BetaRegularized Notations Traditional name Regularized incomplete beta function Traditional notation I z a, b Mathematica StandardForm notation BetaRegularizedz, a, b Primary definition Basic definition 06.2.02.000.0 I z a, b za, b a, b Above generic formula cannot directly be used for nonpositive integers a, b, which lead to indeterminate expressions like 0/0. In these cases, it is more necessary to use an equivalent complete definition, presented below. Complete definition 06.2.02.0002.0 a b I z a, b z a 2F a, b; a ; z ; a b The function I z a, b can be equivalently defined through the following generalized hypergeometric function. For negative integers Α n and positive integers b m ; m n, the function I z a, b cannot be uniquely defined by a limiting procedure based on the above definition because the two variables a, b can approach integers n, m ; m n at different speeds. In the case a n, b m ; m n one defines: 06.2.02.0003.0 I z n, m m n z n m n m m m k z k k n k ; n m m n For a n and arbitrary b (except case of positive integer b m ; m n), the function I z a, b is defined as having the value :
http://functions.wolfram.com 2 06.2.02.0004.0 I z n, b ; n b b n Specific values Specialized values For fixed z, a 06.2.03.000.0 n a I z a, n z a k z k k ; n 06.2.03.0002.0 I z a, n 0 ; n For fixed z, b 06.2.03.0003.0 I z n, b ; n b b n 06.2.03.0008.0 I z n, b b n z n b n b b b k z k k n k ; n b b n 06.2.03.0004.0 n b I z n, b z b k z k k ; n For fixed a, b 06.2.03.0005.0 I 0 a, b 0 ; Rea 0 06.2.03.0006.0 I 0 a, b ; Rea 0 06.2.03.0007.0 I a, b ; Reb 0 General characteristics Domain and analyticity I z a, b is an analytical function of z, a, and b which is defined in 3. 06.2.04.000.0 z a bi z a, b Symmetries and periodicities Mirror symmetry
http://functions.wolfram.com 3 06.2.04.0002.02 I z a, b I z a, b ; z, 0 z, Periodicity No periodicity Poles and essential singularities With respect to b For fixed z, a, the function I z a, b has only one singular point at b. It is an essential singular point. 06.2.04.0003.0 ing b I z a, b, With respect to a For fixed z, b, the function I z a, b has only one singular point at a. It is an essential singular point. 06.2.04.0004.0 ing a I z a, b, With respect to z For fixed a, b, the function I z a, b does not have poles and essential singularities. 06.2.04.0005.0 ing z I z a, b Branch points With respect to b For fixed z, a, the function I z a, b does not have branch points. 06.2.04.0006.0 b I z a, b With respect to a For fixed z, b, the function I z a, b does not have branch points. 06.2.04.0007.0 a I z a, b With respect to z The function I z a, b has three branch points: z 0, z, and z. 06.2.04.0008.0 z I z a, b 0,, 06.2.04.0009.0 z I z a, b, 0 log ; a a
http://functions.wolfram.com 4 06.2.04.000.0 z I z a, b, 0 q ; a p q p q gcdp, q 06.2.04.00.0 z I z a, b, log ; b b 06.2.04.002.0 z I z a, b, q ; b p q p q gcdp, q 06.2.04.003.0 z I z a, b, log ; a b a b 06.2.04.004.0 z I z a, b, s ; a b r s r s gcdr, s Branch cuts With respect to b For fixed z, a, the function I z a, b does not have branch cuts. 06.2.04.005.0 b I z a, b With respect to a For fixed z, b, the function I z a, b does not have branch cuts. 06.2.04.006.0 a I z a, b With respect to z For fixed a, b, the function I z a, b is a single-valued function on the z-plane cut along the intervals, 0 and,. The function I z a, b is continuous from above on the interval, 0 and from below on the interval,. 06.2.04.007.0 z I z a, b, 0,,,, 06.2.04.008.0 lim I x Ε a, b I x a, b ; x 0 Ε0 06.2.04.009.0 lim I x Ε a, b 2 a I x a, b ; x 0 Ε0 06.2.04.002.0 lim I x Ε a, b I x a, b ; x Ε0 06.2.04.0022.0 lim I x Ε a, b 2 b I x a, b 2 b sinb ; x Ε0 Series representations
http://functions.wolfram.com 5 Generalized power series Expansions at generic point z z 0 For the function itself 06.2.06.002.0 I z a, b sin b a z 0 a argzz 0 z 0 a argzz 0 2 b argz 0 z arg z 0 argz 0 z a z a 0 G 2,2 a, b 2,2 z 0 z 0 b argz 0 z z 0 b argz 0 z z 0 b argz 0 z z 0 b argz 0 z z a 0 a G 2,2 a, b 2,2 z 0 G 2,2 a, b 2,2 z 0 z 0 2 b argz 0 z arg z 0 argz 0 z a a a z 0 a z z 0 2 z 0 b argz 0 z z 0 b argz 0 z z a 0 a a G 2,2 a, b 2,2 z 0 z 0 2 a G 2,2 a, b 2,2 z 0 G 2,2 a, b 2 2,2 z 0 2 z 0 2 b argz 0 z arg z 0 argz 0 z a a a 2 a a a 2 z 0 a2 z z 0 2 ; z z 0
http://functions.wolfram.com 6 06.2.06.0022.0 I z a, b sin b a z 0 a argzz 0 z 0 a argzz 0 2 b argz 0 z arg z 0 argz 0 z a z a 0 G 2,2 a, b 2,2 z 0 z 0 b argz 0 z z 0 b argz 0 z z 0 b argz 0 z z 0 b argz 0 z z a 0 a G 2,2 a, b 2,2 z 0 G 2,2 a, b 2,2 z 0 z 0 2 b argz 0 z arg z 0 argz 0 z a a a z 0 a z z 0 2 z 0 b argz 0 z z 0 b argz 0 z z a 0 a a G 2,2 a, b 2,2 z 0 z 0 2 a G 2,2 a, b 2,2 z 0 G 2,2 a, b 2 2,2 z 0 2 z 0 2 b argz 0 z arg z 0 argz 0 z a a a 2 a a a 2 z 0 a2 z z 0 2 Oz z 0 3 06.2.06.0023.0 I z a, b sin b a z 0 a argzz 0 z 0 a argzz 0 k kj jk a kj z 0 j k j j 0 z 0 b argz 0 z z 0 b argz 0 z G 2,2 a j, b j 2,2 z 0 j argz 0 z b argz 0 z arg z 0 j a j z 0 aj z z 0 k
http://functions.wolfram.com 7 06.2.06.0024.0 sin b I z a, b a z 0 a argzz 0 z 0 a argzz 0 k k jk a kj z 0 j k j j 0 a j z 0 aj cscb z 0 b argz 0 z z 0 b argz 0 z 2 b argz 0 z arg z 0 argz 0 z cscb a b z 0 b argz 0 z z 0 argz 0 z bbj 2 F, a b; b j ; z 0 z z 0 k ; b 06.2.06.0025.0 I z a, b sin b a z 0 a argzz 0 z 0 a argzz 0 2 b argz 0 z arg z 0 argz 0 z a z 0 a G 2,2 a, b 2,2 z 0 z 0 b argz 0 z z 0 b argz 0 z Oz z 0 Expansions on branch cuts For the function itself In the left half-plane 06.2.06.0026.0 I z a, b sin b a x a argzx argzx a x G 2,2 2 x 2 2,2 x a, b 2 2 ; z x x x 0 G 2,2 2,2 x a, b G 2,2 2,2 x x 2 a a G 2,2 2,2 x a, b a, b x G 2,2 2,2 x 2 x G 2,2 2,2 x a, b a, b z x z x 2 06.2.06.0027.0 I z a, b sin b a x a argzx argzx a x G 2,2 2 x 2 2,2 x a, b 2 2 Oz x 3 ; x x 0 G 2,2 2,2 x a, b G 2,2 2,2 x x 2 a a G 2,2 2,2 x a, b a, b x G 2,2 2,2 x 2 x G 2,2 2,2 x a, b a, b z x z x 2
http://functions.wolfram.com 8 I z a, b 06.2.06.0028.0 sin b a x a argzx argzx a x k j 0 kj a kj x jk j k j G 2,2 2,2 x a j, b j j z x k ; x x 0 06.2.06.0029.0 I z a, b a x a argzx argzx a x k k a kj x jk a j x aj a b x bj 2F, a b; b j ; x z x k ; x x 0 j k j j 0 I z a, b 06.2.06.0030.0 sin b a x a argzx x a argzx 2,2 G2,2 x a, b Oz x ; x x 0 In the right half-plane I z a, b 06.2.06.003.0 sin b a 2 b argxz argx z a x b argxz x argxz b 2,2 G2,2 x a, b x a 2 x x b argxz x b argxz x argxz b argxz b x a a G 2,2 2,2 x x a2 G 2,2 2,2 x a, b a, b 2 2 x G 2,2 2,2 x x 2 a, b z x a a G 2,2 2,2 x a, b 2 x G 2,2 2,2 x a, b z x 2 ; z x x x I z a, b 06.2.06.0032.0 sin b a 2 b argxz argx z a x b argxz x argxz b 2,2 G2,2 x a, b x a 2 x x b argxz x b argxz x argxz b argxz b x a a G 2,2 2,2 x x a2 G 2,2 2,2 x a, b a, b 2 2 x G 2,2 2,2 x x 2 a, b z x a a G 2,2 2,2 x a, b 2 x G 2,2 2,2 x a, b z x 2 Oz x 3 ; x x
http://functions.wolfram.com 9 06.2.06.0033.0 sin b k kj a kj x jk I z a, b a x a j 0 j k j x b argxz x argxz b 2,2 G2,2 x a j, b j j argx z argxz b j a j x j z x k ; x x 06.2.06.0034.0 sin b I z a, b a k k a kj x jk a j x j j k j j 0 cscb x b argxz x argxz b 2 b argxz argx z cscb a b x a x b argxz x argxz bbj 2 F, a b; b j ; x z x k ; b x x I z a, b 06.2.06.0035.0 sin b a 2 b argxz argx z a x b argxz x argxz b 2,2 G2,2 x a, b x a Oz x ; x x Expansions at z 0 For the function itself General case 06.2.06.000.02 z a I z a, b a a, b 06.2.06.0036.0 z a I z a, b a a, b a b z a b 2 b z2 ; z 0 a a 2 a 2 a b z a b 2 b z2 Oz 3 ; a a 2 a 2 06.2.06.0002.0 I z a, b za a, b b k z k a k k ; z a 06.2.06.0003.0 z a I z a, b a a, b 2 F a, b; a ; z 06.2.06.0037.0 I z a, b za a b 2F a, b; a ; z b
http://functions.wolfram.com 0 06.2.06.0004.02 z a I z a, b Oz ; a a a, b 06.2.06.0038.0 I z a, b F z, a, b ; F n z za n b k z k a, b a k k I z an b n za, b a, ba n n 3 F 2, a n, b n 2; n 2, a n 2; z n Summed form of the truncated series expansion. Generic formulas for main term 06.2.06.0039.0 a b a b 0 I z a, b z a ; z 0 True a a,b Expansions at z For the function itself General case 06.2.06.0005.02 I z a, b zb z a b a, b 06.2.06.0040.0 I z a, b zb z a b a, b a b z b a b z b a b a b z 2 ; z b b 2 b a b a b z 2 Oz 3 ; b b 2 b 06.2.06.0006.0 I z a, b zb z a k a b k z k b a, b b k ; z b 06.2.06.0007.0 I z a, b zb z a b a, b 2F, a b; b ; z 06.2.06.004.0 a b I z a, b z b z a 2F, a b; b ; z a 06.2.06.0008.02 zb a b z I z a, b b a, b b a a 2 b z 2 ; z b 2 2 b
http://functions.wolfram.com 06.2.06.0042.0 zb a b z I z a, b b a, b b a a 2 b z 2 Oz 3 ; b 2 2 b 06.2.06.0009.0 a sin a zb jk j a a b kz jk I z a, b j b k j 0 ; z b 06.2.06.000.0 zb I z a, b b a, b F 0 2 ; a;, a b; 0 0 z, z ; b ; ; b ; 06.2.06.00.02 zb I z a, b Oz ; b b a, b Generic formulas for main term 06.2.06.0043.0 0 b I z a, b ; z zb True b a,b I z a, b General case 06.2.06.0044.0 0 b Reb 0 zb b a,b zb b a,b Expansions at z Reb 0 ; z True 06.2.06.002.02 z b z a b a b I z a, b csc a b sinb z a z a a b a, b 2 a b z z a b 06.2.06.0045.0 z b z a b a b I z a, b csc a b sinb z a z a a b a, b 2 a b z a b b 2 b a b 2 3 a b z 2 ; b 2 b a b 2 3 a b z 2 O z 3 ; 06.2.06.003.0 z a z b b I z a, b csc a b sinb z a z a k a b k z k a b a, b 2 a b k k ; z a b 06.2.06.004.0 z a z b I z a, b csc a b sinb z a z a a b a, b 2F b, a b; 2 a b; z ; z 0, a b
http://functions.wolfram.com 2 06.2.06.005.02 z a z b I z a, b csc a b sinb z a z a a b a, b O z ; a b I z a, b 06.2.06.0046.0 a csca b sinb b z ab ab a,b a csca b sinb b z ab ab a,b argz 0 ; a b z True 06.2.06.0047.0 I z a, b F z, a, b ; z a z b n b k a b k z k F n z, a, b a b a, b csc a b sinb z a z a I z a, b 2 a b k k b n z b z an n 2 a b n a, b 3F 2, b n 2, a b n 2; n 2, a b n 3; z n a b Summed form of the truncated series expansion. Logarithmic cases 06.2.06.0048.0 sina sina I z a, a z a z a logz Ψa a z a z a a 4 z a 2 a ; z 8 z 2 06.2.06.0049.0 I z a, 2 a sina za z a a a sina z a z a 06.2.06.0050.0 a 6 z a 2 a 36 z 2 I z a, a n a sina za z a a n 2 2 n z sina z a z a logz Ψa ; z a 2 a 2 3 2 n 3 n z sina z a z a z a z na n a n k z k logz Ψn Ψa a, a n ; z n n k k 06.2.06.005.0 I z a, a sina za z a logz Ψa a sina za z a 3F 2,, a ; 2, 2; z ; z 0, 06.2.06.0052.0 I z a, a n a sina za z a a k z k n n 2 k k sina z a z na n z a z a logz Ψn Ψa a, a n a n k z k n k k ; n z
http://functions.wolfram.com 3 06.2.06.006.02 a sina I z a, a n n za z a 3F 2,, a ; 2, n 2; z sina z a z na n z a z a logz Ψn Ψa a, a n a n k z k n k k ; n z 0, 06.2.06.007.02 sina z a z b I z a, b z a z a logz Ψa Ψa b a b a, b O z ; a b 06.2.06.008.02 sin a a sin a I z a, b z a z a logz Ψa z a z a O z ; a b I z a, b 06.2.06.0053.0 b z ab a logz sina ab a,b b z ab a logz sina ab a,b argz 0 ; a b z True I z a, b 06.2.06.0054.0 a logz sina a logz sina argz 0 ; a b z True Generic formulas for main term I z a, b 06.2.06.0055.0 z a z b sina za z a logzψaψab ab a,b sin a z a z a logzψa a sin a za z a z a z b ab a,b csc a b sinb za z a a b a b ; z True I z a, b 06.2.06.0056.0 a ab z ab ab a,b a sina a zz logzψa z sina logzψaψab a ab z ab csca b sinb argz 0 ab a,b b z ab sina a logzψaψab ab a,b a sina a zz logzψa z b z ab ab a,b a csca b sinb argz 0 a b argz 0 a b ; z argz 0 a b argz 0 a b True Expansions at generic point a a 0 For the function itself
http://functions.wolfram.com 4 06.2.06.0057.0 I z a, b I z a 0, b a 2 0 z a 0, b logz Ψb a 0 Ψa 0 z a 0 3 F 2 a 0, a 0, b; a 0, a 0 ; z a a 0 a 2 0 a 0, b 2 a 3 0 a 0, b 2 4 F 3 b, a 0, a 0, a 0 ; a 0, a 0, a 0 ; z 3 F 2 b, a 0, a 0 ; a 0, a 0 ; z logz Ψa 0 Ψb a 0 a 0 06.2.06.0058.0 I z a, b I z a 0, b z a 0 z a 0, b log 2 z Ψa 0 Ψb a 0 2 logz Ψa 0 Ψb a 0 Ψ a 0 Ψ b a 0 a 0 3 a a 0 2 ; a a 0 a 2 0 z a 0, b logz Ψb a 0 Ψa 0 z a 0 3 F 2 a 0, a 0, b; a 0, a 0 ; z a a 0 a 2 0 a 0, b 2 a 3 0 a 0, b 2 4 F 3 b, a 0, a 0, a 0 ; a 0, a 0, a 0 ; z 3 F 2 b, a 0, a 0 ; a 0, a 0 ; z logz Ψa 0 Ψb a 0 a 0 z a 0 z a 0, b log 2 z Ψa 0 Ψb a 0 2 logz Ψa 0 Ψb a 0 Ψ a 0 Ψ b a 0 a 0 3 a a 0 2 Oa a 0 3 06.2.06.0059.0 I z a, b b sin b a 0 z a 0 k kj log j z b a 0 jk kj2 F kj b, d, d 2,, d kj ; d, d 2,, d kj ; j 0 j j i i2f i b, c, c 2,, c i ; c, c 2,, c i ; z a 0 logz i 0 d d 2 d k b a 0 c c 2 c k a 0 k i a a 0 k ; 06.2.06.0060.0 I z a, b I z a 0, b Oa a 0 Expansions at generic point b b 0 For the function itself 06.2.06.006.0 I z a, b I z a, b 0 zb 0 a b 0 a b 0 3 F 2 a, b 0, b 0 ; b 0, b 0 ; z log z Ψb 0 Ψa b 0 2 F a, b 0 ; b 0 ; z b b 0 b 0 2 4 F 3 a, b 0, b 0, b 0 ; b 0, b 0, b 0 ; z b 0 log z Ψb 0 Ψa b 0 3 F 2 a, b 0, b 0 ; b 0, b 0 ; z 2 log2 z Ψb 0 Ψa b 0 2 log z Ψb 0 Ψa b 0 Ψ b 0 Ψ a b 0 2F a, b 0 ; b 0 ; z b b 0 2 ; b b 0
http://functions.wolfram.com 5 06.2.06.0062.0 I z a, b I z a, b 0 zb 0 a b 0 a b 0 3 F 2 a, b 0, b 0 ; b 0, b 0 ; z log z Ψb 0 Ψa b 0 2 F a, b 0 ; b 0 ; z b b 0 b 0 2 4 F 3 a, b 0, b 0, b 0 ; b 0, b 0, b 0 ; z b 0 log z Ψb 0 Ψa b 0 3 F 2 a, b 0, b 0 ; b 0, b 0 ; z 2 log2 z Ψb 0 Ψa b 0 2 log z Ψb 0 Ψa b 0 Ψ b 0 Ψ a b 0 2F a, b 0 ; b 0 ; z b b 0 2 Ob b 0 3 06.2.06.0063.0 I z a, b I z a, b 0 a sin a b 0 z b 0 k kj log j z a b 0 kj kj2f kja, d, d 2,, d kj ; d, d 2,, d kj ; k j 0 j j i i2f i a, c, c 2,, c i ; c, c 2,, c i ; z b 0 log z i 0 d d 2 d k a b 0 c c 2 c k b 0 k i b b 0 k ; 06.2.06.0064.0 I z a, b I z a, b 0 Ob b 0 Residue representations 06.2.06.009.0 a b sin b za I z a, b res s a j 0 b s z s s j ; z a s 06.2.06.0020.02 a b sin b za I z a, b a z a b j 0 b s res s s z s a s a j 0 b s res s s z s a s j b ; 06.2.06.0065.0 I z a, a n n n sina z a a a n s s res s s z a s a n res s j 0 s z s a s a n s a j n res s j n s z s a n s a j n ; z n a s Integral representations On the real axis
http://functions.wolfram.com 6 Of the direct function 06.2.07.000.0 I z a, b z a, b t a t b t ; Rea 0 0 06.2.07.0002.0 I z a, b z Rea a, b b t a t b k z k 0 k Rea b k z ak t a k k Contour integral representations 06.2.07.0003.0 a b sin b za s a s b s I z a, b z s s ; argz 2 2 a a s 06.2.07.0004.0 sin b za I z a, b s b s a s b s z s s ; arg z 2 a 06.2.07.0005.0 a b sin b za Γ s a s b s I z a, b z s s ; 0 Γ minrea, Reb argz 2 2 a Γ a s 06.2.07.0006.0 sin b za Γ I z a, b s b s a s b s z s s ; 2 a Γ max0, Reb Γ minrea, Reb arg z Continued fraction representations 06.2.0.000.0 I z a, b za z b a a, b r r2 r3 r4 r5 a k a b k z k b k z ; r2 k r2 k a 2 k a 2 k a 2 k a 2 k 06.2.0.0002.0 z a z b a k a b k z k b k z I z a, b ; r2 k r2 k a a, b k rk, a 2 k a 2 k a 2 k a 2 k Differential equations Ordinary linear differential equations and wronskians For the direct function itself
http://functions.wolfram.com 7 06.2.3.000.0 z z w z a a b 2 z w z 0 ; wz c I z a, b c 2 06.2.3.0002.0 W z, I z a, b zb z a a, b 06.2.3.0003.0 w z a a b 2 gz g z gz gz g z g z w z 0 ; wz c c 2 I gz a, b 06.2.3.0004.0 W z, I gz a, b gzb gz a g z a, b 06.2.3.0005.0 a a b 2 gz g z w z hz 2 h z gz gz hz g z hz 2 hz g z 2 h z 2 a a b 2 gz g z h z hz 2 gz gz hz w z g z h z hz g z h z hz wz 0 ; wz c hz c 2 hz I gz a, b 06.2.3.0006.0 W z hz, hz I gz a, b gzb gz a hz 2 g z 06.2.3.0007.0 a, b d z r z 2 w z d a b r 2 s z r a r 2 s z w z s b d r z r a r s d z r wz 0 ; wz c z s c 2 z s I d z ra, b 06.2.3.0008.0 W z z s, z s I d z ra, b r z2 s d z r a d z r b a, b 06.2.3.0009.0 d r z w z d a b logr 2 logs r z a logr 2 logs w z logs d a b logr logs r z a logr logs wz 0 ; wz c s z c 2 s z I d r za, b 06.2.3.000.0 W z s z, s z I d r za, b d rz d r z a d r z b s 2 z logr a, b Transformations Transformations and argument simplifications Argument involving basic arithmetic operations 06.2.6.000.0 I z a, b I z b, a
http://functions.wolfram.com 8 06.2.6.0002.0 a b I z a, b I z a, b a b zb z a 06.2.6.0003.0 a b I z a, b I z a, b z b z a a b 06.2.6.0004.0 n I z a n, b I z a, b a b n a n, b a n k z b z akn 2 a b n k ; n 06.2.6.0005.0 n I z a n, b I z a, b a b a, b a k z b z ak 2 a b k ; n Identities Recurrence identities Consecutive neighbors 06.2.7.000.0 a b I z a, b I z a, b a b zb z a 06.2.7.0002.0 a b I z a, b I z a, b z b z a a b Distant neighbors 06.2.7.0003.0 z a z b n a b k z k I z a, b I z a n, b a, b a b a k k ; n 06.2.7.0004.0 z a z b n I z a, b I z a n, b a, b a b a k z k ; n 2 a b k Functional identities Relations between contiguous functions 06.2.7.0005.0 I z a, b a b a I za, b b I z a, b 06.2.7.0006.0 I z a, b z I z a, b z I z a, b Additional relations between contiguous functions
http://functions.wolfram.com 9 06.2.7.0007.0 I z a, b a b a z a z I za, b b I z a, b Major general cases 06.2.7.0008.0 I z a, b I z b, a 06.2.7.0009.0 I z a, b z a z a sina z ab z ab I a b, b sinb csca b ; a b z 0, z Differentiation Low-order differentiation With respect to z I z a, b z 06.2.20.000.0 zb z a a, b 2 I z a, b z 2 06.2.20.0002.0 With respect to a zb2 za2 z a b 2 z a, b 06.2.20.0003.0 I z a, b a a b logz Ψa Ψa bi z a, b z a 3 F 2a, a, b; a, a ; z a b 2 I z a, b a 2 06.2.20.0004.0 2 za a a b b a 4 F 3a, a, a, b; a, a, a ; z logz Ψa Ψa b 3 F 2a, a, b; a, a ; z I z a, b log 2 z 2 Ψa b logz Ψa 2 Ψa b 2 2 Ψa logz Ψa b Ψ a Ψ a b With respect to b 06.2.20.0005.0 I z a, b b a b z b 3F 2b, b, a; b, b ; z I z b, a Ψb Ψa b log z b a 2 I z a, b a 2 06.2.20.0006.0 2 zb b a b a log z Ψb Ψa b 3 F 2b, b, a; b, b ; z b 4 F 3b, b, b, a; b, b, b ; z I z b, a log 2 z 2 Ψa b log z Ψb 2 Ψa b 2 2 Ψb log z Ψa b Ψ b Ψ a b Symbolic differentiation
http://functions.wolfram.com 20 With respect to z 06.2.20.002.0 n I z a, b zb zan n n I z a, b nk n z n a, b k b k a nk z z k ; n n I z a, b z n 06.2.20.0007.02 n a b z bn z a 2 F a, n; b n ; a z ; n With respect to a 06.2.20.0008.02 n I z a, b a n b sin b a n za n nj log j z a b nj nj2f nja, a 2,, a nj, b; a, a 2,, a nj ; j 0 j j i i2 F ic, c 2,, c i, b; c, c 2,, c i ; z a logz i 0 a a 2 a n a b c c 2 c n a n i ; With respect to b 06.2.20.0009.02 n I z a, b a sin a b n zb n b n n nj log j z a b nj nj2f nja, a 2,, a nj, ba; a, a 2,, a nj ; j 0 j j i i2 F ic, c 2,, c i, a; c, c 2,, c i ; z b log z i 0 a a 2 a n a b c c 2 c n b n i ; Fractional integro-differentiation With respect to z 06.2.20.000.0 Α I z a, b a b z aα 2F a, b; a Α ; z ; a z Α b 06.2.20.00.0 Α I z a, b b k Α exp z, a kz akα z Α a, b ; z a k k Integration Indefinite integration
http://functions.wolfram.com 2 Involving only one direct function 06.2.2.000.0 a I a z a, b z z I a z a, b a a b I a za, b 06.2.2.0002.0 I z a, b z z I z a, b a a b I za, b Involving one direct function and elementary functions Involving power function 06.2.2.0003.0 z Α I z a, b z zα Α I za, b 06.2.2.0004.0 z Α I z a, b z zα Α I za, b a b a Α Α a a b Α I za Α, b a b a Α Α a a b Α I za Α, b 06.2.2.0005.0 I z a, b z a z z a 2 a, b 3 F 2 a, a, b; a, a ; z 06.2.2.0006.0 z b z a I z a, b z 2 za, b I z a, b 06.2.2.0007.0 z n I z a, b z za, b n z n z a, b n a, b Involving rational function I z a, b z 06.2.2.0008.0 zb 3F 2 b, b, a; b, b ; z z b 2 a, b I z b, a I z a, b log z Integral transforms Fourier cos transforms 06.2.22.000.0 3 c t I t a, bx 2b 2 a sin b a b 2 a 3,2 G x2 2,4 4 0, ab a 2, a 2, ab 2 2, 2 ; x Rea Fourier sin transforms
http://functions.wolfram.com 22 06.2.22.0002.0 3 s t I t a, bx 2b 2 a sin b a b 2 a 3,2 sgnxg x2 2,4 4 ab, 2 a 2, a 2, ab 2 2, 0 ; x Rea 2 Laplace transforms 06.2.22.0003.0 t I t a, bz a a b Ua, a b, z ; Rez 0 Rea z b Mellin transforms 06.2.22.0004.0 cot a z sin b a b z a b t I t a, bz ; Rea z 0 Rez 0 Rea b z z a z a Representations through more general functions Through hypergeometric functions Involving 2 F 06.2.26.000.0 a b I z a, b z a 2F a, b; a ; z ; a b 06.2.26.0002.0 a b I z a, b z b z a 2F, a b; a ; z ; a b 06.2.26.0003.0 a b I z a, b z b z a 2 F, a b; b ; z ; b a 06.2.26.0004.0 csc a b I z a, b csc a b sinb z a z a z b z a 2F b, a b ; a b 2; a b z ; a b Involving 2 F 06.2.26.0005.0 z a I z a, b a a, b 2F a, b; a ; z ; a 06.2.26.0006.0 zb I z a, b a a, b za 2F, a b; a ; z ; a 06.2.26.0007.0 I z a, b zb z a b a, b 2F, a b; b ; z ; b
http://functions.wolfram.com 23 06.2.26.0008.0 z a z b I z a, b a b a, b 2F b, a b; 2 a b; z csc a b sinb z a z a ; a b Through hypergeometric functions of two variables 06.2.26.0009.0 zb I z a, b b a, b F 0 2 ; a;, a b; 0 0 z, z ; b ; ; b ; Through Meijer G Classical cases for the direct function itself 06.2.26.000.0 sin b a b za I z a, b G,2 2,2 z a a, b 0, a Classical cases involving algebraic functions 06.2.26.00.0 za z b I z a, b b G 2,2,2 z 0, a b 0, a 06.2.26.006.0 z b I a, b zab z b G 2, 2,2 z, a, a b ; z, 0 Classical cases involving algebraic functions in the arguments 06.2.26.002.0 I z a, b z a b G,2 2,2 z, b a, 0 ; z, 06.2.26.003.0 sin b a b z ab I z a, b G,2 2,2 z z a, a b a, 0 ; z, Through other functions Involving some hypergeometric-type functions 06.2.26.004.0 I z a, b I,z a, b ; Reb 0 06.2.26.005.0 I z a, b a, b,za, b ; Reb 0 Representations through equivalent functions With inverse function
http://functions.wolfram.com 24 06.2.27.000.0 I Iz a, b z a,b 06.2.27.0002.0 I I,z2 a,b a, b z 2 ; z 2 0 With related functions 06.2.27.0003.0 a b I z a, b a b za, b
http://functions.wolfram.com 25 Copyright This document was downloaded from functions.wolfram.com, a comprehensive online compendium of formulas involving the special functions of mathematics. For a key to the notations used here, see http://functions.wolfram.com/notations/. Please cite this document by referring to the functions.wolfram.com page from which it was downloaded, for example: http://functions.wolfram.com/constants/e/ To refer to a particular formula, cite functions.wolfram.com followed by the citation number. e.g.: http://functions.wolfram.com/0.03.03.000.0 This document is currently in a preliminary form. If you have comments or suggestions, please email comments@functions.wolfram.com. 200-2008, Wolfram Research, Inc.