Isospin breaking effects in B ππ, ρρ, ρπ

Σχετικά έγγραφα
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Hadronic Tau Decays at BaBar

Approximation of distance between locations on earth given by latitude and longitude

Three coupled amplitudes for the πη, K K and πη channels without data

Polarizations of B V V in QCD factorization

LIGHT UNFLAVORED MESONS (S = C = B = 0)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Forced Pendulum Numerical approach

EE512: Error Control Coding

Second Order RLC Filters

Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

Lecture 34 Bootstrap confidence intervals

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

CRASH COURSE IN PRECALCULUS

derivation of the Laplacian from rectangular to spherical coordinates

Homework 3 Solutions

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Partial Differential Equations in Biology The boundary element method. March 26, 2013

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

( ) 2 and compare to M.

Inverse trigonometric functions & General Solution of Trigonometric Equations

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Solar Neutrinos: Fluxes

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Example Sheet 3 Solutions

Tridiagonal matrices. Gérard MEURANT. October, 2008

Study of CP Violation at BABAR

2 Composition. Invertible Mappings

Every set of first-order formulas is equivalent to an independent set

Durbin-Levinson recursive method

Notes on the Open Economy

Numerical Analysis FMN011

Other Test Constructions: Likelihood Ratio & Bayes Tests

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

Dr. D. Dinev, Department of Structural Mechanics, UACEG

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Section 8.3 Trigonometric Equations

Matrices and Determinants

The Simply Typed Lambda Calculus

Abstract Storage Devices

Derivation of Optical-Bloch Equations

Srednicki Chapter 55

Reminders: linear functions

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

Mean-Variance Analysis

6.003: Signals and Systems. Modulation

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

The challenges of non-stable predicates

Math221: HW# 1 solutions

Concrete Mathematics Exercises from 30 September 2016

Fractional Colorings and Zykov Products of graphs

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.

Space-Time Symmetries

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Andreas Peters Regensburg Universtity

Strain gauge and rosettes

TMA4115 Matematikk 3

4.6 Autoregressive Moving Average Model ARMA(1,1)

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

C.S. 430 Assignment 6, Sample Solutions

The ε-pseudospectrum of a Matrix

Συστήματα Διαχείρισης Βάσεων Δεδομένων

Lecture 21: Scattering and FGR

Section 9.2 Polar Equations and Graphs

PARTIAL NOTES for 6.1 Trigonometric Identities

Finite Field Problems: Solutions

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

ΑΝΩΤΑΤΗ ΣΧΟΛΗ ΠΑΙ ΑΓΩΓΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΠΑΡΑΔΟΤΕΟ ΕΠΙΣΤΗΜΟΝΙΚΗ ΕΡΓΑΣΙΑ ΣΕ ΔΙΕΘΝΕΣ ΕΠΙΣΤΗΜΟΝΙΚΟ ΠΕΡΙΟΔΙΚΟ

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Math 6 SL Probability Distributions Practice Test Mark Scheme

Statistical Inference I Locally most powerful tests

Right Rear Door. Let's now finish the door hinge saga with the right rear door

ΑΓΓΛΙΚΑ Ι. Ενότητα 7α: Impact of the Internet on Economic Education. Ζωή Κανταρίδου Τμήμα Εφαρμοσμένης Πληροφορικής

2nd Training Workshop of scientists- practitioners in the juvenile judicial system Volos, EVALUATION REPORT

5. Choice under Uncertainty

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Section 7.6 Double and Half Angle Formulas

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ. του Γεράσιμου Τουλιάτου ΑΜ: 697

ΘΕΩΡΗΤΙΚΗ ΚΑΙ ΠΕΙΡΑΜΑΤΙΚΗ ΙΕΡΕΥΝΗΣΗ ΤΗΣ ΙΕΡΓΑΣΙΑΣ ΣΚΛΗΡΥΝΣΗΣ ΙΑ ΛΕΙΑΝΣΕΩΣ

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality

Congruence Classes of Invertible Matrices of Order 3 over F 2

Solutions to Exercise Sheet 5

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ

MSM Men who have Sex with Men HIV -

Problem Set 3: Solutions

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

ST5224: Advanced Statistical Theory II

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

CP Violation in Kaon Decays

Non-Gaussianity from Lifshitz Scalar

Transcript:

Isospin breaking effects in B ππ, ρρ, ρπ Jure Zupan Carnegie Mellon University based on M. Gronau, J.Z., hep-ph/0502139 J. Zupan Isospin breaking effects in B ππ,ρρ,ρπ CKM2005 p. 1

Outline Effect of isospin breaking in α extraction from B(t) ππ B(t) ρρ B(t) ρπ Conclusions J. Zupan Isospin breaking effects in B ππ,ρρ,ρπ CKM2005 p. 2

Motivation the most useful methods for α extraction use isospin relations isospin breaking the limiting factor for precision measurements typical effect of isospin breaking (m u m d )/Λ QCD α 0 1% Questions: Are the isospin breaking effects that we can calculate of this order? Does any of the methods fare better? J. Zupan Isospin breaking effects in B ππ,ρρ,ρπ CKM2005 p. 3

Manifestations of isospin breaking sources of isospin breaking d and u charges different m u m d J. Zupan Isospin breaking effects in B ππ,ρρ,ρπ CKM2005 p. 4

Manifestations of isospin breaking sources of isospin breaking d and u charges different m u m d extends the basis of operators to EWP Q 7,...,10 mass eigenstates do not coincide with isospin eigenstates: π η η and ρ ω mixing reduced matrix elements between states in the same isospin multiplet may differ e.g. π + π Q 1 B 0 1 2 π + π 3 Q 1 B 0 may induce I = 5/2 operators not present in H W J. Zupan Isospin breaking effects in B ππ,ρρ,ρπ CKM2005 p. 4

B(t) ππ J. Zupan Isospin breaking effects in B ππ,ρρ,ρπ CKM2005 p. 5

B ππ Gronau, London (1990) completely general isospin decomposition A + = π + π H B 0 = A 1/2 + 1 2 A 3/2 1 2 A 5/2 A 00 = π 0 π 0 H B 0 = 1 2 A 1/2 + A 3/2 A 5/2 A +0 = π + π 0 H B + = 3 2 A 3/2 + A 5/2 neglecting A 5/2 αa 1/2 ( i.e. 1% correction) A + + 2A 00 = 2A +0 Ā + + 2Ā00 = 2Ā+0 neglecting EWP A +0 only tree contribs. e iγ A +0 = e iγ Ā +0 A +0 = Ā+0 J. Zupan Isospin breaking effects in B ππ,ρρ,ρπ CKM2005 p. 6

Gronau-London triangle sin 2α from Γ(B 0 (t) π + π ) [1 + C ππ cos mt S ππ sin mt] sin(2α eff ) = S ππ / 1 C 2 ππ 2α = 2α eff 2θ 1 2 _ A + _ A 00 1 2 A + 2θ A 00 _ A = +0 A +0 J. Zupan Isospin breaking effects in B ππ,ρρ,ρπ CKM2005 p. 7

Electroweak penguins separate triangle relations still hold neglecting Q 7,8 H I=3/2 eff,ewp = 3 2 C 9 + C 10 Vtb V td C 1 + C 2 Vub V ud Neubert, Rosner; Gronau, Pirjol, Yan; Buras, Fleischer (1999) H I=3/2 eff,c c e iγ A +0 = e i(γ+2δ) Ā +0, but still A +0 = Ā+0 α = α eff θ δ with δ = (1.5 ± 0.3 ± 0.3) conservatively 2( c 7 + c 8 )/( c 9 )< 0.2 the same relation e iγ T = e i(γ+2δ) T holds for I = 3/2 (tree) amplitudes in ρρ and ρπ system J. Zupan Isospin breaking effects in B ππ,ρρ,ρπ CKM2005 p. 8

π 0 η η mixing π 0 w.f. has η,η admixtures π 0 = π 3 + ǫ η + ǫ η where ǫ = 0.017 ± 0.003, ǫ = 0.004 ± 0.001 Kroll (2004) GL triangle relations no longer hold A + + 2A 00 2A +0 0 Ā + + 2Ā00 2Ā+0 0 previous analysis Gardner (1999) estimated using generalized factorization obtained α 0.1 5 (including EWP) can we say more using wealth of data from Belle and BaBar? J. Zupan Isospin breaking effects in B ππ,ρρ,ρπ CKM2005 p. 9

Using data M. Gronau, J.Z. (2005) use SU(3) decomposition for A 0η ( ), A +η ( ) + neglect annihilation-like contributions A + = t+p SU(2) == A 33 = 1 2 (c p) SU(2) == A +3 = 1 2 (t+c) SU(3) A 3η = 1 6 (2p + s) A 3η = 1 3 (p + 2s) A +η = 1 3 (t + c + 2p + s) A +η = 1 6 (t + c + 2p + 4s) J. Zupan Isospin breaking effects in B ππ,ρρ,ρπ CKM2005 p. 10

Using data II triangle relation is modified only slightly where e 0 = A + + 2A 00 2A +0 (1 e 0 ) = 0 2 3 ǫ + 1 3 ǫ = 0.016 ± 0.003 A +0 is a sum of pure I = 3/2 amplitude A +3 with weak phase γ and isospin-breaking terms A +0 = A +3 (1 + e 0 ) + 2ǫA 0η + 2ǫ A 0η. while e iγ A +3 = e iγ Ā +3 no longer e iγ A +0 = e iγ Ā +0 also A +0 Ā+0 exp. check J. Zupan Isospin breaking effects in B ππ,ρρ,ρπ CKM2005 p. 11

Using data III varying the phases of A 0η ( ), Ā0η ( ) gives bound ) α π η η 2 τ + τ0 (ǫ B0η B +0 + ǫ B0η B +0 at 90% CL using WA values α π η η < 1.05ǫ + 1.28ǫ = 1.6 the bound can be improved using the SU(3) relations A +η ( ) = 2 3 A +0 + 2A 0η ( ) leading to α π η η < 1.4 J. Zupan Isospin breaking effects in B ππ,ρρ,ρπ CKM2005 p. 12

Intermediate summary isospin breaking due to π η ( ) mixing is of expected order bound α π η η < 1.4 does not encompass all isospin breaking still assumed SU(2) for A +,A +3,A 33 reduced matrix elements A 5/2 set to zero J. Zupan Isospin breaking effects in B ππ,ρρ,ρπ CKM2005 p. 13

B(t) ρρ J. Zupan Isospin breaking effects in B ππ,ρρ,ρπ CKM2005 p. 14

Generalities Isospin analysis in the same spirit as for B ππ 3 separate isospin relations (for each polarization) almost completely longitudinally polarized since Γ ρ 0 I = 1 contributions possible Falk, Ligeti, Nir, Quinn (2003) O(Γ 2 ρ/m 2 ρ) effect possible to constrain experimentally J. Zupan Isospin breaking effects in B ππ,ρρ,ρπ CKM2005 p. 15

Isospin breaking shift due to EWP exactly the same as in ππ ρ ω mixing couplings g I g(ρ I π + π ) and g c g(ρ + π + π 3 ) may not be equal g c = g(ρ + π + π 0 ) + O(ǫ 2 ) PDG: g c /g I 1 = (0.5 ± 1.0)% as in ππ not much can be said about breaking in the reduced matrix elements A 5/2 0 J. Zupan Isospin breaking effects in B ππ,ρρ,ρπ CKM2005 p. 16

Effect of ρ ω mixing only relevant for B + ρ + ρ 0 and B 0 ρ 0 ρ 0 the effect of ρ ω can be determined by fits to m π+ π distributions focusing on B + ρ + ρ 0 A +0 (s 12,s 34 ) = g c g I [A(B + ρ + ρ I )D ρρ (s 34 ) + A(B + ρ + ω I ) D ] ρω (s 34 ) the scalar part of ρ propagator near the pole D ρρ (s) = 1 s m 2 ρ + im ρ Γ ρ the mixed ρω contribution has a double pole D ρω (s) = Π ρω (s)d ρρ (s)d ωω (s) J. Zupan Isospin breaking effects in B ππ,ρρ,ρπ CKM2005 p. 17

large effect... Π ρω (s) from pion form factor Gardner, O Connell (1998) large effect expected because A(B + ρ + ω)/a(b + ρ + ρ 0 ) = 0.69 ± 0.14 an estimate: use SU(3) relation & P/T = 0.2 & same strong phase for P,T events in a. u. 1.75 1.5 1.25 0.75 0.5 0.25 B decays B + decays similar effect seen in D 0 K S π + π 1 650 700 750 800 850 900 s 1 2 MeV integrated effect of ω resonance is < 2% J. Zupan Isospin breaking effects in B ππ,ρρ,ρπ CKM2005 p. 18

B(t) ρπ J. Zupan Isospin breaking effects in B ππ,ρρ,ρπ CKM2005 p. 19

B π + π π 0 Dalitz plot model the Dalitz plot (similarly for A( B 0 3π)) A(B 0 π + π π 0 ) = A + {}}{ A(B 0 ρ + π )D ρρ (s + )cos θ + + + A(B 0 ρ π + ) D }{{} ρρ (s )cos θ + A(B 0 ρ 0 π 0 ) D }{{} ρρ (s 0 )cos θ 0 A A 0 other resonances need to be included in the fit ρ ω mixing treated in the same way as in ρρ possible to determine A +, Ā+, A, Ā, A 0, Ā0 up to overall phase 11 independent measurables J. Zupan Isospin breaking effects in B ππ,ρρ,ρπ CKM2005 p. 20

Snyder-Quinn Snyder, Quinn (1993), Lipkin et al. (1991), Gronau (1991) rescale A i (Āi) e iβ A i (e iβ Ā i ) tree and penguin defined according to CKM A ±,0 = e iα T ±,0 + P ±,0, Ā ±,0 = e +iα T ±,0 + P ±,0 an isospin relation only between penguins P 0 + 1 2 (P + + P ) = 0 (EWP and isospin breaking neglected) 10 unknowns: e.g. α, t ±, t 0, arg t ±, p ±, arg p ± enough info to determine them J. Zupan Isospin breaking effects in B ππ,ρρ,ρπ CKM2005 p. 21

Effect of isospin breaking isospin breaking affects only the relation between penguins! largest contribution from EWP because they are related to tree P + P + + 2P 0 = P EW where P EW can be obtained from and A + + A + 2A 0 = Te iα + P EW J. Charles, PhD thesis P EW T = 3 2 ( c9 + c 10 c 1 + c 2 ) Vtb V td V ub V ud = +0.013sin(β + α) sin β J. Zupan Isospin breaking effects in B ππ,ρρ,ρπ CKM2005 p. 22

Other isospin breaking other isospin breaking effects are P/T 0.2 suppressed using similar approach of SU(3) relations as in ππ to estimate shift due to π 0 η η mixing α π η η = ǫp ρη + ǫ P ρη T 0.024ǫ + 0.069ǫ 0.1 the suppression P/T 0.2 applies also for shift due to isospin breaking in reduced matrix elements A 5/2 0 J. Zupan Isospin breaking effects in B ππ,ρρ,ρπ CKM2005 p. 23

Conclusions shift due to π η η mixing in α extracted from ππ is < 1.4 and is of expected size close to ω mass the effect of ρ ω mixing in B ρρ can be large can be excluded using fits the uncertainty due to uncalculated isospin breaking effects in B ρπ is suppressed and most probably below 0.5 J. Zupan Isospin breaking effects in B ππ,ρρ,ρπ CKM2005 p. 24

Backup slides J. Zupan Isospin breaking effects in B ππ,ρρ,ρπ CKM2005 p. 25

SU(3) decomp. for ππ, interm. result A +0 = A +3 + ǫa +η + ǫ A +η = 1 2 (t + c)(1 + e 0 ) + 1 3 ǫ(2p + s) + 2 3 ǫ (p + 2s) A 00 = A 33 + 2ǫA 3η + 2ǫ A 3η = 1 2 (c p) + 1 3 ǫ(2p + s) + 2 3 ǫ (p + 2s) J. Zupan Isospin breaking effects in B ππ,ρρ,ρπ CKM2005 p. 26

g(ρ + π + π 0 ) π η η mixing induces g(ρ + π + π 0 ) =g(ρ + π + π 3 ) + ǫg(ρ + π + η) + ǫ g(ρ + π + η ) at (84%CL) g(ρ + π + η) g(ρ + π + π 3 ) = [( 1 m2 η m 2 ρ ) ] 1/2 Br(ρ + π + η) Br(ρ + π + < 0.055 π 3 ) J. Zupan Isospin breaking effects in B ππ,ρρ,ρπ CKM2005 p. 27

First bound B ππ ( α α 0 ) π η η 1 2 Arg(e2iγ Ā 0 A +0) [ ǫ ( Ā0η sin ψ ) η A 0η sin ψ η = 1 2 A+0 + ǫ ( Ā0η sin ψ η A 0η sin ψ η extreme at ψ η ( ) = ψ η ( ) = π/2 ( α α 0 ) π η η ǫ ( ) A0η + Ā0η 2 A+0 ( ) + ǫ A0η + Ā0η 2 A+0 experimental input τ + τ 0 = 1.081 ± 0.015, B 0η < 2.5 10 6 (90% CL) B +0 = (5.5 ± 0.6) 10 6 B 0η < 3.7 10 6 (90% CL) J. Zupan Isospin breaking effects in B ππ,ρρ,ρπ CKM2005 p. 28

Improved bound ππ using A +η ( ) = 2 3 A +0 + 2A 0η ( ) and ingoring info from CP asymmetries gives a bound ( ) ( α α 0 ) π η η 2 τ + B 0η ǫ (1 r η ) + ǫ B 0η (1 r η ) τ 0 B +0 B +0 with r η = 3 16 r η = 3 8 [ ] 2 τ0 (B τ +η 2 B τ+ + 3 +0) 2 B τ 0η 0 B +0 B 0η [ τ0 τ + (B +η 1 3 B +0) 2 B +0 B 0η ] 2 τ+ B τ 0 0η J. Zupan Isospin breaking effects in B ππ,ρρ,ρπ CKM2005 p. 29

π η ( ) in B ρπ A + + A + 2A 0 = Te iα + P EW + ǫp ρη + ǫ P ρη SU(3) decomposition T = t P + t V + c P + c V P ρη = 1 6 ( p P p V s V ) P ρη = 1 2 3 (p P + p V + 4s V ) using T t V, p V t V = 0.2 and from global SU(3) fits arg t P arg t V c P, c V smaller p P /t P p V /t V 0.2, p V p P, s V smaller P ρη 1 6 s V 0.3 6 p V P ρη 2 3 s V 0.6 3 p V α π η η = ǫp ρη+ǫ P ρη T 0.024ǫ + 0.069ǫ 0.1 J. Zupan Isospin breaking effects in B ππ,ρρ,ρπ CKM2005 p. 30

SCET B ππ in SCET A = G Fm 2 { 1 B f M1 2 +f M1 ζ BM 2 0 1 0 dudzt 1J (u,z)ζ BM 2 J (z)φ M 1 (u) } T 1ζ (u)φ M 1 (u) + { } 1 2 + λ (f) c A M 1,M 2 c c. isospin breaking in T ij (u),t iζ (u) is 1/m B suppressed remaining isospin violation is encoded in ζ BM, ζj BM (z), f M φ M (u), and A M 1,M 2 c c, with M 1,2 isospin eigenstates J. Zupan Isospin breaking effects in B ππ,ρρ,ρπ CKM2005 p. 31