BetaRegularized. Notations. Primary definition. Traditional name. Traditional notation. Mathematica StandardForm notation.

Σχετικά έγγραφα
ExpIntegralE. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation. Mathematica StandardForm notation

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

GegenbauerC3General. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values

Notations. Primary definition. Specific values. General characteristics. Series representations. Traditional name. Traditional notation

Factorial. Notations. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values

Section 8.3 Trigonometric Equations

Inverse trigonometric functions & General Solution of Trigonometric Equations

PARTIAL NOTES for 6.1 Trigonometric Identities

Trigonometric Formula Sheet

Homework 3 Solutions

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π 2, π 2

2 Composition. Invertible Mappings

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

HermiteHGeneral. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

D Alembert s Solution to the Wave Equation

Introductions to EllipticThetaPrime4

CRASH COURSE IN PRECALCULUS

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Math221: HW# 1 solutions

An Inventory of Continuous Distributions

A summation formula ramified with hypergeometric function and involving recurrence relation

Example Sheet 3 Solutions

derivation of the Laplacian from rectangular to spherical coordinates

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Reminders: linear functions

Approximation of distance between locations on earth given by latitude and longitude

Partial Differential Equations in Biology The boundary element method. March 26, 2013

SPECIAL FUNCTIONS and POLYNOMIALS

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Section 9.2 Polar Equations and Graphs

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Homework 8 Model Solution Section

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Concrete Mathematics Exercises from 30 September 2016

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Matrices and Determinants

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Areas and Lengths in Polar Coordinates

The Simply Typed Lambda Calculus

Second Order Partial Differential Equations

C.S. 430 Assignment 6, Sample Solutions

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

MathCity.org Merging man and maths

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Solutions to Exercise Sheet 5

Areas and Lengths in Polar Coordinates

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

4.6 Autoregressive Moving Average Model ARMA(1,1)

Commutative Monoids in Intuitionistic Fuzzy Sets

Chapter 6 BLM Answers

Other Test Constructions: Likelihood Ratio & Bayes Tests

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Trigonometry Functions (5B) Young Won Lim 7/24/14

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Fundamentals of Signals, Systems and Filtering

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

Partial Trace and Partial Transpose

TMA4115 Matematikk 3

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Instruction Execution Times

Section 7.6 Double and Half Angle Formulas

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Συντακτικές λειτουργίες

Differential equations

Strain gauge and rosettes

Uniform Convergence of Fourier Series Michael Taylor

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Lecture 26: Circular domains

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Trigonometry 1.TRIGONOMETRIC RATIOS

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Distances in Sierpiński Triangle Graphs

Q1a. HeavisideTheta x. Plot f, x, Pi, Pi. Simplify, n Integers

Every set of first-order formulas is equivalent to an independent set

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

Second Order RLC Filters

Η ΨΥΧΙΑΤΡΙΚΗ - ΨΥΧΟΛΟΓΙΚΗ ΠΡΑΓΜΑΤΟΓΝΩΜΟΣΥΝΗ ΣΤΗΝ ΠΟΙΝΙΚΗ ΔΙΚΗ

Transcript:

BetaRegularized Notations Traditional name Regularized incomplete beta function Traditional notation I z a, b Mathematica StandardForm notation BetaRegularizedz, a, b Primary definition Basic definition 06.2.02.000.0 I z a, b za, b a, b Above generic formula cannot directly be used for nonpositive integers a, b, which lead to indeterminate expressions like 0/0. In these cases, it is more necessary to use an equivalent complete definition, presented below. Complete definition 06.2.02.0002.0 a b I z a, b z a 2F a, b; a ; z ; a b The function I z a, b can be equivalently defined through the following generalized hypergeometric function. For negative integers Α n and positive integers b m ; m n, the function I z a, b cannot be uniquely defined by a limiting procedure based on the above definition because the two variables a, b can approach integers n, m ; m n at different speeds. In the case a n, b m ; m n one defines: 06.2.02.0003.0 I z n, m m n z n m n m m m k z k k n k ; n m m n For a n and arbitrary b (except case of positive integer b m ; m n), the function I z a, b is defined as having the value :

http://functions.wolfram.com 2 06.2.02.0004.0 I z n, b ; n b b n Specific values Specialized values For fixed z, a 06.2.03.000.0 n a I z a, n z a k z k k ; n 06.2.03.0002.0 I z a, n 0 ; n For fixed z, b 06.2.03.0003.0 I z n, b ; n b b n 06.2.03.0008.0 I z n, b b n z n b n b b b k z k k n k ; n b b n 06.2.03.0004.0 n b I z n, b z b k z k k ; n For fixed a, b 06.2.03.0005.0 I 0 a, b 0 ; Rea 0 06.2.03.0006.0 I 0 a, b ; Rea 0 06.2.03.0007.0 I a, b ; Reb 0 General characteristics Domain and analyticity I z a, b is an analytical function of z, a, and b which is defined in 3. 06.2.04.000.0 z a bi z a, b Symmetries and periodicities Mirror symmetry

http://functions.wolfram.com 3 06.2.04.0002.02 I z a, b I z a, b ; z, 0 z, Periodicity No periodicity Poles and essential singularities With respect to b For fixed z, a, the function I z a, b has only one singular point at b. It is an essential singular point. 06.2.04.0003.0 ing b I z a, b, With respect to a For fixed z, b, the function I z a, b has only one singular point at a. It is an essential singular point. 06.2.04.0004.0 ing a I z a, b, With respect to z For fixed a, b, the function I z a, b does not have poles and essential singularities. 06.2.04.0005.0 ing z I z a, b Branch points With respect to b For fixed z, a, the function I z a, b does not have branch points. 06.2.04.0006.0 b I z a, b With respect to a For fixed z, b, the function I z a, b does not have branch points. 06.2.04.0007.0 a I z a, b With respect to z The function I z a, b has three branch points: z 0, z, and z. 06.2.04.0008.0 z I z a, b 0,, 06.2.04.0009.0 z I z a, b, 0 log ; a a

http://functions.wolfram.com 4 06.2.04.000.0 z I z a, b, 0 q ; a p q p q gcdp, q 06.2.04.00.0 z I z a, b, log ; b b 06.2.04.002.0 z I z a, b, q ; b p q p q gcdp, q 06.2.04.003.0 z I z a, b, log ; a b a b 06.2.04.004.0 z I z a, b, s ; a b r s r s gcdr, s Branch cuts With respect to b For fixed z, a, the function I z a, b does not have branch cuts. 06.2.04.005.0 b I z a, b With respect to a For fixed z, b, the function I z a, b does not have branch cuts. 06.2.04.006.0 a I z a, b With respect to z For fixed a, b, the function I z a, b is a single-valued function on the z-plane cut along the intervals, 0 and,. The function I z a, b is continuous from above on the interval, 0 and from below on the interval,. 06.2.04.007.0 z I z a, b, 0,,,, 06.2.04.008.0 lim I x Ε a, b I x a, b ; x 0 Ε0 06.2.04.009.0 lim I x Ε a, b 2 a I x a, b ; x 0 Ε0 06.2.04.002.0 lim I x Ε a, b I x a, b ; x Ε0 06.2.04.0022.0 lim I x Ε a, b 2 b I x a, b 2 b sinb ; x Ε0 Series representations

http://functions.wolfram.com 5 Generalized power series Expansions at generic point z z 0 For the function itself 06.2.06.002.0 I z a, b sin b a z 0 a argzz 0 z 0 a argzz 0 2 b argz 0 z arg z 0 argz 0 z a z a 0 G 2,2 a, b 2,2 z 0 z 0 b argz 0 z z 0 b argz 0 z z 0 b argz 0 z z 0 b argz 0 z z a 0 a G 2,2 a, b 2,2 z 0 G 2,2 a, b 2,2 z 0 z 0 2 b argz 0 z arg z 0 argz 0 z a a a z 0 a z z 0 2 z 0 b argz 0 z z 0 b argz 0 z z a 0 a a G 2,2 a, b 2,2 z 0 z 0 2 a G 2,2 a, b 2,2 z 0 G 2,2 a, b 2 2,2 z 0 2 z 0 2 b argz 0 z arg z 0 argz 0 z a a a 2 a a a 2 z 0 a2 z z 0 2 ; z z 0

http://functions.wolfram.com 6 06.2.06.0022.0 I z a, b sin b a z 0 a argzz 0 z 0 a argzz 0 2 b argz 0 z arg z 0 argz 0 z a z a 0 G 2,2 a, b 2,2 z 0 z 0 b argz 0 z z 0 b argz 0 z z 0 b argz 0 z z 0 b argz 0 z z a 0 a G 2,2 a, b 2,2 z 0 G 2,2 a, b 2,2 z 0 z 0 2 b argz 0 z arg z 0 argz 0 z a a a z 0 a z z 0 2 z 0 b argz 0 z z 0 b argz 0 z z a 0 a a G 2,2 a, b 2,2 z 0 z 0 2 a G 2,2 a, b 2,2 z 0 G 2,2 a, b 2 2,2 z 0 2 z 0 2 b argz 0 z arg z 0 argz 0 z a a a 2 a a a 2 z 0 a2 z z 0 2 Oz z 0 3 06.2.06.0023.0 I z a, b sin b a z 0 a argzz 0 z 0 a argzz 0 k kj jk a kj z 0 j k j j 0 z 0 b argz 0 z z 0 b argz 0 z G 2,2 a j, b j 2,2 z 0 j argz 0 z b argz 0 z arg z 0 j a j z 0 aj z z 0 k

http://functions.wolfram.com 7 06.2.06.0024.0 sin b I z a, b a z 0 a argzz 0 z 0 a argzz 0 k k jk a kj z 0 j k j j 0 a j z 0 aj cscb z 0 b argz 0 z z 0 b argz 0 z 2 b argz 0 z arg z 0 argz 0 z cscb a b z 0 b argz 0 z z 0 argz 0 z bbj 2 F, a b; b j ; z 0 z z 0 k ; b 06.2.06.0025.0 I z a, b sin b a z 0 a argzz 0 z 0 a argzz 0 2 b argz 0 z arg z 0 argz 0 z a z 0 a G 2,2 a, b 2,2 z 0 z 0 b argz 0 z z 0 b argz 0 z Oz z 0 Expansions on branch cuts For the function itself In the left half-plane 06.2.06.0026.0 I z a, b sin b a x a argzx argzx a x G 2,2 2 x 2 2,2 x a, b 2 2 ; z x x x 0 G 2,2 2,2 x a, b G 2,2 2,2 x x 2 a a G 2,2 2,2 x a, b a, b x G 2,2 2,2 x 2 x G 2,2 2,2 x a, b a, b z x z x 2 06.2.06.0027.0 I z a, b sin b a x a argzx argzx a x G 2,2 2 x 2 2,2 x a, b 2 2 Oz x 3 ; x x 0 G 2,2 2,2 x a, b G 2,2 2,2 x x 2 a a G 2,2 2,2 x a, b a, b x G 2,2 2,2 x 2 x G 2,2 2,2 x a, b a, b z x z x 2

http://functions.wolfram.com 8 I z a, b 06.2.06.0028.0 sin b a x a argzx argzx a x k j 0 kj a kj x jk j k j G 2,2 2,2 x a j, b j j z x k ; x x 0 06.2.06.0029.0 I z a, b a x a argzx argzx a x k k a kj x jk a j x aj a b x bj 2F, a b; b j ; x z x k ; x x 0 j k j j 0 I z a, b 06.2.06.0030.0 sin b a x a argzx x a argzx 2,2 G2,2 x a, b Oz x ; x x 0 In the right half-plane I z a, b 06.2.06.003.0 sin b a 2 b argxz argx z a x b argxz x argxz b 2,2 G2,2 x a, b x a 2 x x b argxz x b argxz x argxz b argxz b x a a G 2,2 2,2 x x a2 G 2,2 2,2 x a, b a, b 2 2 x G 2,2 2,2 x x 2 a, b z x a a G 2,2 2,2 x a, b 2 x G 2,2 2,2 x a, b z x 2 ; z x x x I z a, b 06.2.06.0032.0 sin b a 2 b argxz argx z a x b argxz x argxz b 2,2 G2,2 x a, b x a 2 x x b argxz x b argxz x argxz b argxz b x a a G 2,2 2,2 x x a2 G 2,2 2,2 x a, b a, b 2 2 x G 2,2 2,2 x x 2 a, b z x a a G 2,2 2,2 x a, b 2 x G 2,2 2,2 x a, b z x 2 Oz x 3 ; x x

http://functions.wolfram.com 9 06.2.06.0033.0 sin b k kj a kj x jk I z a, b a x a j 0 j k j x b argxz x argxz b 2,2 G2,2 x a j, b j j argx z argxz b j a j x j z x k ; x x 06.2.06.0034.0 sin b I z a, b a k k a kj x jk a j x j j k j j 0 cscb x b argxz x argxz b 2 b argxz argx z cscb a b x a x b argxz x argxz bbj 2 F, a b; b j ; x z x k ; b x x I z a, b 06.2.06.0035.0 sin b a 2 b argxz argx z a x b argxz x argxz b 2,2 G2,2 x a, b x a Oz x ; x x Expansions at z 0 For the function itself General case 06.2.06.000.02 z a I z a, b a a, b 06.2.06.0036.0 z a I z a, b a a, b a b z a b 2 b z2 ; z 0 a a 2 a 2 a b z a b 2 b z2 Oz 3 ; a a 2 a 2 06.2.06.0002.0 I z a, b za a, b b k z k a k k ; z a 06.2.06.0003.0 z a I z a, b a a, b 2 F a, b; a ; z 06.2.06.0037.0 I z a, b za a b 2F a, b; a ; z b

http://functions.wolfram.com 0 06.2.06.0004.02 z a I z a, b Oz ; a a a, b 06.2.06.0038.0 I z a, b F z, a, b ; F n z za n b k z k a, b a k k I z an b n za, b a, ba n n 3 F 2, a n, b n 2; n 2, a n 2; z n Summed form of the truncated series expansion. Generic formulas for main term 06.2.06.0039.0 a b a b 0 I z a, b z a ; z 0 True a a,b Expansions at z For the function itself General case 06.2.06.0005.02 I z a, b zb z a b a, b 06.2.06.0040.0 I z a, b zb z a b a, b a b z b a b z b a b a b z 2 ; z b b 2 b a b a b z 2 Oz 3 ; b b 2 b 06.2.06.0006.0 I z a, b zb z a k a b k z k b a, b b k ; z b 06.2.06.0007.0 I z a, b zb z a b a, b 2F, a b; b ; z 06.2.06.004.0 a b I z a, b z b z a 2F, a b; b ; z a 06.2.06.0008.02 zb a b z I z a, b b a, b b a a 2 b z 2 ; z b 2 2 b

http://functions.wolfram.com 06.2.06.0042.0 zb a b z I z a, b b a, b b a a 2 b z 2 Oz 3 ; b 2 2 b 06.2.06.0009.0 a sin a zb jk j a a b kz jk I z a, b j b k j 0 ; z b 06.2.06.000.0 zb I z a, b b a, b F 0 2 ; a;, a b; 0 0 z, z ; b ; ; b ; 06.2.06.00.02 zb I z a, b Oz ; b b a, b Generic formulas for main term 06.2.06.0043.0 0 b I z a, b ; z zb True b a,b I z a, b General case 06.2.06.0044.0 0 b Reb 0 zb b a,b zb b a,b Expansions at z Reb 0 ; z True 06.2.06.002.02 z b z a b a b I z a, b csc a b sinb z a z a a b a, b 2 a b z z a b 06.2.06.0045.0 z b z a b a b I z a, b csc a b sinb z a z a a b a, b 2 a b z a b b 2 b a b 2 3 a b z 2 ; b 2 b a b 2 3 a b z 2 O z 3 ; 06.2.06.003.0 z a z b b I z a, b csc a b sinb z a z a k a b k z k a b a, b 2 a b k k ; z a b 06.2.06.004.0 z a z b I z a, b csc a b sinb z a z a a b a, b 2F b, a b; 2 a b; z ; z 0, a b

http://functions.wolfram.com 2 06.2.06.005.02 z a z b I z a, b csc a b sinb z a z a a b a, b O z ; a b I z a, b 06.2.06.0046.0 a csca b sinb b z ab ab a,b a csca b sinb b z ab ab a,b argz 0 ; a b z True 06.2.06.0047.0 I z a, b F z, a, b ; z a z b n b k a b k z k F n z, a, b a b a, b csc a b sinb z a z a I z a, b 2 a b k k b n z b z an n 2 a b n a, b 3F 2, b n 2, a b n 2; n 2, a b n 3; z n a b Summed form of the truncated series expansion. Logarithmic cases 06.2.06.0048.0 sina sina I z a, a z a z a logz Ψa a z a z a a 4 z a 2 a ; z 8 z 2 06.2.06.0049.0 I z a, 2 a sina za z a a a sina z a z a 06.2.06.0050.0 a 6 z a 2 a 36 z 2 I z a, a n a sina za z a a n 2 2 n z sina z a z a logz Ψa ; z a 2 a 2 3 2 n 3 n z sina z a z a z a z na n a n k z k logz Ψn Ψa a, a n ; z n n k k 06.2.06.005.0 I z a, a sina za z a logz Ψa a sina za z a 3F 2,, a ; 2, 2; z ; z 0, 06.2.06.0052.0 I z a, a n a sina za z a a k z k n n 2 k k sina z a z na n z a z a logz Ψn Ψa a, a n a n k z k n k k ; n z

http://functions.wolfram.com 3 06.2.06.006.02 a sina I z a, a n n za z a 3F 2,, a ; 2, n 2; z sina z a z na n z a z a logz Ψn Ψa a, a n a n k z k n k k ; n z 0, 06.2.06.007.02 sina z a z b I z a, b z a z a logz Ψa Ψa b a b a, b O z ; a b 06.2.06.008.02 sin a a sin a I z a, b z a z a logz Ψa z a z a O z ; a b I z a, b 06.2.06.0053.0 b z ab a logz sina ab a,b b z ab a logz sina ab a,b argz 0 ; a b z True I z a, b 06.2.06.0054.0 a logz sina a logz sina argz 0 ; a b z True Generic formulas for main term I z a, b 06.2.06.0055.0 z a z b sina za z a logzψaψab ab a,b sin a z a z a logzψa a sin a za z a z a z b ab a,b csc a b sinb za z a a b a b ; z True I z a, b 06.2.06.0056.0 a ab z ab ab a,b a sina a zz logzψa z sina logzψaψab a ab z ab csca b sinb argz 0 ab a,b b z ab sina a logzψaψab ab a,b a sina a zz logzψa z b z ab ab a,b a csca b sinb argz 0 a b argz 0 a b ; z argz 0 a b argz 0 a b True Expansions at generic point a a 0 For the function itself

http://functions.wolfram.com 4 06.2.06.0057.0 I z a, b I z a 0, b a 2 0 z a 0, b logz Ψb a 0 Ψa 0 z a 0 3 F 2 a 0, a 0, b; a 0, a 0 ; z a a 0 a 2 0 a 0, b 2 a 3 0 a 0, b 2 4 F 3 b, a 0, a 0, a 0 ; a 0, a 0, a 0 ; z 3 F 2 b, a 0, a 0 ; a 0, a 0 ; z logz Ψa 0 Ψb a 0 a 0 06.2.06.0058.0 I z a, b I z a 0, b z a 0 z a 0, b log 2 z Ψa 0 Ψb a 0 2 logz Ψa 0 Ψb a 0 Ψ a 0 Ψ b a 0 a 0 3 a a 0 2 ; a a 0 a 2 0 z a 0, b logz Ψb a 0 Ψa 0 z a 0 3 F 2 a 0, a 0, b; a 0, a 0 ; z a a 0 a 2 0 a 0, b 2 a 3 0 a 0, b 2 4 F 3 b, a 0, a 0, a 0 ; a 0, a 0, a 0 ; z 3 F 2 b, a 0, a 0 ; a 0, a 0 ; z logz Ψa 0 Ψb a 0 a 0 z a 0 z a 0, b log 2 z Ψa 0 Ψb a 0 2 logz Ψa 0 Ψb a 0 Ψ a 0 Ψ b a 0 a 0 3 a a 0 2 Oa a 0 3 06.2.06.0059.0 I z a, b b sin b a 0 z a 0 k kj log j z b a 0 jk kj2 F kj b, d, d 2,, d kj ; d, d 2,, d kj ; j 0 j j i i2f i b, c, c 2,, c i ; c, c 2,, c i ; z a 0 logz i 0 d d 2 d k b a 0 c c 2 c k a 0 k i a a 0 k ; 06.2.06.0060.0 I z a, b I z a 0, b Oa a 0 Expansions at generic point b b 0 For the function itself 06.2.06.006.0 I z a, b I z a, b 0 zb 0 a b 0 a b 0 3 F 2 a, b 0, b 0 ; b 0, b 0 ; z log z Ψb 0 Ψa b 0 2 F a, b 0 ; b 0 ; z b b 0 b 0 2 4 F 3 a, b 0, b 0, b 0 ; b 0, b 0, b 0 ; z b 0 log z Ψb 0 Ψa b 0 3 F 2 a, b 0, b 0 ; b 0, b 0 ; z 2 log2 z Ψb 0 Ψa b 0 2 log z Ψb 0 Ψa b 0 Ψ b 0 Ψ a b 0 2F a, b 0 ; b 0 ; z b b 0 2 ; b b 0

http://functions.wolfram.com 5 06.2.06.0062.0 I z a, b I z a, b 0 zb 0 a b 0 a b 0 3 F 2 a, b 0, b 0 ; b 0, b 0 ; z log z Ψb 0 Ψa b 0 2 F a, b 0 ; b 0 ; z b b 0 b 0 2 4 F 3 a, b 0, b 0, b 0 ; b 0, b 0, b 0 ; z b 0 log z Ψb 0 Ψa b 0 3 F 2 a, b 0, b 0 ; b 0, b 0 ; z 2 log2 z Ψb 0 Ψa b 0 2 log z Ψb 0 Ψa b 0 Ψ b 0 Ψ a b 0 2F a, b 0 ; b 0 ; z b b 0 2 Ob b 0 3 06.2.06.0063.0 I z a, b I z a, b 0 a sin a b 0 z b 0 k kj log j z a b 0 kj kj2f kja, d, d 2,, d kj ; d, d 2,, d kj ; k j 0 j j i i2f i a, c, c 2,, c i ; c, c 2,, c i ; z b 0 log z i 0 d d 2 d k a b 0 c c 2 c k b 0 k i b b 0 k ; 06.2.06.0064.0 I z a, b I z a, b 0 Ob b 0 Residue representations 06.2.06.009.0 a b sin b za I z a, b res s a j 0 b s z s s j ; z a s 06.2.06.0020.02 a b sin b za I z a, b a z a b j 0 b s res s s z s a s a j 0 b s res s s z s a s j b ; 06.2.06.0065.0 I z a, a n n n sina z a a a n s s res s s z a s a n res s j 0 s z s a s a n s a j n res s j n s z s a n s a j n ; z n a s Integral representations On the real axis

http://functions.wolfram.com 6 Of the direct function 06.2.07.000.0 I z a, b z a, b t a t b t ; Rea 0 0 06.2.07.0002.0 I z a, b z Rea a, b b t a t b k z k 0 k Rea b k z ak t a k k Contour integral representations 06.2.07.0003.0 a b sin b za s a s b s I z a, b z s s ; argz 2 2 a a s 06.2.07.0004.0 sin b za I z a, b s b s a s b s z s s ; arg z 2 a 06.2.07.0005.0 a b sin b za Γ s a s b s I z a, b z s s ; 0 Γ minrea, Reb argz 2 2 a Γ a s 06.2.07.0006.0 sin b za Γ I z a, b s b s a s b s z s s ; 2 a Γ max0, Reb Γ minrea, Reb arg z Continued fraction representations 06.2.0.000.0 I z a, b za z b a a, b r r2 r3 r4 r5 a k a b k z k b k z ; r2 k r2 k a 2 k a 2 k a 2 k a 2 k 06.2.0.0002.0 z a z b a k a b k z k b k z I z a, b ; r2 k r2 k a a, b k rk, a 2 k a 2 k a 2 k a 2 k Differential equations Ordinary linear differential equations and wronskians For the direct function itself

http://functions.wolfram.com 7 06.2.3.000.0 z z w z a a b 2 z w z 0 ; wz c I z a, b c 2 06.2.3.0002.0 W z, I z a, b zb z a a, b 06.2.3.0003.0 w z a a b 2 gz g z gz gz g z g z w z 0 ; wz c c 2 I gz a, b 06.2.3.0004.0 W z, I gz a, b gzb gz a g z a, b 06.2.3.0005.0 a a b 2 gz g z w z hz 2 h z gz gz hz g z hz 2 hz g z 2 h z 2 a a b 2 gz g z h z hz 2 gz gz hz w z g z h z hz g z h z hz wz 0 ; wz c hz c 2 hz I gz a, b 06.2.3.0006.0 W z hz, hz I gz a, b gzb gz a hz 2 g z 06.2.3.0007.0 a, b d z r z 2 w z d a b r 2 s z r a r 2 s z w z s b d r z r a r s d z r wz 0 ; wz c z s c 2 z s I d z ra, b 06.2.3.0008.0 W z z s, z s I d z ra, b r z2 s d z r a d z r b a, b 06.2.3.0009.0 d r z w z d a b logr 2 logs r z a logr 2 logs w z logs d a b logr logs r z a logr logs wz 0 ; wz c s z c 2 s z I d r za, b 06.2.3.000.0 W z s z, s z I d r za, b d rz d r z a d r z b s 2 z logr a, b Transformations Transformations and argument simplifications Argument involving basic arithmetic operations 06.2.6.000.0 I z a, b I z b, a

http://functions.wolfram.com 8 06.2.6.0002.0 a b I z a, b I z a, b a b zb z a 06.2.6.0003.0 a b I z a, b I z a, b z b z a a b 06.2.6.0004.0 n I z a n, b I z a, b a b n a n, b a n k z b z akn 2 a b n k ; n 06.2.6.0005.0 n I z a n, b I z a, b a b a, b a k z b z ak 2 a b k ; n Identities Recurrence identities Consecutive neighbors 06.2.7.000.0 a b I z a, b I z a, b a b zb z a 06.2.7.0002.0 a b I z a, b I z a, b z b z a a b Distant neighbors 06.2.7.0003.0 z a z b n a b k z k I z a, b I z a n, b a, b a b a k k ; n 06.2.7.0004.0 z a z b n I z a, b I z a n, b a, b a b a k z k ; n 2 a b k Functional identities Relations between contiguous functions 06.2.7.0005.0 I z a, b a b a I za, b b I z a, b 06.2.7.0006.0 I z a, b z I z a, b z I z a, b Additional relations between contiguous functions

http://functions.wolfram.com 9 06.2.7.0007.0 I z a, b a b a z a z I za, b b I z a, b Major general cases 06.2.7.0008.0 I z a, b I z b, a 06.2.7.0009.0 I z a, b z a z a sina z ab z ab I a b, b sinb csca b ; a b z 0, z Differentiation Low-order differentiation With respect to z I z a, b z 06.2.20.000.0 zb z a a, b 2 I z a, b z 2 06.2.20.0002.0 With respect to a zb2 za2 z a b 2 z a, b 06.2.20.0003.0 I z a, b a a b logz Ψa Ψa bi z a, b z a 3 F 2a, a, b; a, a ; z a b 2 I z a, b a 2 06.2.20.0004.0 2 za a a b b a 4 F 3a, a, a, b; a, a, a ; z logz Ψa Ψa b 3 F 2a, a, b; a, a ; z I z a, b log 2 z 2 Ψa b logz Ψa 2 Ψa b 2 2 Ψa logz Ψa b Ψ a Ψ a b With respect to b 06.2.20.0005.0 I z a, b b a b z b 3F 2b, b, a; b, b ; z I z b, a Ψb Ψa b log z b a 2 I z a, b a 2 06.2.20.0006.0 2 zb b a b a log z Ψb Ψa b 3 F 2b, b, a; b, b ; z b 4 F 3b, b, b, a; b, b, b ; z I z b, a log 2 z 2 Ψa b log z Ψb 2 Ψa b 2 2 Ψb log z Ψa b Ψ b Ψ a b Symbolic differentiation

http://functions.wolfram.com 20 With respect to z 06.2.20.002.0 n I z a, b zb zan n n I z a, b nk n z n a, b k b k a nk z z k ; n n I z a, b z n 06.2.20.0007.02 n a b z bn z a 2 F a, n; b n ; a z ; n With respect to a 06.2.20.0008.02 n I z a, b a n b sin b a n za n nj log j z a b nj nj2f nja, a 2,, a nj, b; a, a 2,, a nj ; j 0 j j i i2 F ic, c 2,, c i, b; c, c 2,, c i ; z a logz i 0 a a 2 a n a b c c 2 c n a n i ; With respect to b 06.2.20.0009.02 n I z a, b a sin a b n zb n b n n nj log j z a b nj nj2f nja, a 2,, a nj, ba; a, a 2,, a nj ; j 0 j j i i2 F ic, c 2,, c i, a; c, c 2,, c i ; z b log z i 0 a a 2 a n a b c c 2 c n b n i ; Fractional integro-differentiation With respect to z 06.2.20.000.0 Α I z a, b a b z aα 2F a, b; a Α ; z ; a z Α b 06.2.20.00.0 Α I z a, b b k Α exp z, a kz akα z Α a, b ; z a k k Integration Indefinite integration

http://functions.wolfram.com 2 Involving only one direct function 06.2.2.000.0 a I a z a, b z z I a z a, b a a b I a za, b 06.2.2.0002.0 I z a, b z z I z a, b a a b I za, b Involving one direct function and elementary functions Involving power function 06.2.2.0003.0 z Α I z a, b z zα Α I za, b 06.2.2.0004.0 z Α I z a, b z zα Α I za, b a b a Α Α a a b Α I za Α, b a b a Α Α a a b Α I za Α, b 06.2.2.0005.0 I z a, b z a z z a 2 a, b 3 F 2 a, a, b; a, a ; z 06.2.2.0006.0 z b z a I z a, b z 2 za, b I z a, b 06.2.2.0007.0 z n I z a, b z za, b n z n z a, b n a, b Involving rational function I z a, b z 06.2.2.0008.0 zb 3F 2 b, b, a; b, b ; z z b 2 a, b I z b, a I z a, b log z Integral transforms Fourier cos transforms 06.2.22.000.0 3 c t I t a, bx 2b 2 a sin b a b 2 a 3,2 G x2 2,4 4 0, ab a 2, a 2, ab 2 2, 2 ; x Rea Fourier sin transforms

http://functions.wolfram.com 22 06.2.22.0002.0 3 s t I t a, bx 2b 2 a sin b a b 2 a 3,2 sgnxg x2 2,4 4 ab, 2 a 2, a 2, ab 2 2, 0 ; x Rea 2 Laplace transforms 06.2.22.0003.0 t I t a, bz a a b Ua, a b, z ; Rez 0 Rea z b Mellin transforms 06.2.22.0004.0 cot a z sin b a b z a b t I t a, bz ; Rea z 0 Rez 0 Rea b z z a z a Representations through more general functions Through hypergeometric functions Involving 2 F 06.2.26.000.0 a b I z a, b z a 2F a, b; a ; z ; a b 06.2.26.0002.0 a b I z a, b z b z a 2F, a b; a ; z ; a b 06.2.26.0003.0 a b I z a, b z b z a 2 F, a b; b ; z ; b a 06.2.26.0004.0 csc a b I z a, b csc a b sinb z a z a z b z a 2F b, a b ; a b 2; a b z ; a b Involving 2 F 06.2.26.0005.0 z a I z a, b a a, b 2F a, b; a ; z ; a 06.2.26.0006.0 zb I z a, b a a, b za 2F, a b; a ; z ; a 06.2.26.0007.0 I z a, b zb z a b a, b 2F, a b; b ; z ; b

http://functions.wolfram.com 23 06.2.26.0008.0 z a z b I z a, b a b a, b 2F b, a b; 2 a b; z csc a b sinb z a z a ; a b Through hypergeometric functions of two variables 06.2.26.0009.0 zb I z a, b b a, b F 0 2 ; a;, a b; 0 0 z, z ; b ; ; b ; Through Meijer G Classical cases for the direct function itself 06.2.26.000.0 sin b a b za I z a, b G,2 2,2 z a a, b 0, a Classical cases involving algebraic functions 06.2.26.00.0 za z b I z a, b b G 2,2,2 z 0, a b 0, a 06.2.26.006.0 z b I a, b zab z b G 2, 2,2 z, a, a b ; z, 0 Classical cases involving algebraic functions in the arguments 06.2.26.002.0 I z a, b z a b G,2 2,2 z, b a, 0 ; z, 06.2.26.003.0 sin b a b z ab I z a, b G,2 2,2 z z a, a b a, 0 ; z, Through other functions Involving some hypergeometric-type functions 06.2.26.004.0 I z a, b I,z a, b ; Reb 0 06.2.26.005.0 I z a, b a, b,za, b ; Reb 0 Representations through equivalent functions With inverse function

http://functions.wolfram.com 24 06.2.27.000.0 I Iz a, b z a,b 06.2.27.0002.0 I I,z2 a,b a, b z 2 ; z 2 0 With related functions 06.2.27.0003.0 a b I z a, b a b za, b

http://functions.wolfram.com 25 Copyright This document was downloaded from functions.wolfram.com, a comprehensive online compendium of formulas involving the special functions of mathematics. For a key to the notations used here, see http://functions.wolfram.com/notations/. Please cite this document by referring to the functions.wolfram.com page from which it was downloaded, for example: http://functions.wolfram.com/constants/e/ To refer to a particular formula, cite functions.wolfram.com followed by the citation number. e.g.: http://functions.wolfram.com/0.03.03.000.0 This document is currently in a preliminary form. If you have comments or suggestions, please email comments@functions.wolfram.com. 200-2008, Wolfram Research, Inc.