Polarizations of B V V in QCD factorization

Σχετικά έγγραφα
Isospin breaking effects in B ππ, ρρ, ρπ

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Hadronic Tau Decays at BaBar

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Approximation of distance between locations on earth given by latitude and longitude

Finite Field Problems: Solutions

Numerical Analysis FMN011

Durbin-Levinson recursive method

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Derivation of Optical-Bloch Equations

Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

Study of CP Violation at BABAR

the total number of electrons passing through the lamp.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

LIGHT UNFLAVORED MESONS (S = C = B = 0)

Solar Neutrinos: Fluxes

Higher Derivative Gravity Theories

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Space-Time Symmetries

2 Composition. Invertible Mappings

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Andreas Peters Regensburg Universtity

CRASH COURSE IN PRECALCULUS

Constitutive Relations in Chiral Media

Homework 3 Solutions

6.003: Signals and Systems. Modulation

Tridiagonal matrices. Gérard MEURANT. October, 2008

Second Order RLC Filters

Physics of CP Violation (III)

EE512: Error Control Coding

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lifting Entry (continued)

Areas and Lengths in Polar Coordinates

Assalamu `alaikum wr. wb.

Section 8.3 Trigonometric Equations

PARTIAL NOTES for 6.1 Trigonometric Identities

[1] P Q. Fig. 3.1

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Laplace s Equation in Spherical Polar Coördinates

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

4.- Littlest Higgs Model with T-parity. 5.- hhh at one loop in LHM with T-parity

Areas and Lengths in Polar Coordinates

Solutions to Exercise Sheet 5

Non-Gaussianity from Lifshitz Scalar

Finite difference method for 2-D heat equation

derivation of the Laplacian from rectangular to spherical coordinates

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Matrices and Determinants

Solutions - Chapter 4

The ε-pseudospectrum of a Matrix

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

Uniform Convergence of Fourier Series Michael Taylor

What happens when two or more waves overlap in a certain region of space at the same time?

Section 7.6 Double and Half Angle Formulas

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Trace and Partial Transpose

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

Example Sheet 3 Solutions

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

The Simply Typed Lambda Calculus

4.6 Autoregressive Moving Average Model ARMA(1,1)

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

6.3 Forecasting ARMA processes

ST5224: Advanced Statistical Theory II

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

1 String with massive end-points

Forced Pendulum Numerical approach

Large β 0 corrections to the energy levels and wave function at N 3 LO

SPECIAL FUNCTIONS and POLYNOMIALS

TMA4115 Matematikk 3

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Magnetically Coupled Circuits

Review: Molecules = + + = + + Start with the full Hamiltonian. Use the Born-Oppenheimer approximation

3+1 Splitting of the Generalized Harmonic Equations

Variational Wavefunction for the Helium Atom

Strain gauge and rosettes

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

w o = R 1 p. (1) R = p =. = 1

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

Math221: HW# 1 solutions

Three coupled amplitudes for the πη, K K and πη channels without data

ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «ΘΕΜΑ»

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

Geodesic Equations for the Wormhole Metric

Homework 8 Model Solution Section

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

Answer sheet: Third Midterm for Math 2339

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]

Every set of first-order formulas is equivalent to an independent set

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

(C) 2010 Pearson Education, Inc. All rights reserved.

ΠΩΣ ΕΠΗΡΕΑΖΕΙ Η ΜΕΡΑ ΤΗΣ ΕΒΔΟΜΑΔΑΣ ΤΙΣ ΑΠΟΔΟΣΕΙΣ ΤΩΝ ΜΕΤΟΧΩΝ ΠΡΙΝ ΚΑΙ ΜΕΤΑ ΤΗΝ ΟΙΚΟΝΟΜΙΚΗ ΚΡΙΣΗ

Transcript:

Polarizations of B V V in QCD factorization Based on collaborations with M.Beneke and J.Rohrer April 2008 1

Motivation B V V decays share the roles of B PP, PV decays in the determination of CKM matrix elements, especially the angles(phases): sin2β and cos2β from B J/ΨK ; sin2α from B ρρ; new physics search direct search for the unexpected large branching ratios of rare decays in the SM; more new physics sensitive observables in B V V : polarizations, phases (phase diffences) of helicity amplitudes April 2008 2

Plan of talk 1. Helicity amplitudes of B V V 2. Current experimental status 3. QCD factorization formula for B V V 4. Phenomenologies of B V V Tree-dominated decays (B ρρ) Penguin-dominated decays (B φk and ρk ) 5. Summary Based on the works collaborated with M.Beneke and J. Rohrer Branching fractions, polarization and asymmetries of B V V decays, Nucl. Phys. B774, 64-101, 2007; Enhanced electroweak penguin amplitude in B V V decays, Phys. Rev. Lett. 96, 141801, 2006. April 2008 3

Helicity amplitudes of B V V General decay amplitude of B(p B ) V 1 (p 1, η )V 2 (p 2, ǫ ) ( A(B V 1 V 2 ) = i η µ ǫ ν p Bµ p Bν p ρ S 1 g µν S 2 m 2 + is 3 ε 1 pσ 2 µνρσ B p 1 p 2 With definite helicity, A 0 = A(B V 1 (p 1, η0 )V 2(p 2, ǫ 0 ) = im2 B S 1 S 2 2m 1 m 2 2 A ± = A(B V 1 (p 1, η± )V 2(p 2, ǫ ± ) = i(s 1 S 3 ). Or we can define transversity amplitudes A 0, A are CP-even, and A is CP-odd. A, = ( A + ± A ) / 2. 6 flavor-tagged helicity amplitudes, total 10 independent observables; ( ) ), April 2008 4

Definitions of observables flavor-tagged definitions 2 A0,, fl,, B = A 0 2 2 + A + A 2, 2 f B Ā 0,, L,, = Ā 2 Ā 2 0 + + Ā 2, flavor-averaged quantities and asymmetries φb, = arg A, A 0, φ B, = arg Ā, Ā 0, f h = 1 2 ( f B h + f B h φ h φ B h φ h (mod 2π) ), A h CP = f B h f B h f B h + f B h φ B h + φ h (mod 2π), π 2 φ h < π 2 h = L,, In absence of CP violation, A h CP = 0 and δφ h = 0. April 2008 5

Definitions of observables (Belle) Time dependent observables: with Γ( B 0 (B 0 )(t) V 1 V 2 ) = e Γ Bt λ σ (Λ λσ ± Σ λσ cos( m B t) ρ λσ sin( m B t))g λ g σ, Λ λλ = 1 2 ( A λ 2 + Ā λ 2 ), Σ λλ = 2 1 ( A λ 2 Ā λ 2 ), Λ i = Im(A A i Ā Ā i ), Λ 0 = Re(A A 0 + Ā Ā 0 ), Σ i = Im(A A i + Ā Ā i ), Σ 0 = Re(A A 0 Ā Ā 0 ), ρ i = Re ( q p (A Āi + A iā ) ), ρ 0 = Im ( q p (A Ā0 + A 0Ā ) ) ρ = Im ( q ) p A Ā, ),, ρ ii = Im ( q p A iāi where i = 0,. These 18 observables can have connections with the observables used by BaBar collaborations if one uses relevant normalization and neglects the small CP asymmetries. April 2008 6

dγ(b V 1 V 2 (P 1 P 2 )(Q 1 Q 2 )) dcos ϑ 1 dcos ϑ 2 dϕ A 0 2 cos 2 ϑ 1 cos 2 ϑ 2 + 1 4 sin2 ϑ 1 sin 2 ϑ 2 ( A+ 2 + A 2 ) cos ϑ 1 sin ϑ 1 cos ϑ 2 sin ϑ 2 [ Re ( e iϕ A 0 A +) + Re ( e +iϕ A 0 A + 1 2 sin2 ϑ 1 sin 2 ϑ 2 Re ( e 2iϕ A + A ), )] P 1 ϕ V 1 ϑ 1 Q 1 ϑ 2 V 2 Q 2 P 2 April 2008 7

Picture of B non-leptonic two-body decays B Weak scale: Hard scale: Hard-collinear scale: Soft (or collinear) scale: m W m b M 2 M 1 m b Λ QCD Λ QCD Basic idea: to separate the contribution from different scales; Separation of m W and m b scale by the weak Hamiltonian H eff = C i (µ)q i (µ) i Separation of m b and lower scales M 1 M 2 Q i (µ) B =? April 2008 8

Tree operators: Q u 1 = (ū αb α ) V A ( q β u β ) V A Q c 1 = ( c αb α ) V A ( q β c β ) V A Q u 2 = (ū αb β ) V A ( q β u α ) V A Q c 2 = ( c αb β ) V A ( q β c α ) V A QCD penguin operators: Q 3 = ( q α b α ) V A ( q q β q β ) V A Q 4 = ( q β b α ) V A ( q αq q β ) V A Q 5 = ( q α b α ) V A ( q q β q β ) V +A Q 6 = ( q β b α ) V A ( q αq q β ) V +A EW penguin operators: Q 7 = 3 2 ( q αb α ) V A e q ( q q β q β ) V +A Q 8 = 3 2 ( q βb α ) V A e q ( q αq q β ) V +A Q 9 = 3 2 ( q αb α ) V A e q ( q q β q β ) V A Q 10 = 2 3 ( q βb α ) V A e q ( q αq q β ) V A Dipole operators: Q 7γ = e 8π 2m b q α σ µν (1 + γ 5 )b α F µν Q 8G = g 8π 2m b q α σ µν t a αβ (1 + γ 5)b β G a µν April 2008 9

Polarization in B V V Polarization: approximately, V (ǫ 0 ) v ū + v ū, V (ǫ + ) v ū, V (ǫ ) v ū u R (p) u (p), u L (p) u (p), v L (p) v (p), v R (p) v (p) each helicity flip costs the suppression m/2e. Ā 0 : Ā : Ā + 1 : Λ m B : Λ2 m 2 B f L = 1 O(m 2 V /m2 B ), f f O(m 2 V /m2 B ) April 2008 10

Tree-dominated processes B ρρ, ωρ; 1 f L = O(Λ 2 /m 2 b ) about few percent; Decay Modes P.F. Belle BaBar HFAG B + ρ 0 ρ + f L 0.95 ± 0.11 ± 0.02 0.905 ± 0.042 +0.023 0.027 0.912 +0.044 0.045 B 0 ρ 0 ρ 0 f L 0.70 ± 0.14 ± 0.05 0.70 ± 0.15 B 0 ρ + ρ f L 0.941 +0.034 0.040 ± 0.030 0.992 ± 0.024+0.026 0.013 0.978 +0.025 0.022 B 0 K 0 K 0 f L 0.80 +0.10 0.12 ± 0.06 0.80+0.12 0.13 B + ωρ + f L 0.82 ± 0.11 ± 0.02 0.82 ± 0.11 Obtain sin2α from the time-dependent measurements of B ρρ; April 2008 11

Penguin-dominated processes Case 1: B φk 1 f L = O(1) about a half (polarization puzzles); Decay Modes P.F. Belle BaBar HFAG B + φk + f L 0.52 ± 0.08 ± 0.03 0.46 ± 0.12 ± 0.03 0.50 ± 0.07 f 0.19 ± 0.08 ± 0.02 0.19 ± 0.08 φ 2.10 ± 0.28 ± 0.04 2.10 ± 0.31 φ 2.31 ± 0.30 ± 0.07 2.31 ± 0.31 B 0 φk 0 f L 0.45 ± 0.05 ± 0.02 0.506 ± 0.040 ± 0.015 0.491 ± 0.032 f 0.31 +0.06 0.05 ± 0.02 0.227 ± 0.038 ± 0.013 0.252 ± 0.031 φ 2.40 +0.28 0.24 ± 0.07 2.31 ± 0.14 ± 0.08 2.37+0.14 0.13 φ 2.51 ± 0.25 ± 0.06 2.24 ± 0.15 ± 0.09 2.36 ± 0.14 April 2008 12

Penguin-dominated processes Case 2: B ρk * 1 f L = O(Λ 2 /m 2 b ) for B+ ρ 0 K + * 1 f L = O(1) for B + ρ + K 0 and B 0 ρ 0 K 0 * Even more puzzling than B φk! Decay Modes P.F. Belle BaBar HFAG B + ρ 0 K + f L 0.96 +0.04 0.15 B + ρ + K 0 f L 0.43 ± 0.11 +0.05 ± 0.04 0.96+0.06 0.16 0.02 0.52 ± 0.10 ± 0.04 0.48 ± 0.08 B 0 K 0 ρ 0 f L 0.57 ± 0.09 ± 0.08 0.57 ± 0.12 April 2008 13

Polarization puzzles B φk : enhanced penguin amplitude with negative-helicity * new physics effects (scalar and tensor current-current coupling) Kagan, 2004;Das and Yang, 2004 * large charming penguin C.W.Bauer et al, 2003 * final state interactions H.Y.Cheng, 2004 * smaller A 0, larger A 1 and V H.N.Li et al, 2004 * large annihilation effects B ρk : * Expected to follow the same pattern of B φk ; * 1 f L = O(Λ 2 /m 2 b ) for B+ ρ 0 K + Kagan, 2004; Beneke, Rohrer and Yang, 2006 * 1 f L = O(1) for B + ρ + K 0 and B 0 ρ 0 K 0 * Large electroweak penguin in negative-helicity amplitude or new physics? April 2008 14

QCD factorization formula for B V V Kagan, 2004; M.Beneke, J.Rohrer and DY, 2005 V 1,h V 2,h Q i B = F B V 1,h T I,h i f h V 2 Φ h V 2 + (V 1 V 2 ) + T II,h i f B Φ B f V1 Φ V1 f h V 2 Φ h V 2 + O(1/m b ). where h = 0,, and in terms of α-convention in [Beneke& Neubert, 2003] A h ( B V 1 V 2 ) A h α h i (V 1V 2 ) i A 0 A B V 1 0 ( ) Λ 3/2 mb A m 2 m B ( (1 + m 1 m B )A B V 1 1 + (1 m 1 A m 2 m B ( (1 + m 1 m B )A B V 1 1 (1 m 1 m B )V B V 1 m )V B V ) ( ) 1 Λmb 5/2 B ) ( Λmb ) 7/2 Positive helicity amplitude is highly suppressed and cannot be calculated in same way. f = f, φ = φ. April 2008 15

Penguin weak annihilations X A ln m B Λ A (1 + ρ A e iφ A ), X 2 A, X L m B Λ L (1 + ρ L e iφ L ); P h = A h V 1 V 2 [ α h 4 + β h 3], P P 0 A α c A 0 ρk α c 4 (π K) + β3 c(π K) = 0.09 {0.02[ 0.01,0.05]}, α c0 4 (ρ K ) + β3 c0(ρ K ) = 0.03 {0.00[ 0.00,0.00]}, α c 4 (ρ K ) + β3 c (ρ K ) = 0.05 {0.03[ 0.04,0.10]}. ρk 4 + β3 c α c,0 4 0.05 + [ 0.04,0.10] 0.12, with A ρk A 0 ρk 1 4. Negative-helicity penguin amplitude can be (but need not) be enhanced by the penguin annihilation! April 2008 16

Enhanced EW penguin in B V V H eff = G F 2 p=u,c λ (D) p a= C a 7γ Qa 7γ +..., Q 7γ = e m b 8π 2 Dσ µν (1 ± γ 5 )F µν b λ (D) p = VpD V pb. introduces the additional EW penguin amplitude for the decays to the neutral vector meson (ρ 0,ω, φ), The resulted amplitudes for different helicities P0 EW : P EW 1 : m b/λ (Here we neglect the contribution from Q + 7γ.) April 2008 17

The representative coefficient in QCDF α p 3,EW (V 1V 2 ) = 2α em 3π C 7γ,eff R m B m b m 2 V 2 with R = 1 in the heavy quark limit. Numerically, we have α p 3,EW (K ρ) 0.02, meanwhile the uncorrected EW penguin and leading QCD penguin Effectively, α p 3,EW (K ρ) = C 7 + C 9 + C 8 + C 10 N c +... 0.01, α c 3,EW (K V 2 ) ˆα c 4 (ρk ) = C 4 + C 3 N c +... 0.055. = 2α em 3π R m 2 B m 2 V 2 with T1 K (0) 0.28, we get α c 3,EW (K ρ) = 0.023. Γ(B K γ) G 2 F V ts V tb 2 α em 8π 3 4π m 5 B T 1 K (0)2 1/2 April 2008 18

Tree-dominated decays BrAv(B ρ ρ 0 ) = V ub 3.53 10 3 2 0 (0) 0.30 A B ρ 2 ( 18.8 0.4 +0.4 3.9 +3.2 ) 10 6 BrAv / 10 6 A CP / percent Theory Experiment Theory Experiment B ρ ρ 0 18.8 +0.4 0.4 +3.2 3.9 18.2 ± 3.0 0 +0 0 8 ± 13 B 0 ρ + ρ 23.6 +1.7 1.9 +3.9 3.6 23.1 +3.2 3.3 1 +0 0 +4 8 +11 ± 13 B 0 ρ 0 ρ 0 0.9 +0.6 0.3 +1.9 0.9 1.07 ± 0.38 +28 +5 7 +53 29 n/a B ωρ 12.8 +1.1 1.3 +2.0 8 +4 ± 18 B 0 ωρ 0 0.2 +0.1 0.1 +0.3 0.1 < 1.5 no prediction n/a B 0 ωω 0.9 +0.5 0.3 +1.5 0.9 < 4.0 29 +9 n/a 2.4 10.6 +2.6 2.3 8 +3 2 +5 6 +25 44 April 2008 19

f L / percent A 0 CP / percent Theory Experiment Theory B ρ ρ 0 95.9 +0.2 0.3 +3.4 5.9 91.2 +4.4 4.5 B 0 ρ + ρ 91.3 +0.4 0.3 +5.6 6.4 96.8 ± 2.3 2 +0 B 0 ρ 0 ρ 0 90 +3 4 +8 56 87 ± 14 8 +2 0 0 +4 2 1 +59 28 B ωρ 93.7 +1.1 1.0 +4.7 8.1 82 ± 11 2 +1 B 0 ωρ 0 49 +11 11 +47 23 n/a +35 +25 B 0 ωω 93 +2 4 +5 22 n/a +6 +1 0 +7 6 15 +47 84 1 +14 24 April 2008 20

Strategies in penguin-dominated decays QCDF loses predictive power in penguin annihilations with transverse polarization; Use information from experiments as much as we can; Strategy 1: fit only the penguin annihilation from B φk measurements; Strategy 2: fit the whole penguin amplitude from B φk ; Trust the predictions for other topological amplitudes using QCDF; Constrained X A : A = 0.5 ± 0.2 exp. ϕ A = ( 43 ± 19 exp. ), ˆα c 4 = αc 4 + β 3 from data: with α c 3 Ā = A K φλ (s) c P K φ, P K φ = ( 0.084 ± 0.008(exp) +0.008 0.009 (th)) from QCDF ˆα c 4 +i(0.021 ± 0.015(exp) +0.003 0.002 (th)), = ( 0.08 ± 0.02) + i(0.03 ± 0.02). April 2008 21

Observable Theory Experiment BrAv /10 6 φk 10.1 0.5 +0.5+12.2 φ K 0 9.3 0.5 +0.5+11.4 A CP /% φk 0 +0 0 +2 φ K 0 1 +0 0 +1 f L /% φk 45 +0 0 +58 φ K 0 44 +0 0 +59 A 0 CP /% φk 1 +0 0 +2 φ K 0 0 +0 0 +1 (f f )/% φk 0 +0 0 +2 φ K 0 0 +0 0 +2 (A CP A CP )/% φk 0 +0 φ K 0 0 +0 φ / φk 41 +0 0 +84 default constrained X A ˆα c 4 from data φ K 0 42 +0 0 +87 φ / φk 0 +0 φ K 0 0 +0 (φ φ )/ φk 0 +0 0 +1 φ K 0 0 +0 0 +1 ( φ φ )/ φk 0 +0 φ K 0 0 +0 7.1 10.1 0.5 +0.5 4.8 +7.2 10.4 0.5 +0.5+5.2 6.5 9.3 0.5 +0.5 4.5 +6.7 9.6 0.5 +0.5+4.7 1 0 +0 0 0 +0 0 +3 0 1 +0 0 1 +0 0 +2 36 45 +0 0 +35 31 44 +0 0 +23 36 44 +0 0 +35 31 43 +0 0 +23 1 1 +0 0 +1 1 1 +0 0 +2 2 1 0 +0 0 +1 0 0 +0 0 +1 3.9 9.7 ± 1.5 3.6 9.50 ± 0.90 2 5 ± 11 1 0.0 ± 7.0 23 50.0 ± 7.0 23 49.0 ± 4.0 n/a 2 1.0 ± 8.0 2 0 +0 0 +2 2 0 +0 0 +2 2 12 +17 17 2 0 +0 0 +2 2 0 +0 0 +2 2 3.0 7.2 +8.9 0 0 +0 0 0 +0 0 n/a 0 0 +0 0 0 +0 0 32 +36 36 53 41 +0 0 +35 30 40 +0 0 +21 54 42 +0 0 +35 30 42 +0 0 +21 21 42 +10 9 1 0 +0 0 0 +0 0 n/a 0 0 +0 0 0 +0 1 2 ± 10 21 60 ± 16 1 0 +0 0 +1 1 0 +0 0 +1 1 12 +24 24 1 0 +0 0 +1 1 0 +0 0 +1 1 6 +14 13 0 0 +0 0 0 +0 0 n/a 0 0 +0 0 0 +0 0 0 +15 15 April 2008 22

BrAv /10 6 Theory Experiment default B K φ 10.1 +0.5 B 0 K 0 φ 9.3 0.5 +0.5+11.4 B K ω 2.4 0.7 +0.8+2.9 B 0 K 0 ω 2.0 0.1 +0.1+3.1 B K 0 ρ 5.9 0.3 +0.3+6.9 B K ρ 0 4.5 1.3 +1.5+3.0 B 0 K ρ + 5.5 +1.7 B 0 K 0 ρ 0 2.4 0.1 +0.2+3.5 B s φφ 21.8 +1.1 1.1 +30.4 ˆα c 4 from data 0.5 7.1 +12.2 10.4 0.5 +0.5+5.2 6.5 9.6 0.5 +0.5+4.7 1.3 2.3 0.7 +0.8+1.4 1.4 1.9 0.1 +0.1+1.5 3.7 5.8 0.3 +0.3+3.1 3.9 9.7 ± 1.5 3.6 9.50 ± 0.90 0.7 < 3.4 0.7 < 4.2 1.9 9.2 ± 1.5 1.0 < 6.1 1.4 4.5 1.3 +1.5+1.8 1.5 2.9 +5.7 5.4 1.5 +1.7 1.5 +2.6 n/a 2.0 2.3 0.1 +0.2+1.1 0.8 5.6 ± 1.6 17.0 19.5 1.0 +1.0 8.0 +13.1 14.0 7.0 +8.0 April 2008 23

f L / percent Theory Experiment default B K φ 45 +0 0 +58 B 0 K 0 φ 44 +0 0 +59 B K ω 53 +8 B 0 K 0 ω 40 +4 3 +77 B K 0 ρ 56 +0 0 +48 B K ρ 0 84 +2 3 +16 B 0 K ρ + 61 +5 7 +38 B 0 K 0 ρ 0 22 +3 3 +53 ˆα c 4 from data 36 44 +0 0 +23 36 43 +0 0 +23 11 +57 39 56 +8 11 +22 43 43 +4 3 +38 30 57 +0 0 +21 23 50.0 ± 7.0 23 49.0 ± 4.0 19 n/a 32 n/a 18 48.0 ± 8.0 25 85 +2 3 +9 11 96 +6 16 28 62 +5 6 +17 15 n/a 14 22 +3 3 +21 13 57 ± 12 April 2008 24

More on B ρk system A h (ρ K 0 2Ah ) = P h (ρ 0 K ) = [P h + Ph EW ] + e iγ [T h + C h ] A h (ρ + K ) = P h + e iγ T h 2A h (ρ 0 K 0 ) = [P h Ph EW ] + e iγ [ C h ] and define x h = X h /P h (h = 0, 1). Γ (ρ K 0 ) : 2 Γ (ρ 0 K ) : 2 Γ (ρ 0 K 0 ) 1 : 1 + p EW 2 : 1 p EW 2 B K ρ 0 B0 K 0 ρ 0 incl. excl. exp. incl. excl. exp. BrAv /10 6 4.5 5.4 < 6.1 2.4 1.4 5.6 ± 1.6 f L / % 84 70 96 +6 16 22 37 57 ± 12 A CP / % 16 14 20 +32 29 15 24 9 ± 19 QCDF predicts f L (ρ 0 K ) > f L (ρ K 0 ) > f L (ρ 0 K 0 ). It is against current measurements. April 2008 25

Conclusions and perspective QCD factorization loses predictive power for penguin-dominated B V V decays; Penguin weak annihilation could be an answer to polarization puzzle of B φk ; Enhanced electroweak penguin with negative-helicity could explain the polarization puzzles in B + ρ + K 0 and B + ρ 0 K +, but not for polarization of B 0 ρ 0 K 0 ; Polarization puzzles of B ρk are challenging for new physics model building; New measurements on polarizations in B AV and TV will shed more light on research of chirality structure of interaction, but QCD effects are still crucial; April 2008 26

THANKS! April 2008 27