The low energy limit of the 3-flavor extended Linear Sigma Model. Jonas Schneitzer. Johann Wolfgang Goethe Universität Frankfurt am Main

Σχετικά έγγραφα
Variational Wavefunction for the Helium Atom

EE512: Error Control Coding

Homework 3 Solutions

Srednicki Chapter 55

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Matrices and Determinants

Derivation of Optical-Bloch Equations

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Math221: HW# 1 solutions

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Reminders: linear functions

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

derivation of the Laplacian from rectangular to spherical coordinates

Every set of first-order formulas is equivalent to an independent set

Higher Derivative Gravity Theories

Dark matter from Dark Energy-Baryonic Matter Couplings

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Example Sheet 3 Solutions

Approximation of distance between locations on earth given by latitude and longitude

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Second Order Partial Differential Equations

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Answer sheet: Third Midterm for Math 2339

Space-Time Symmetries

CRASH COURSE IN PRECALCULUS

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

Finite Field Problems: Solutions

3+1 Splitting of the Generalized Harmonic Equations

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Phys624 Quantization of Scalar Fields II Homework 3. Homework 3 Solutions. 3.1: U(1) symmetry for complex scalar

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Geodesic Equations for the Wormhole Metric

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.

( ) 2 and compare to M.

Calculating the propagation delay of coaxial cable

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Section 9.2 Polar Equations and Graphs

2 Composition. Invertible Mappings

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Trigonometry 1.TRIGONOMETRIC RATIOS

Exercises to Statistics of Material Fatigue No. 5

4.6 Autoregressive Moving Average Model ARMA(1,1)

Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def

UV fixed-point structure of the 3d Thirring model

Nonminimal derivative coupling scalar-tensor theories: odd-parity perturbations and black hole stability

Coupling of a Jet-Slot Oscillator With the Flow-Supply Duct: Flow-Acoustic Interaction Modeling

SPONTANEOUS GENERATION OF GEOMETRY IN 4D

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

C.S. 430 Assignment 6, Sample Solutions

Section 7.6 Double and Half Angle Formulas

Review Exercises for Chapter 7

Math 6 SL Probability Distributions Practice Test Mark Scheme

w o = R 1 p. (1) R = p =. = 1

Assalamu `alaikum wr. wb.

On the Galois Group of Linear Difference-Differential Equations

Multi-dimensional Central Limit Theorem

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Instruction Execution Times

Three coupled amplitudes for the πη, K K and πη channels without data

ST5224: Advanced Statistical Theory II

Concrete Mathematics Exercises from 30 September 2016

ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. Χειµερινό Εξάµηνο ΔΙΑΛΕΞΗ 3: Αλγοριθµική Ελαχιστοποίηση (Quine-McCluskey, tabular method)

Tutorial problem set 6,

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Section 8.3 Trigonometric Equations

The Simply Typed Lambda Calculus

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Congruence Classes of Invertible Matrices of Order 3 over F 2

Formal Semantics. 1 Type Logic

Section 8.2 Graphs of Polar Equations

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

Parametrized Surfaces

Multi-dimensional Central Limit Theorem

ΟΙΚΟΝΟΜΟΤΕΧΝΙΚΗ ΑΝΑΛΥΣΗ ΕΝΟΣ ΕΝΕΡΓΕΙΑΚΑ ΑΥΤΟΝΟΜΟΥ ΝΗΣΙΟΥ ΜΕ Α.Π.Ε

Non-Abelian Gauge Fields

From the finite to the transfinite: Λµ-terms and streams

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Areas and Lengths in Polar Coordinates

Constitutive Relations in Chiral Media

Abstract Storage Devices

Spherical Coordinates

Electronic structure and spectroscopy of HBr and HBr +

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Oscillatory Gap Damping

Lecture 26: Circular domains

Transcript:

The low energy limit of the 3-flavor extended Linear Sigma Model Jonas Schneitzer Johann Wolfgang Goethe Universität Frankfurt am Main Fachbereich Physik Institut für Theoretische Physik 10.07.017

Outline 1 LECs The extended Linear Sigma Model 3 The low energy limit 4 Outlook

L χp T = 1 ( µ φ) 1 M φ φ ) + (c δ 0 δ a,bδ c,d + c d 0 d abid icd φ aφ b φ cφ d ) + (c δ δ a,b δ c,d + c δ,b δa,cδ b,d + c d d abi d icd µφ aφ b µ φ cφ d ) + (c δ 4 δ a,bδ c,d + c δ 4,b δa,cδ b,d + c d 4 d abid icd µφ a νφ b µ φ c ν φ d

The extended Linear Sigma Model

The basic Lagrangian L elsm = D µ Φ] D µφ m 0 Φ Φ λ 1 ( Φ Φ) ] λ Φ Φ 1 4 ( ) L µν L µν + R µν m R µν + 1 L + µ L µ + R µ ] ] R µ + H Φ + Φ + c 1 detφ detφ ] g + i L µν L µ, L ν] + R µν R µ, R ν] ] + h1 Φ Φ L µ L µ + R µ R µ + h L µ Φ + Φr µ + h 3 ΦR µ Φ L µ + g 3 L µ L ν L µl ν + R µ R ν ] R µr ν + g4 L µ L µl ν L ν + R µ R µr ν ] R ν + g 5 L µ L µ R µ R µ + g6 L µ L µ L µ L µ + R µ R µ R µ R µ ] D µφ = µφ ig 1 L µ Φ ΦR µ ] Φ = S + ip L µ = V µ + A µ R µ = V µ A µ Ψ = ψ i λ i, λ i = U(3)-generators i = 0, 1,..., 8

The basic Lagrangian L elsm = D µ Φ] D µφ m 0 Φ Φ λ 1 ( Φ Φ) ] λ Φ Φ 1 4 ( ) L µν L µν + R µν m R µν + 1 L + µ L µ + R µ ] ] R µ + H Φ + Φ + c 1 detφ detφ ] g + i L µν L µ, L ν] + R µν R µ, R ν] ] + h1 Φ Φ L µ L µ + R µ R µ + h L µ Φ + Φr µ + h 3 ΦR µ Φ L µ + g 3 L µ L ν L µl ν + R µ R ν ] R µr ν + g4 L µ L µl ν L ν + R µ R µr ν ] R ν + g 5 L µ L µ R µ R µ + g6 L µ L µ L µ L µ + R µ R µ R µ R µ ] D µφ = µφ ig 1 L µ Φ ΦR µ ] Φ = S + ip L µ = V µ + A µ R µ = V µ A µ Ψ = ψ i λ i, λ i = U(3)-generators i = 0, 1,..., 8

The basic Lagrangian L elsm = D µ Φ] D µφ m 0 Φ Φ λ 1 ( Φ Φ) ] λ Φ Φ 1 4 ( ) L µν L µν + R µν m R µν + 1 L + µ L µ + R µ ] ] R µ + H Φ + Φ + c 1 detφ detφ ] g + i L µν L µ, L ν] + R µν R µ, R ν] ] + h1 Φ Φ L µ L µ + R µ R µ + h L µ Φ + Φr µ + h 3 ΦR µ Φ L µ + g 3 L µ L ν L µl ν + R µ R ν ] R µr ν + g4 L µ L µl ν L ν + R µ R µr ν ] R ν + g 5 L µ L µ R µ R µ + g6 L µ L µ L µ L µ + R µ R µ R µ R µ ] D µφ = µφ ig 1 L µ Φ ΦR µ ] Φ = S + ip L µ = V µ + A µ R µ = V µ A µ Ψ = ψ i λ i, λ i = U(3)-generators i = 0, 1,..., 8

The basic Lagrangian L elsm = D µ Φ] D µφ m 0 Φ Φ λ 1 ( Φ Φ) ] λ Φ Φ 1 4 ( ) L µν L µν + R µν m R µν + 1 L + µ L µ + R µ ] ] R µ + H Φ + Φ + c 1 detφ detφ ] g + i L µν L µ, L ν] + R µν R µ, R ν] ] + h1 Φ Φ L µ L µ + R µ R µ + h L µ Φ + Φr µ + h 3 ΦR µ Φ L µ + g 3 L µ L ν L µl ν + R µ R ν ] R µr ν + g4 L µ L µl ν L ν + R µ R µr ν ] R ν + g 5 L µ L µ R µ R µ + g6 L µ L µ L µ L µ + R µ R µ R µ R µ ] D µφ = µφ ig 1 L µ Φ ΦR µ ] Φ = S + ip L µ = V µ + A µ R µ = V µ A µ Ψ = ψ i λ i, λ i = U(3)-generators i = 0, 1,..., 8

Basic Assumptions The following 4-field interaction terms will be can be neglected: Interactions with 0 or 1 P i -fields Interactions with exactly 3 P i -fields Interactions with P i -fields and different heavy fields

Spontaneous chiral symmetry breaking m 0 m 0, m 0 > 0 Vacuum expectation value of σ N and σ S become non-zero: σ N σ N + φ N, σ S σ S + φ S This leads to mixing terms of the skalar and vector mesons and the pseudoskalar and axial-vector mesons: D µφ µφ ig 1 L µ Φ ΦR µ ] ig 1 L µ S φ S φ R µ ], S φ = S φ (φ N, φ S ) Resolved by shifting the vector and axial-vector fields: V µ,a V µ,i + µ Sa, A µ,a A µ,a + µ Pa µ Sa = ω ai µs i, µ Pa = ω ai µp i Nearly every term in the Lagrangian is greatly expanded by this!

Example of the new terms h 1 Φ Φ L µ L µ + R µ R µ h 1 Φ Φ L µ L µ + R µ R µ + h 1 (S + S φ ) + P (V µ,a µ Sa + A µa µ Pa) + h 1 (S + S φ ) + P ( ( µ Sa) + ( µ Pa) ) + h 1 ((Vµ,a) SS φ + Sφ + (A µ,a) ) Other terms generate up to 13 new terms!

Terms classified by types The terms in the Lagrangian can be sorted into multiple types: L A = L A,kin,mass + L AAP P + L AV P + L ASP L V = L V,kin,mass + L V V P P + L V P P L S = L S,kin,mass + L SSP P + L SP P L P = L P,kin,mass + L P P P P

The low energy limit

The functional integral f, f, = N DP DSDV µda µ exp i d 4 xl elsm + i d 4 xl GF L GF = ξ A ( µaµ a ) ξ V ( µv µ a ) f = P a, S a, V µ,a, A µ,a

The functional integral The heavy field elsm integrals integrals: 1 I A = N A DA µ exp d 4 xd 4 y A µ,i(x)o µν A,ij (x, y)aν,j(y) + i 1 I V = N V DV µ exp d 4 xd 4 y V µ,i(x)o µν V,ij (x, y)vν,j(y) + i I S = N S DS exp i d 4 xd 4 y S i(x)o S,ij (x, y)s j(y) + i I η = N η Dη exp i d 4 xd 4 y η (x)o η (x, y)η (y) + i d 4 xj µ A,i (x)aµ,i(x) d 4 xj µ V,i (x)vµ,i(x) d 4 xj S,i (x)s i(x) d 4 xj η (x)η (x) Or, in euklidian coordinates: I ψ = N Dψ µ exp 1 d 4 x E d 4 y E ψ µ,i(x E )O µν ψ,e,ij (x E, y E )ψ ν,j(y E ) d 4 x E J µ ψ,i (x E)ψ µ,i(x E ) I φ = N Dφ exp 1 + d 4 x E d 4 y E φ i(x E )O φ,e,ij (x E, y E )φ j(y E ) d 4 x E J φ,i (x E )φ i(x E )

The functional integral The Euclidian Integrals are Gauß-integrals with analythic solutions: ] 1/ ψ,e,ij (x E, y E ) 1 exp I ψ = N ψ deto µν d 4 x E d 4 y E J ψ,µ,i (x E )O µν 1 ψ,e,ij (x E, y E )J ψ,µ,j (y E ) deto µν ψ,e,ij (x E, y E )] 1/ generates loop-order terms 1 J ψ,µ,i(x E )O µν 1 ψ,e,ij (x E, y E )J ψ,µ,j (y E ) generates the 4P i interaction terms

The functional integral ] O φ,e,ij = xe δ ij + m φ,ij δ(x E y E ) + +c 1,ijkl P k P l + c,ijkl γp k γ P l + c 3,ijkl P k P l xe +... ] δ(x E y E ) ] O µν ψ,e,ij = ( xe δ ij + m ψ,ij )gµν E + (1 ξ ψ)δ ij x µ E x ν E δ(x E y E ) + c 1,ijkl µ P k ν P l + c,ijkl γp k γ P l g µν ] E δ(xe y E ) m ij is non-diagonal in i, j = 0, 8 we seperate the φ 0/ψ µ 0 integration from the rest and rotate these fields into f µ 1N /f µ 1S, ωµ N /ωµ S and σ/σ For an easier calculation we choose the Feynman gauge ξ = 1 Now the first part is easy to invert: ( ) O 1 φ,e,ij = δ ij xe + m δ(x E y E ) = 1 n φ,i m ( 1) n x φ,i m δ(x E y E ) n=0 φ,i O µν 1 ψ,e,ij = δ ij g µν ( ) E xe + m δ(x E y E ) = 1 n ψ,i m ( 1) n x ψ,i m δ(x E y E ) n=0 ψ,i

The functional integral Since the source J φ,i /J µ ψ,i is generally of order P, we only keep terms of order P 0 from O 1 φ,e,ij /Oµν 1 ψ,e,ij only the terms we have inverted contribute! The axial-vector source J µ A (VµP, SP ) would only lead to terms in the form of V µ P and S P which are again neglected

J µ V,k J µ V,k = g 1 µ P ap b f abk ( ) + g ν ν Pa µ Pb f abk + S φ,a µ Pb P c (g 1 + h h 3 )d abi f ick + (g1 h 3)d aci f ibk + (h + h 3 )d aki f ] icb d abc = d abc + 3 (δ abδ c0 + δ acδ b0 + δ bc δ a0 δ a0 δ b0 δ c0 ) f abc = f abc

J S,k J S,k = c 1 c 10 P 0 + c 18 P 8 ] P aβ ak λ 1 S φ,a P b P cδ ak δ bc ) λ S φ,a P b P c ( 3 d aki d ibc d aci d ibk g 1 µ Pa µ Pb d abk + S φ,a µ Pb µ h1 Pc δ akδ bc + (g1 h 3 )d abi d ick + h ] + h 3 d aki d ibc g 1 µ( µ PaP b )d abk S φ,a µ( µ Pb P c) hf aci d ibl + h 3(d ali f icb + f ali d icb )] ω lk ω lk = iω K (δ l4δk5 δ l5 δk4 + δ l6 δk7 δ l7 δk6)

Approximations S φ,8 S φ,0 0.04 = 0 + O(10 ) φs φ N 1.08 = 1 + O(10 ) m V,a = m V + O(10 1 ) m S,a = m S + O(10 1 ) ω = ω a1 = ω f1n = ω f1s + O(10 1 ) = ω K1 + O(10 1 ) P 0 0.40η + O(η ), P 8 1.58η + O(η )

Approximated J µ V,k and J S,k J µ V,k = g ω ν ( ν P a µ P b ) + ( g 1 + ) ] 3 S φ,0ω(g1 h 3 ) µ P ap b f abk J S,k = c 1 3 S3 φ,0 P 0P a (δ ak 3δ a0 δ k0 δ a8 δ k8 ) + λ 1 P b P c + h 1ω ] µp b µ P c S φ,a δ ak δ bc ( + 3 S λ φ,0 PaP b + 3 S φ,0ω g1 + h ) h 3 µp a µ P b g 1 ω µ ( µ P ap b )] d abk

L 0 4P L4P 0 = c1 (c 10 δ a0 + c 18 δ a8 ) β bcd λ 1 4 δ abδ cd λ ] 8 d abi d icd P ap b P cp d + ω h1 δ abδ cd + h ] h 3 d abi d icd + (g 1 h 3 )d aci d ibd µp ap b µ P cp d + ω4 g5 + g 6 δ ab δ cd + g ] 3 + g 4 d abi d icd + g 3d aci d ibd µp a νp b µ P c ν P d

Results L elsm = 1 ( µpa) 1 m a P a ) + (c δ 0 δ a,b δ c,d + c d 0 d abi d icd P ap b P cp d ) + (c δ δ a,bδ c,d + c δ,b δa,cδ b,d + c d d abid icd µp ap b µ P cp d ) + (c δ 4,I δ a,bδ c,d + c δ 4,I,b δa,cδ b,d + c d 4,I d abid icd µp a νp b µ P c ν P d ) + (c δ 4,II δ a,bδ c,d + c δ 4,II,b δa,cδ b,d + c d 4,II d abid icd µ νp a µ νp b P cp d ) + (c δ 4,III δ a,bδ c,d + c δ 4,III,b δa,cδ b,d + c d 4,III d abid icd µ ν P a µp b P c ν P d Takes the same Form as the χp T -results for K and π interactions except for additional terms in O( 4 µ ) The c1-term and the differences of d ab0 and d ab8 lead to different LEC s whenever η is involved (c δ/d n c δ/d n,0, cδ/d n )!

Outlook

Outlook Check the χp T calculations again Compare the numerical results Look for a way to include η without introducing more than 10 new constants