goes to always 100% power for any w(u)

3. Sample size calculation In practice, we have a fixed β 0 to be detected H 0 : λ 1 (t) = λ 0 (t) H 1 : λ 1 (t) = λ 0 (t)e β 0 θ(u) Standardized weighted Log-rank T S: under H 0 : T S N (0, 1) under H 1 : T S N ( n 1/2 ) β 0 A(θw) A(w 2 ) 1/2, 1

Power P = Pr{ T S z 1 α/2 } = 1 β n 1/2 β 0 A(θw) A(w 2 ) 1/2 = z 1 α/2 +z 1 β n = (z α/2 + zβ)2a(w2 ) β 0 A(θw) 2 w = θ = 1 Log-rank for proportional hazards model sample size n = (z α/2 + z β) 2 β 2 0 A(1)

what is A(1)? recall on A(1) = 0 E[(Z µ Z (u)) 2 I(X u)]λ 0 (u)du A(1) = π Z (1 π Z ) Pr( = 1) Sample size is then n Pr( = 1) = (z α/2 + z β) 2 β0 2π Z(1 π Z ) Expected # failures/events: E D = n Pr( = 1) HR = e β is hazards ratio 1-to-1 treatment-control assignment E D = 4(z α/2 + z β) 2 (log HR) 2

Example: type-i error: 5% power: 90% HR = 2 E D = 42/(log HR) 2 : 88

Summary on comparing survival functions Weighted Log-rank statistic perspectives asymptotics power calculation Alternatives Yet to cover stratified Log-rank K-samples staggered entry in sample size calculation