ADVANCED STRUCTURAL MECHANICS

Σχετικά έγγραφα
Dr. D. Dinev, Department of Structural Mechanics, UACEG

Homework 8 Model Solution Section

Chapter 2. Stress, Principal Stresses, Strain Energy

Mechanics of Materials Lab

Strain gauge and rosettes

Mechanical Behaviour of Materials Chapter 5 Plasticity Theory

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Second Order Partial Differential Equations

Numerical Analysis FMN011

Macromechanics of a Laminate. Textbook: Mechanics of Composite Materials Author: Autar Kaw

Introduction to Theory of. Elasticity. Kengo Nakajima Summer

CHAPTER 70 DOUBLE AND TRIPLE INTEGRALS. 2 is integrated with respect to x between x = 2 and x = 4, with y regarded as a constant

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ΜΕΤΑΛΛΙΚΑ ΥΠΟΣΤΥΛΩΜΑΤΑ ΥΠΟ ΘΛΙΨΗ ΚΑΙ ΚΑΜΨΗ

EE512: Error Control Coding

Η ΣΗΜΑΣΙΑ ΤΗΣ ΜΗ ΓΡΑΜΜΙΚΗΣ ΣΥΜΠΕΡΙΦΟΡΑΣ ΓΙΑ ΤΟΝ ΣΧΕ ΙΑΣΜΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

SPECIAL FUNCTIONS and POLYNOMIALS

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

On the Galois Group of Linear Difference-Differential Equations

1 String with massive end-points

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

University of Waterloo. ME Mechanical Design 1. Partial notes Part 1

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

ST5224: Advanced Statistical Theory II

ΑΛΛΗΛΕΠΙ ΡΑΣΗ ΜΟΡΦΩΝ ΛΥΓΙΣΜΟΥ ΣΤΙΣ ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog

High order interpolation function for surface contact problem

Tridiagonal matrices. Gérard MEURANT. October, 2008

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

C.S. 430 Assignment 6, Sample Solutions

Areas and Lengths in Polar Coordinates

ΕΛΕΓΧΟΣ ΤΩΝ ΠΑΡΑΜΟΡΦΩΣΕΩΝ ΧΑΛΥΒ ΙΝΩΝ ΦΟΡΕΩΝ ΜΕΓΑΛΟΥ ΑΝΟΙΓΜΑΤΟΣ ΤΥΠΟΥ MBSN ΜΕ ΤΗ ΧΡΗΣΗ ΚΑΛΩ ΙΩΝ: ΠΡΟΤΑΣΗ ΕΦΑΡΜΟΓΗΣ ΣΕ ΑΝΟΙΚΤΟ ΣΤΕΓΑΣΤΡΟ

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Spherical Coordinates

Homework 3 Solutions

Assalamu `alaikum wr. wb.

2 Composition. Invertible Mappings

Chapter 7 Transformations of Stress and Strain

ΚΕΦΑΛΑΙΟ 1 Ο 1.1. ΕΛΑΣΤΙΚΟ ΣΤΕΡΕΟ

Homomorphism in Intuitionistic Fuzzy Automata

Srednicki Chapter 55

Finite Field Problems: Solutions

ΕΠΙΧΕΙΡΗΣΙΑΚΟ ΠΡΟΓΡΑΜΜΑ «ΕΚΠΑΙΔΕΥΣΗ ΚΑΙ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗ»

Lecture 2. Soundness and completeness of propositional logic

Areas and Lengths in Polar Coordinates

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

The Simply Typed Lambda Calculus

ΣΥΓΚΡΙΣΗ ΑΝΑΛΥΤΙΚΩΝ ΚΑΙ ΑΡΙΘΜΗΤΙΚΩΝ ΜΕΘΟ ΩΝ ΓΙΑ ΤΗ

θ p = deg ε n = με ε t = με γ nt = μrad

6.3 Forecasting ARMA processes

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

ΣΤΑΤΙΚΗ ΜΗ ΓΡΑΜΜΙΚΗ ΑΝΑΛΥΣΗ ΚΑΛΩ ΙΩΤΩΝ ΚΑΤΑΣΚΕΥΩΝ

Space-Time Symmetries

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

EΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΙΑΓΡΑΜΜΑΤΑ ΡΟΗΣ ΙΑΣΤΑΣΙΟΛΟΓΗΣΗΣ ΣΥΜΜΕΙΚΤΩΝ ΣΤΟΙΧΕΙΩΝ ΒΑΣΕΙ ΤΟΥ EC4 KAI ΣΥΓΚΡΙΣΗ ΜΕ ΤΟΝ LRFD

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Feasible Regions Defined by Stability Constraints Based on the Argument Principle

Συγκριτική Αξιολόγηση Προσοµοιωµάτων Τοιχείων και Πυρήνων Κτηρίων µε τη Μέθοδο των Πεπερασµένων Στοιχείων και Πειραµατικά Αποτελέσµατα

Fractional Colorings and Zykov Products of graphs

Reminders: linear functions

ΚΒΑΝΤΙΚΟΙ ΥΠΟΛΟΓΙΣΤΕΣ

Lecture 6 Mohr s Circle for Plane Stress

derivation of the Laplacian from rectangular to spherical coordinates


ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Πολιτικών Μηχανικών Τοµέας οµοστατικής ΑΛΛΗΛΕΠΙ ΡΑΣΗ ΑΣΤΟΧΙΑΣ ΑΠΟ ΛΥΓΙΣΜΟ ΚΑΙ ΠΛΑΣΤΙΚΟΠΟΙΗΣΗ ΣΕ ΜΕΤΑΛΛΙΚΑ ΠΛΑΙΣΙΑ

Math221: HW# 1 solutions

A summation formula ramified with hypergeometric function and involving recurrence relation

ECTS ΕΥΡΩΠΑΪΚΟ ΣΥΣΤΗΜΑ ΜΕΤΑΦΟΡΑΣ ΑΚΑΔΗΜΑΪΚΩΝ ΜΟΝΑΔΩΝ ΣΤΗΝ ΕΥΡΩΠΑΪΚΗ ΕΝΩΣΗ. (Α) Λίστα με τα στοιχεία των μαθημάτων στα ελληνικά. Κωδικός μαθήματος:

Variational Wavefunction for the Helium Atom

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Answer sheet: Third Midterm for Math 2339

D Alembert s Solution to the Wave Equation

MECHANICAL PROPERTIES OF MATERIALS

1. Sketch the ground reactions on the diagram and write the following equations (in units of kips and feet). (8 points) ΣF x = 0 = ΣF y = 0 =

Vol. 38 No Journal of Jiangxi Normal University Natural Science Nov. 2014

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Statistical Inference I Locally most powerful tests

Η ΠΡΟΣΩΠΙΚΗ ΟΡΙΟΘΕΤΗΣΗ ΤΟΥ ΧΩΡΟΥ Η ΠΕΡΙΠΤΩΣΗ ΤΩΝ CHAT ROOMS

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

Lecture 8 Plane Strain and Measurement of Strain

An Inventory of Continuous Distributions

Section 8.3 Trigonometric Equations

Differentiation exercise show differential equation

ECTS ΕΥΡΩΠΑΪΚΟ ΣΥΣΤΗΜΑ ΜΕΤΑΦΟΡΑΣ ΑΚΑΔΗΜΑΪΚΩΝ ΜΟΝΑΔΩΝ ΣΤΗΝ ΕΥΡΩΠΑΪΚΗ ΕΝΩΣΗ. (Α) Λίστα με τα στοιχεία των μαθημάτων στα ελληνικά. Κωδικός μαθήματος:

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

CRASH COURSE IN PRECALCULUS

( ) 2 and compare to M.

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Transcript:

VSB TECHNICAL UNIVERSITY OF OSTRAVA FACULTY OF CIVIL ENGINEERING ADVANCED STRUCTURAL MECHANICS Lecture 1 Jiří Brožovský Office: LP H 406/3 Phone: 597 321 321 E-mail: jiri.brozovsky@vsb.cz WWW: http://fast10.vsb.cz/brozovsky/

Topics 1. Basic equations 2. Plane structures 3. Energetical principles, variational methods 4. Finite element method 2

Recommended books Timoshenko. S. Gere, J.: Mechanics of Materials, Van Nostrand Company, New York, 1972 (or newer edition) Boresi, A. Schmidt, R.: Advanced Mechanics of Materials, John Wiley & Sons, 2003 Cook, R. D., Malkus, D. S., Plesha, M. E., Witt, R. J.: Concepts and Applications of Finite Element Analysis, John Wiley and Sons, 1995 3

Topic 1: Basic equations of elasticity Basic unknowns Geometrical relations Equilibrium equations Material law Compatibility equations 4

Basic unknowns y τ zy τ σ y yz τ yx τ xz τ xy σ x Stress vector σ = {σ x, σ y, σ z, τ xy, τ yz, τ zx } T (1) Strain vector ε = {ε x, ε y, ε z, γ xy, γ yz, γ zx } T (2) σ z τ zx x z Displacement vector u = {u x, u y, u z } T (3) 5

Geometrical relations (1) 0 y, v x, u A B D C β α A D u v dx u x dx dy x v B dx x y v u dy dy C 6

Geometrical relations (2) 0 y, v x, u A B D C β α A D u v dx u x dx dy x v B dx x y v u dy dy C εx = A B AB AB = (x + dx + u + u x dx) (x + u) dx dx = u x 7

Geometrical relations (3) Normal deformations ε x = u x ε y = v y ε z = w z, (4) Shear deformations γ yz γ zx γ xy = γ zy = v z + w y (5) = γ xz = w x + u (6) z = γ yx = u y + v x. (7) 8

Geometrical relations (4) Uvedené vztahy obecně neplatí: γ yz = γ zy, γ zx = γ xz, γ xy = γ yx. The the assumption of equality of shear stresses is based on approximative fulfillment of moment equilibrium equations of differential element. Shear deformations are assumed to be equal in the same way. 9

Differential equilibrium conditions (1) σ y σ x dy τyx τzx τ yz σz τzy dx τ zy τ xy τyz σz τ τ xz xz τxy σy τyx τzx dz σ x σ x = σ x + σ x x dx, τ xy = τ xy + τ xy dy,... (8) x 10

Diff. equilibrium conditions (2) σ x = σ x + σ x x dx, τ xy = τ xy + τ xy dy,... y Fi,y = (σ x σ x ) dx dy+(τ xy τ xy) dx dz+(τ xz τ xz ) dx dy = 0 (σ x σ x σ x x dx) dy dz+(τ xy τ xy τ xy y dy) dx dz+(τ xz τ xz τ xz z dz) dx dy = 0 After simplification: σ x x + τ xy y + τ xz z = 0 (9) 11

Diff. equilibrium conditions (3) σ x x + τ xy y τ xy + τ xz z + X = 0 x + σ y y + τ yz z + Y = 0 (10) τ zx x + τ zy y + σ z z + Z = 0 where X,Y, Z are volume forces. 12

Material law (1) Defines relations between stresses and strains. Hooke law for 1D problem (simple tension/compression): ε x = σ x E x Α F ε x = L L = L x L L σ x = F A = E ε x 13

Material law (2) Hooke law for 3D problems: ε x = 1 E [σ x ν (σ y + σ z )], γ yz = τ yz 2 G ε y = 1 E [σ y ν (σ x + σ z )], γ xz = τ xz 2 G ε z = 1 E [σ z ν (σ x + σ y )], γ xy = τ xy 2 G (11) 14

Conclusion 15 unknowns: 3 displacements u 6 stresses ε 6 strains σ 15 available equations: 6 geometrical relations 6 matrial law equations 3 equilibrium conditions 15

Compatibility conditions (1) They define continuity of deformations the continuous volume must remain to be continuous also after deformation. They can be obtained from geometrical relations by elimination of displacements. 2 ε x y 2 + 2 ε y x 2 + = 2 ε xy x y 2 ε y z 2 + 2 ε z y 2 + = 2 ε yz y z 2 ε z x 2 + 2 ε x z 2 + = 2 ε zx z x (12) 16

Compatibility conditions (2) 2 ε x y z = 1 2 2 ε y z x = 1 2 2 ε z x y = 1 2 γ yz x + γ yz x + γ yz x + γ xz y γ xz y + γ xz y + γ xy z + γ xy z γ xy z (13) For plane problems (2D, to be discussed later) it can be written: 2 ε x y 2 + 2 ε y x 2 = 2 γ xy x y (14) 17

Topic 2: Plane problems 2D plane structures supported and loaded in their middle plane will be discussed. Two main variants of plane problem: plane stress plane strain 18

Plane strain 1 All deformations (strains) must lie in the x y plane: ε = {ε x, ε y, γ xy } T (15) The structure can not freely move in z direction. As a result, there is σ z stress. σ z : σ = {σ x, σ y, σ z, τ xy } T (16) 19

Plane strain y σ y τ xy σ x All stresses lie in the x y plane: σ = {σ x, σ y, τ xy } T (17) z x The wall can freely move in z direction, therefore there is on σ z stress but the ε z strain is nonzero: ε = {ε x, ε y, ε z, γ xy } T (18) 20

Plane problem conclusions (1) Equilibrium equations σ x x + τ xy y + X = 0 (19) τ xy x + σ y y + Y = 0 Geometrical relations ε x = u x, ε y = v y, γ xy = γ yx = u y + v x. (20) 21

Plane problem conclusions (2) Material law: plane stress σ x = σ y = τ x = E 1 µ 2 (ε x + µ ε y ) E 1 µ 2 (ε y + µ ε x ) (21) E 2(1 µ) γ xy (22) 22

Plane problem conclusions (3) Material law: plane strain σ x = σ y = τ x = E (1 + µ)(1 2µ) [(1 µ) ε x + µ ε y ] E (1 + µ)(1 2µ) [µ ε x + (1 µ) ε y ] (23) E (1 + µ)(1 2µ) γ 1 xy (1 µ) 2 23

Airy s equation for plane problem Airy function F describes stress state of plane problem if: σ x = 2 F x 2, σ y = 2 F x 2, τ xz = 2 F x y. (24) Airy equation compatibility relation is (14) writtnen with use of Airy function: 4 F x 4 + 2 4 F x 2 y 2 + 4 F y 4 = 0 (25) 24

Stress distribution on wall: N S N... beam theory, S... plane stress theory. 25

Forces in wall Nx = σx h [ N m ] Ny = σy h [ N m ] Nxy = τxy h [ N m ] x yx n xy z n n n y τ xy yx h τ σ σ x y y x 26