Supersymmetric Fifth Order Equations

Σχετικά έγγραφα
D Alembert s Solution to the Wave Equation

Second Order Partial Differential Equations

2 Composition. Invertible Mappings

Matrices and Determinants

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Finite Field Problems: Solutions

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Srednicki Chapter 55

Example Sheet 3 Solutions

Concrete Mathematics Exercises from 30 September 2016

Homework 3 Solutions

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Section 8.3 Trigonometric Equations

Areas and Lengths in Polar Coordinates

The Simply Typed Lambda Calculus

EE512: Error Control Coding

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

C.S. 430 Assignment 6, Sample Solutions

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

A Super Extension of Kaup Newell Hierarchy

Areas and Lengths in Polar Coordinates

( y) Partial Differential Equations

Statistical Inference I Locally most powerful tests

Homework 8 Model Solution Section

derivation of the Laplacian from rectangular to spherical coordinates

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Inverse trigonometric functions & General Solution of Trigonometric Equations

Local Approximation with Kernels

CRASH COURSE IN PRECALCULUS

Solutions to Exercise Sheet 5

4.6 Autoregressive Moving Average Model ARMA(1,1)

Differential equations

Geodesic Equations for the Wormhole Metric

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Spherical Coordinates

Other Test Constructions: Likelihood Ratio & Bayes Tests

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Reminders: linear functions

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Solution Series 9. i=1 x i and i=1 x i.

SPECIAL FUNCTIONS and POLYNOMIALS

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

On the Galois Group of Linear Difference-Differential Equations

Envelope Periodic Solutions to Coupled Nonlinear Equations

6.3 Forecasting ARMA processes

Fractional Colorings and Zykov Products of graphs

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Parametrized Surfaces

Derivation of Optical-Bloch Equations

Lecture 2. Soundness and completeness of propositional logic

Section 9.2 Polar Equations and Graphs

Uniform Convergence of Fourier Series Michael Taylor

Second Order RLC Filters

arxiv: v1 [math-ph] 1 Feb 2016

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Section 7.6 Double and Half Angle Formulas

1 String with massive end-points

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

( ) 2 and compare to M.

Notes on the Open Economy

The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points

Space-Time Symmetries

Fusing defect for the N = 2 super sinh-gordon model

Approximation of distance between locations on earth given by latitude and longitude

Math221: HW# 1 solutions

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

Variational Wavefunction for the Helium Atom

PARTIAL NOTES for 6.1 Trigonometric Identities

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Numerical Analysis FMN011

A Note on Intuitionistic Fuzzy. Equivalence Relation

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

"ΦΟΡΟΛΟΓΙΑ ΕΙΣΟΔΗΜΑΤΟΣ ΕΤΑΙΡΕΙΩΝ ΣΥΓΚΡΙΤΙΚΑ ΓΙΑ ΤΑ ΟΙΚΟΝΟΜΙΚΑ ΕΤΗ "

Congruence Classes of Invertible Matrices of Order 3 over F 2

Oscillatory integrals

Abstract Storage Devices

ECON 381 SC ASSIGNMENT 2

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

First-order Second-degree Equations Related with Painlevé Equations

ΣΧΕΔΙΑΣΜΟΣ ΔΙΚΤΥΩΝ ΔΙΑΝΟΜΗΣ. Η εργασία υποβάλλεται για τη μερική κάλυψη των απαιτήσεων με στόχο. την απόκτηση του διπλώματος

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Analytical Expression for Hessian

Cyclic or elementary abelian Covers of K 4

Every set of first-order formulas is equivalent to an independent set

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

On a four-dimensional hyperbolic manifold with finite volume

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

CE 530 Molecular Simulation

Transcript:

Supersymmetric Fifth Order Equations Q. P. Liu Department of Mathematics China University of Mining and Technology (Beijing) 100083 Beijing July 20, 2009 a joint work with Kai TIAN

Outline SUSY: basics 5th order SUSY integrable systems A SUSY Sawada-Kotera equation A Novel SUSY 5th KdV

SUSY Super: anti-commutitive or fermionic variables theoretical physics: bosons & fermions

SUSY Super: SUSY: anti-commutitive or fermionic variables theoretical physics: bosons & fermions supersymmetry

SUSY Super: SUSY: Super or SUSY Integrable system: anti-commutitive or fermionic variables theoretical physics: bosons & fermions supersymmetry a coupled system

SUSY Super: SUSY: Super or SUSY Integrable system: anti-commutitive or fermionic variables theoretical physics: bosons & fermions supersymmetry a coupled system Two types of super extensions exist in literatures: fermionic or supersymmetric Martin (1959), Casalbuoni (1976), Kupershmidt (1984), Gurses,... Mainin & Radul, Mathieu, Popowicz, Aratyn,...

SUSY Super: SUSY: Super or SUSY Integrable system: anti-commutitive or fermionic variables theoretical physics: bosons & fermions supersymmetry a coupled system Two types of super extensions exist in literatures: fermionic or supersymmetric Martin (1959), Casalbuoni (1976), Kupershmidt (1984), Gurses,... Mainin & Radul, Mathieu, Popowicz, Aratyn,... Direct way to SUSY systems: Independent variables: Dependent variables x (x, θ) fermionic or bosonic functions

Example ( Kupershmidt: Phys. Letts. A (1984)) u t = 6uu x u xxx + 3ξξ xx, ξ t = 4ξ xxx + 3u x ξ + 6uξ x

Example ( Kupershmidt: Phys. Letts. A (1984)) u t = 6uu x u xxx + 3ξξ xx, ξ t = 4ξ xxx + 3u x ξ + 6uξ x L kuper = 2 + u ξ 1 ξ

Example ( Kupershmidt: Phys. Letts. A (1984)) u t = 6uu x u xxx + 3ξξ xx, ξ t = 4ξ xxx + 3u x ξ + 6uξ x L kuper = 2 + u ξ 1 ξ Example ( Manin and Radul: Commun. Math. Phys. (1985)) u t = 6uu x u xxx 3ξξ xx ξ t = ξ xxx + 3(uξ) x

Example ( Kupershmidt: Phys. Letts. A (1984)) u t = 6uu x u xxx + 3ξξ xx, ξ t = 4ξ xxx + 3u x ξ + 6uξ x L kuper = 2 + u ξ 1 ξ Example ( Manin and Radul: Commun. Math. Phys. (1985)) u t = 6uu x u xxx 3ξξ xx ξ t = ξ xxx + 3(uξ) x L MR = 2 ΦD D = θ + θ x, Φ = ξ + θu

MR-KdV has a compact Q. P. form: Liu SUSY Sawada-Kotera Example ( Kupershmidt: Phys. Letts. A (1984)) u t = 6uu x u xxx + 3ξξ xx, ξ t = 4ξ xxx + 3u x ξ + 6uξ x L kuper = 2 + u ξ 1 ξ Example ( Manin and Radul: Commun. Math. Phys. (1985)) u t = 6uu x u xxx 3ξξ xx ξ t = ξ xxx + 3(uξ) x L MR = 2 ΦD D = θ + θ x, Φ = ξ + θu

MR-KdV has a compact Q. P. form: Liu SUSY Sawada-Kotera Example ( Kupershmidt: Phys. Letts. A (1984)) u t = 6uu x u xxx + 3ξξ xx, ξ t = 4ξ xxx + 3u x ξ + 6uξ x L kuper = 2 + u ξ 1 ξ Example ( Manin and Radul: Commun. Math. Phys. (1985)) u t = 6uu x u xxx 3ξξ xx ξ t = ξ xxx + 3(uξ) x L MR = 2 ΦD D = θ + θ x, Φ = ξ + θu

Soliton Equations and their SUSY Counterparts Equation Authors Journals (Years) sine-gordon Chaichian & Kulish PLB (1978) Ferrara PLB (1977/8)

Soliton Equations and their SUSY Counterparts Equation Authors Journals (Years) sine-gordon Chaichian & Kulish PLB (1978) Ferrara PLB (1977/8) KP Manin & Radul CMP(1985) Mulase, Rabin, Ueno,... Invent. Math.(1988)

Soliton Equations and their SUSY Counterparts Equation Authors Journals (Years) sine-gordon Chaichian & Kulish PLB (1978) Ferrara PLB (1977/8) KP Manin & Radul CMP(1985) Mulase, Rabin, Ueno,... Invent. Math.(1988) Toda Olshanetsky; CMP (1983); Ikeda LMP (1987) MKdV Mathieu JMP(1988) Sasaki & Yamanaka PTP(1988)

Soliton Equations and their SUSY Counterparts Equation Authors Journals (Years) sine-gordon Chaichian & Kulish PLB (1978) Ferrara PLB (1977/8) KP Manin & Radul CMP(1985) Mulase, Rabin, Ueno,... Invent. Math.(1988) Toda Olshanetsky; CMP (1983); Ikeda LMP (1987) MKdV Mathieu JMP(1988) Sasaki & Yamanaka PTP(1988) NLS Roelofs & Kersten JMP (1992)

Soliton Equations and their SUSY Counterparts Equation Authors Journals (Years) sine-gordon Chaichian & Kulish PLB (1978) Ferrara PLB (1977/8) KP Manin & Radul CMP(1985) Mulase, Rabin, Ueno,... Invent. Math.(1988) Toda Olshanetsky; CMP (1983); Ikeda LMP (1987) MKdV Mathieu JMP(1988) Sasaki & Yamanaka PTP(1988) NLS Roelofs & Kersten JMP (1992) HD Liu JPhys A 28 (1995) Brunelli, Das & Popowicz JMP (2003)

Soliton Equations and their SUSY Counterparts Equation Authors Journals (Years) sine-gordon Chaichian & Kulish PLB (1978) Ferrara PLB (1977/8) KP Manin & Radul CMP(1985) Mulase, Rabin, Ueno,... Invent. Math.(1988) Toda Olshanetsky; CMP (1983); Ikeda LMP (1987) MKdV Mathieu JMP(1988) Sasaki & Yamanaka PTP(1988) NLS Roelofs & Kersten JMP (1992) HD Liu JPhys A 28 (1995) Brunelli, Das & Popowicz JMP (2003) cbq Brunelli & Das PLB (1994)

Soliton Equations and their SUSY Counterparts Equation Authors Journals (Years) sine-gordon Chaichian & Kulish PLB (1978) Ferrara PLB (1977/8) KP Manin & Radul CMP(1985) Mulase, Rabin, Ueno,... Invent. Math.(1988) Toda Olshanetsky; CMP (1983); Ikeda LMP (1987) MKdV Mathieu JMP(1988) Sasaki & Yamanaka PTP(1988) NLS Roelofs & Kersten JMP (1992) HD Liu JPhys A 28 (1995) Brunelli, Das & Popowicz JMP (2003) cbq Brunelli & Das PLB (1994) SK Tian & Liu 2008

Soliton Equations and their SUSY Counterparts Equation Authors Journals (Years) sine-gordon Chaichian & Kulish PLB (1978) Ferrara PLB (1977/8) KP Manin & Radul CMP(1985) Mulase, Rabin, Ueno,... Invent. Math.(1988) Toda Olshanetsky; CMP (1983); Ikeda LMP (1987) MKdV Mathieu JMP(1988) Sasaki & Yamanaka PTP(1988) NLS Roelofs & Kersten JMP (1992) HD Liu JPhys A 28 (1995) Brunelli, Das & Popowicz JMP (2003) cbq Brunelli & Das PLB (1994) SK Tian & Liu 2008

Fifth order evolution equations We consider u t + u xxxxx + auu xx + bu x u xx + cu 2 u x = 0 the general homogenous equation of degree 7.

Fifth order evolution equations We consider u t + u xxxxx + auu xx + bu x u xx + cu 2 u x = 0 the general homogenous equation of degree 7. Question: Is it integrable?

Fifth order evolution equations We consider u t + u xxxxx + auu xx + bu x u xx + cu 2 u x = 0 the general homogenous equation of degree 7. Question: Is it integrable? Yes, but only for three cases 5th KdV: u t + u xxxxx + 10uu xxx + 25u x u xx + 20u 2 u x = 0 Sawada-Kotera or Caudrey-Dodd-Gibbon u t + u xxxxx + 5uu xxx + 5u x u xx + 5u 2 u x = 0 Kaup-Kupershimdt: u t + u xxxxx + 10u x u xx + 30u 2 u x = 0 Fujimoto & Watanabe: Math. Japonica 28 (1983) Harada & Oishi: J Phys. Soc. Japan 54 (1985)

Question: susy 5th order equations? susy SK? susy KK?

Question: susy 5th order equations? susy SK? susy KK? susy 5th KdV: next flow of susy KdV φ t +φ xxxxx + [αφ xx (Dφ) + αφ x Dφ x + αφ(dφ) xx + 25 ] α2 φ(dφ) 2 = 0 Oevel & Popowicz CMP (1993) x

Question: susy 5th order equations? susy SK? susy KK? susy 5th KdV: next flow of susy KdV φ t +φ xxxxx + [αφ xx (Dφ) + αφ x Dφ x + αφ(dφ) xx + 25 ] α2 φ(dφ) 2 = 0 Oevel & Popowicz CMP (1993) susy SK? x

Question: susy 5th order equations? susy SK? susy KK? susy 5th KdV: next flow of susy KdV φ t +φ xxxxx + [αφ xx (Dφ) + αφ x Dφ x + αφ(dφ) xx + 25 ] α2 φ(dφ) 2 = 0 Oevel & Popowicz CMP (1993) susy SK? x φ t + φ xxxxx + [ 10(Dφ)φ xx + 5(Dφ) xx φ + 15(Dφ) 2 φ ] x = 0 φ = φ(x, t, θ), a fermioic variable, D = θ + θ x Castera: Nonlinearity 13 (2000)

Question: susy 5th order equations? susy SK? susy KK? susy 5th KdV: next flow of susy KdV φ t +φ xxxxx + [αφ xx (Dφ) + αφ x Dφ x + αφ(dφ) xx + 25 ] α2 φ(dφ) 2 = 0 Oevel & Popowicz CMP (1993) susy SK? x φ t + φ xxxxx + [ 10(Dφ)φ xx + 5(Dφ) xx φ + 15(Dφ) 2 φ ] x = 0 φ = φ(x, t, θ), a fermioic variable, D = θ + θ x Castera: Nonlinearity 13 (2000) with S x (D t + D 5 x )τ τ = 0 φ = 2D(ln τ) x where S x is the super Hirota derivative McArthur & Yung (1993) S x f g = (Df )g ( 1) f f (Dg)

Question: susy 5th order equations? susy SK? susy KK? susy 5th KdV: next flow of susy KdV φ t +φ xxxxx + [αφ xx (Dφ) + αφ x Dφ x + αφ(dφ) xx + 25 ] α2 φ(dφ) 2 = 0 Oevel & Popowicz CMP (1993) susy SK? x φ t + φ xxxxx + [ 10(Dφ)φ xx + 5(Dφ) xx φ + 15(Dφ) 2 φ ] x = 0 φ = φ(x, t, θ), a fermioic variable, D = θ + θ x Castera: Nonlinearity 13 (2000) with S x (D t + D 5 x )τ τ = 0 φ = 2D(ln τ) x where S x is the super Hirota derivative McArthur & Yung (1993) S x f g = (Df )g ( 1) f f (Dg)

Symmetry Approach We form the following equation Φ t = Φ xxxxx + α 1 Φ xxx (DΦ) + α 2 Φ xx (DΦ x ) + α 3 Φ x (DΦ xx ) +α 4 Φ x (DΦ) 2 + α 5 Φ(DΦ xxx ) + α 6 Φ(DΦ x )(DΦ) which is the most general equation with the degree where is fermionic field deg = 13 2 Φ(x, t, θ) = ξ(x, t) + θu(x, t)

Symmetry Approach We form the following equation Φ t = Φ xxxxx + α 1 Φ xxx (DΦ) + α 2 Φ xx (DΦ x ) + α 3 Φ x (DΦ xx ) +α 4 Φ x (DΦ) 2 + α 5 Φ(DΦ xxx ) + α 6 Φ(DΦ x )(DΦ) which is the most general equation with the degree where is fermionic field Question: integrability? deg = 13 2 Φ(x, t, θ) = ξ(x, t) + θu(x, t)

1 2 Φ t = Φ xxxxx + αφ xxx (DΦ) + 2αΦ xx (DΦ x ) + 2αΦ x (DΦ xx ) + 2 5 α2 Φ x (DΦ) 2 + αφ(dφ xxx ) + 4 5 α2 Φ(DΦ x )(DΦ) Φ t = Φ xxxxx + αφ xxx (DΦ) + αφ xx (DΦ x ) + αφ x (DΦ xx ) + 3 10 α2 Φ x (DΦ) 2 3 Φ t = Φ xxxxx + αφ xxx (DΦ) + αφ x (DΦ xx ) + 1 5 α2 Φ x (DΦ) 2 4 Φ t = Φ xxxxx + αφ xxx (DΦ) + 3 2 αφ xx(dφ x ) + αφ x (DΦ xx ) + 1 5 α2 Φ x (DΦ) 2 5 Φ t = Φ xxxxx + αφ xxx (DΦ) + αφ xx (DΦ x ) + 1 5 α2 Φ x (DΦ) 2 6 Φ t = Φ xxxxx + 2αΦ xxx (DΦ) + 3αΦ xx (DΦ x ) + αφ x (DΦ xx ) + 3 5 α2 Φ x (DΦ) 2 + 3 5 α2 Φ(DΦ x )(DΦ)

equations in components 2nd equation: { u t = u xxxxx + αu xxx + 2αu x u xx + 3α2 10 u2 u x ξ t = ξ xxxxx + αuξ xxx + αu x ξ xx + αu xx ξ x + 3α2 10 u2 ξ x 3rd one: u t = u xxxxx + αuu xxx + αu x u xx + α2 5 u2 u x ξ t = ξ xxxxx + αuξ xxx + αu xx ξ x + α2 5 u2 ξ x 4th one: { u t = u xxxxx + αuu xxx + 5α 2 u xu xx + α2 5 u2 u x ξ t = ξ xxxxx + αuξ xxx + 3α 2 u xξ xx + αu xx ξ x + α2 5 u2 ξ x

For last two, we have u t = u xxxxx + αuu xxx + αu x u xx + α2 5 u2 u x αξ xxx ξ x ξ t = ξ xxxxx + αuξ xxx + αu x ξ xx + α2 5 u2 ξ x susy SK u t = u xxxxx + 2αuu xxx + 4αu x u xx + 6α2 5 u2 u x αξ xxx ξ x + 3α2 5 uξ xxξ + 3α2 5 u xξ x ξ ξ t = ξ xxxxx + 2αuξ xxx + 3αu x ξ xx + αu xx ξ x + 3α2 5 u2 ξ x + 3α2 5 uu xξ a susy 5th KdV

SUSY SK L = 3 x + Ψ x D + U x + ΦD + V.

SUSY SK L = 3 x + Ψ x D + U x + ΦD + V. Following Gel fand and Dickey, we have L t n = [(L n 3 )+, L] where [A, B] = AB ( 1) A B BA. Not surprising: a special case of Manin & Radul (Commun. Math. Phys. (1985)). We consider: n = 5 and t 5 = t. L + L = 0

Then we find Ψ = 0, V = 1 2 (U x (DΦ)) that is L = 3 x + U x + ΦD + 1 2 (U x (DΦ)) In this case, we take B = 9(L 5 3 ) +, namely B = 9 5 x + 15U 3 x + 15ΦD 2 x + 15(U x + V ) 2 x for convenience. +15Φ x D x + (10U xx + 15V x + 5U 2 ) x +10(Φ xx + ΦU)D + 10V xx + 10UV + 5Φ(DU)

Then, the flow of equations, resulted from reads as L t = [B, L] U t + U xxxxx + 5 (UU xx + 34 U2x + 13 U3 + Φ x (DU) + 12 Φ(DUx ) + 12 ΦΦx 34 ) (DΦ)2 = 0 x Φ t + Φ xxxxx + 5 (UΦ xx + 12 Uxx Φ + 12 Ux Φx + U2 Φ + 12 Φ(DΦx ) 12 ) (DΦ)Φx = 0 x

Then, the flow of equations, resulted from reads as L t = [B, L] U t + U xxxxx + 5 (UU xx + 34 U2x + 13 U3 + Φ x (DU) + 12 Φ(DUx ) + 12 ΦΦx 34 ) (DΦ)2 = 0 x Φ t + Φ xxxxx + 5 (UΦ xx + 12 Uxx Φ + 12 Ux Φx + U2 Φ + 12 Φ(DΦx ) 12 ) (DΦ)Φx = 0 x setting Φ = 0, we will have the standard Kaup-Kupershimdt Hamiltonian system: where the Hamiltonian is given by ( ) ( Ut 0 x = Φ t x 0 ) δh H = [ 5 4 Φ(Dφ)2 (DU x )(DΦ xx ) 5 3 ΦU3 5 (DUx )(DU)Φ 4 + 5 4 (DU)Ux (DΦ) + 5(DU)U(DΦx ) + 5 2 (DU)Φx Φ ] dxdθ.

L = x 3 + U x + ΦD + 1 2 (U x (DΦ)) = (D 3 + W D + Υ)(D 3 DW + Υ), gives us a Miura-type transformation U = 2W x W 2 + (DΥ), Φ = Υ x 2ΥW,

L = 3 x + U x + ΦD + 1 2 (U x (DΦ)) = (D 3 + W D + Υ)(D 3 DW + Υ), gives us a Miura-type transformation U = 2W x W 2 + (DΥ), Φ = Υ x 2ΥW, and the modified system is given by W t + W xxxxx + 5W xxx (DΥ) 5W xxx W x 5W xxx W 2 5W 2 xx + 10Wxx (DΥx ) 20W xx W x W 5W xx W (DΥ) 5W 3 x 5W 2 x (DΥ) + 5Wx (DΥxx ) + 5Wx (DΥ)2 + 5W x W 4 5W x W (DΥ x ) + 10W (DΥ x )(DΥ) 10Υ x ΥW x + 5(DW xx )Υ x + 5(DW x )Υ xx + 5(DW x )ΥW x + 10(DW x )ΥW 2 5(DW )Υ x W x + 10(DW )Υ x W 2 + 10(DW )Υ(DΥ x ) 5(DW )ΥW xx + 30(DW )ΥW x W = 0, Υ t + Υ xxxxx + 5Υ xxx (DΥ) 5Υ xxx W 2 + 5Υ xx (DΥ x ) + 5Υ xx W xx 25Υ xx W x W + 5Υ xx W (DΥ) + 5Υ x (DΥ) 2 + 5Υ x W xxx 25Υ x W xx W 25Υ x W 2 x + 5Υx Wx (DΥ) + 10Υ x W x W 2 + 5Υ x W 4 10Υ x W 2 (DΥ) + 5Υ x W (DΥ x ) 10ΥW xxx W 20ΥW xx W x + 10ΥW xx W 2 + 30ΥW 2 x W + 20ΥWx W 3 30ΥW x W (DΥ) 10ΥW 2 (DΥ x ) 5(DW x )Υ x Υ 5(DW )Υ xx Υ 10(DW )Υ x ΥW = 0.

W = 0, Υ = φ. we have φ t + φ xxxxx + 5φ xxx (Dφ) + 5φ xx (Dφ x ) + 5φ x (Dφ) 2 = 0 Let φ = ξ(x, t) + θu(x, t), we have u t + u xxxxx + 5uu xxx + 5u x u xx + 5u 2 u x 5ξ xxx ξ x = 0 ξ t + ξ xxxxx + 5uξ xxx + 5u x ξ xx + 5u 2 ξ x = 0

W = 0, Υ = φ. we have φ t + φ xxxxx + 5φ xxx (Dφ) + 5φ xx (Dφ x ) + 5φ x (Dφ) 2 = 0 Let φ = ξ(x, t) + θu(x, t), we have u t + u xxxxx + 5uu xxx + 5u x u xx + 5u 2 u x 5ξ xxx ξ x = 0 ξ t + ξ xxxxx + 5uξ xxx + 5u x ξ xx + 5u 2 ξ x = 0 Lax operator: L = (D 3 + φ)(d 3 + φ)

Proposition sresl n 3 ImD. where sres means taking the super residue of a super pseudodifferential operator.

Proposition sresl n 3 ImD. where sres means taking the super residue of a super pseudodifferential operator. Proof: Consider Thus, Then D 3 + φ = Λ 3 L = Λ 6 sres(l n 3 ) = sresλ 2n = 1 2 sres[λ2n 1, Λ]

Proposition sresl n 3 ImD. where sres means taking the super residue of a super pseudodifferential operator. Proof: Consider Thus, Then D 3 + φ = Λ 3 L = Λ 6 sres(l n 3 ) = sresλ 2n = 1 2 sres[λ2n 1, Λ] nontrivial conserved quantities?

Proposition sresl n 3 ImD. where sres means taking the super residue of a super pseudodifferential operator. Proof: Consider Thus, Then D 3 + φ = Λ 3 L = Λ 6 sres(l n 3 ) = sresλ 2n = 1 2 sres[λ2n 1, Λ] nontrivial conserved quantities? We now turn to L n 6

It can be proved that So, the super residue of L n 6 t L n 6 = [9(L 5 3 )+, L n 6 ]. is conserved.

It can be proved that t L n 6 = [9(L 5 3 )+, L n 6 ]. So, the super residue of L n 6 is conserved. The first two nontrivial conserved quantities sresl 7 1 6 dxdθ = [2(Dφ xx ) + (Dφ) 2 6φ x φ]dxdθ 9 sresl 11 1 6 dxdθ = [6(Dφ xxxx ) + 18(Dφ xx )(Dφ) + 9(Dφ x ) 2 81 + 4(Dφ) 3 18φ xxx φ + 6φ xx φ x 36φ x φ(dφ)]dxdθ Remarks: 1 What is remarkable is that the conserved densities found in this way, unlike the supersymmetric KdV case, are local. 2 All those conserved quantities are fermioic. To our knowledge, this is the first supersymmetric integrable system whose only conserved quantities are fermioic.

Finally, we have the recursion operator R = 6 x + 6(Dφ) 4 x + 9(Dφx ) 3 x + 6φxx 2 x D + {5(Dφxx ) + 9(Dφ)2 } 2 x + {9φ xxx + 12φ x (Dφ)} x D + {(Dφ xxx ) + 9(Dφ x )(DΦ)} x + {5φ xxxx + 12φ xx (Dφ) + 6φ x (Dφ x )}D + {4(Dφ xx )(Dφ) + 4(Dφ) 3 3φ xx φ x } + {φ xxxxx + 5φ xxx (Dφ) + 5φ xx (Dφ x ) + 2φ x (Dφ xx ) + 6φ x (Dφ) 2 }D 1 {2(Dφ xx ) + 2(Dφ) 2 }D 1 φ x 4φ x (Dφ) 1 x φ x 2(Dφ)D 1 [φ xxx + 2φ x (Dφ)] 2φ x D 1 {(φ xxx + φ x (Dφ))D 1 3(Dφ)D 1 φ x 2φ x 1 x φ x + 2D 1 [φ xxx + 2φ x (Dφ)]}

Popowicz: Odd Hamiltonian structure for supersymmetric Sawada-Kotera equation. arxiv:0902.2861v1 Probably it is the first nontrivial supersymmetric model with odd bi-hamiltonian structure with the modified bosonic sector. So this model realizes in fully the idea of equal footing of fermions and bosons fields.

novel SUSY 5th KdV φ t = φ xxxxx + 2αφ xxx (Dφ) + 3αφ xx (Dφ x ) + αφ x (Dφ xx ) + 3 5 α2 φ x (Dφ) 2 + 3 5 α2 φ(dφ x )(Dφ)

novel SUSY 5th KdV φ t = φ xxxxx + 2αφ xxx (Dφ) + 3αφ xx (Dφ x ) + αφ x (Dφ xx ) + 3 5 α2 φ x (Dφ) 2 + 3 5 α2 φ(dφ x )(Dφ) Hamiltonian structure φ t = D δh 1 δφ where H 1 = 1 [ 2 φxxxx (φ) + 5φ xx (Dφ) 2 + 5φ(φ) 3] dxdθ

novel SUSY 5th KdV φ t = φ xxxxx + 2αφ xxx (Dφ) + 3αφ xx (Dφ x ) + αφ x (Dφ xx ) + 3 5 α2 φ x (Dφ) 2 + 3 5 α2 φ(dφ x )(Dφ) Hamiltonian structure φ t = D δh 1 δφ where H 1 = 1 [ 2 φxxxx (φ) + 5φ xx (Dφ) 2 + 5φ(φ) 3] dxdθ Recursion operator R = x 6 + 12(DΦ) 4 x + 6Φx 3 x D + 24(DΦx ) 3 x + {21Φxx + 18Φ(DΦ)} 2 x D +{19(DΦ xx ) + 30(DΦ) 2 } x 2 + {23Φxxx + 57Φx (DΦ) + 27Φ(DΦx )} x D +{7(DΦ x xx) + 60(DΦ x )(DΦ)} x +{11Φ xxxx + 54Φ xx (DΦ) + 48Φ x (DΦ x ) + 15Φ(DΦ xx ) + 36Φ(DΦ) 2 }D +{(DΦ xxxx ) + 27(DΦxx)(DΦ) + 20(DΦ x ) 2 + 28(DΦ) 3 5Φ xx Φ x + 18Φ x Φ(DΦ)} +{2Φ xxxxx + 20Φ xxx (DΦ) + 30Φ xx (DΦ x ) + 14Φ x (DΦ xx ) + 21Φ x (DΦ) 2 +3Φ(DΦ xxx ) + 51Φ(DΦ x )(DΦ)}D 1 +{ 2Φ xxx + 30Φ x (DΦ) 6Φ(DΦ x )}D 1 (DΦ) + 3(DΦ xxx ) x 1 {(DΦ) Φ x D 1 } 3(DΦ)D 1 {Φ xxx + ( 7Φ xx 3Φ(DΦ)) x 1 [(DΦ) Φ x D 1 ]} 2Φ x x 1 {Φ xxx + 3Φ(DΦ) + [2(DΦ xxx ) + 12(DΦ x )(DΦ) 3Φ xx Φ]D 1 +[ 6Φ xx 9Φ(DΦ)] x 1 [(DΦ) Φ x D 1 ]}

A possible second structure (bi-hamiltonian?) φ t = RD δh 0 δφ where H 0 = 1 2 φdxdθ

A possible second structure (bi-hamiltonian?) φ t = RD δh 0 δφ where H 0 = 1 2 φdxdθ A multi-linear form f 2 D x { f 2 S(D t D 5 x )f f } +5 { (D x (D 2 x f f ) f 2 )(SD 3 x f f ) (Dx (D4 x f f ) f 2 } )(SD x f f ) = 0

Thank you!