Investigation of Different Material Distributions and Thermal Boundary Conditions on Stress Field of FGM Rotating Hollow Disk

Σχετικά έγγραφα
Mechanical Behaviour of Materials Chapter 5 Plasticity Theory

Dr. D. Dinev, Department of Structural Mechanics, UACEG

ADVANCED STRUCTURAL MECHANICS

Introduction to Theory of. Elasticity. Kengo Nakajima Summer

Department of Mechanical Engineering, University of Tabriz, Iran Department of Mechanical Engineering, University of Tabriz, Iran

MECHANICAL PROPERTIES OF MATERIALS

Constitutive Equation for Plastic Behavior of Hydrostatic Pressure Dependent Polymers

Strain gauge and rosettes

Chapter 7 Transformations of Stress and Strain

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

Macromechanics of a Laminate. Textbook: Mechanics of Composite Materials Author: Autar Kaw

ΜΕΤΑΛΛΙΚΑ ΥΠΟΣΤΥΛΩΜΑΤΑ ΥΠΟ ΘΛΙΨΗ ΚΑΙ ΚΑΜΨΗ

High order interpolation function for surface contact problem

8.5 Structural Optimization


Study of In-vehicle Sound Field Creation by Simultaneous Equation Method

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

θ p = deg ε n = με ε t = με γ nt = μrad

GF GF 3 1,2) KP PP KP Photo 1 GF PP GF PP 3) KP ULultra-light 2.KP 2.1KP KP Fig. 1 PET GF PP 4) 2.2KP KP GF 2 3 KP Olefin film Stampable sheet

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Design and Fabrication of Water Heater with Electromagnetic Induction Heating


ΜΔΛΔΣΖ ΔΝΓΟΣΡΑΥΤΝΖ Δ ΥΑΛΤΒΔ ΘΔΡΜΖ ΔΛΑΖ

Mechanics of Materials Lab

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Statistical Inference I Locally most powerful tests

(Mechanical Properties)

Magnetically Coupled Circuits

A research on the influence of dummy activity on float in an AOA network and its amendments

Second Order RLC Filters

Buried Markov Model Pairwise

Αξιολόγηση Ημιαγώγιμων Υμενίων Σεληνιούχου Καδμίου Σε Υπόστρωμα Νικελίου Για Φωτοβολταϊκές Εφαρμογές

Prey-Taxis Holling-Tanner

EXPERIMENTAL AND NUMERICAL STUDY OF A STEEL-TO-COMPOSITE ADHESIVE JOINT UNDER BENDING MOMENTS

P É Ô Ô² 1,2,.. Ò± 1,.. ±μ 1,. ƒ. ±μ μ 1,.Š. ±μ μ 1, ˆ.. Ê Ò 1,.. Ê Ò 1 Œˆ ˆŸ. ² μ Ê ² μ Ì μ ÉÓ. É μ ±, Ì μé μ Ò É μ Ò ² μ Ö

Proposal on Unstructured Triangular Mesh Generation Method for Singular Stress Field Analysis of Bonded Structures Based on Finite Element Method

ΕΛΕΓΧΟΣ ΤΩΝ ΠΑΡΑΜΟΡΦΩΣΕΩΝ ΧΑΛΥΒ ΙΝΩΝ ΦΟΡΕΩΝ ΜΕΓΑΛΟΥ ΑΝΟΙΓΜΑΤΟΣ ΤΥΠΟΥ MBSN ΜΕ ΤΗ ΧΡΗΣΗ ΚΑΛΩ ΙΩΝ: ΠΡΟΤΑΣΗ ΕΦΑΡΜΟΓΗΣ ΣΕ ΑΝΟΙΚΤΟ ΣΤΕΓΑΣΤΡΟ

ST5224: Advanced Statistical Theory II

Design Method of Ball Mill by Discrete Element Method

1. Sketch the ground reactions on the diagram and write the following equations (in units of kips and feet). (8 points) ΣF x = 0 = ΣF y = 0 =

Stresses in a Plane. Mohr s Circle. Cross Section thru Body. MET 210W Mohr s Circle 1. Some parts experience normal stresses in

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

the total number of electrons passing through the lamp.

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

Μηχανουργική Τεχνολογία & Εργαστήριο Ι

Μιχάλης ΚΛΟΥΒΑΣ 1, Χρήστος ΖΕΡΗΣ 2

Η ΣΗΜΑΣΙΑ ΤΗΣ ΜΗ ΓΡΑΜΜΙΚΗΣ ΣΥΜΠΕΡΙΦΟΡΑΣ ΓΙΑ ΤΟΝ ΣΧΕ ΙΑΣΜΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ

MSM Men who have Sex with Men HIV -

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Thin Film Chip Resistors

ER-Tree (Extended R*-Tree)

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ & ΑΝΑΠΤΥΞΗΣ

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΛΕΩΝΙΔΑΣ Α. ΣΠΥΡΟΥ Διδακτορικό σε Υπολογιστική Εμβιομηχανική, Τμήμα Μηχανολόγων Μηχανικών, Πανεπιστήμιο Θεσσαλίας.

Solutions to Exercise Sheet 5

Properties of Nikon i-line Glass Series

Numerical Analysis FMN011

2 ~ 8 Hz Hz. Blondet 1 Trombetti 2-4 Symans 5. = - M p. M p. s 2 x p. s 2 x t x t. + C p. sx p. + K p. x p. C p. s 2. x tp x t.

E T E L. E e E s G LT. M x, M y, M xy M H N H N x, N y, N xy. S ijkl. V v V crit

Διπλωματική Εργασία. Μελέτη των μηχανικών ιδιοτήτων των stents που χρησιμοποιούνται στην Ιατρική. Αντωνίου Φάνης

ΜΕΛΕΤΗ ΤΗΣ ΠΛΑΣΤΙΚΟΤΗΤΑΣ ΑΡΓΙΛΟΥΧΩΝ ΜΙΓΜΑΤΩΝ ΜΕ ΠΡΟΣΘΗΚΗ ΣΙΔΗΡΑΛΟΥΜΙΝΑΣ ΑΠΟ ΤΗ ΔΙΕΡΓΑΣΙΑ BAYER

Research on Economics and Management

Context-aware και mhealth

1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]

IPSJ SIG Technical Report Vol.2014-CE-127 No /12/6 CS Activity 1,a) CS Computer Science Activity Activity Actvity Activity Dining Eight-He

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΠΑΝΑΣΧΕΔΙΑΣΜΟΣ ΓΡΑΜΜΗΣ ΣΥΝΑΡΜΟΛΟΓΗΣΗΣ ΜΕ ΧΡΗΣΗ ΕΡΓΑΛΕΙΩΝ ΛΙΤΗΣ ΠΑΡΑΓΩΓΗΣ REDESIGNING AN ASSEMBLY LINE WITH LEAN PRODUCTION TOOLS

ΙΕΥΘΥΝΤΗΣ: Καθηγητής Γ. ΧΡΥΣΟΛΟΥΡΗΣ Ι ΑΚΤΟΡΙΚΗ ΙΑΤΡΙΒΗ

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο, εκφράζουν τον συγγραφέα και δεν πρέπει να ερμηνευτεί ότι αντιπροσωπεύουν τις

2 Composition. Invertible Mappings

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Ελαφρές κυψελωτές πλάκες - ένα νέο προϊόν για την επιπλοποιία και ξυλουργική. ΒΑΣΙΛΕΙΟΥ ΒΑΣΙΛΕΙΟΣ και ΜΠΑΡΜΠΟΥΤΗΣ ΙΩΑΝΝΗΣ

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil

Applying Markov Decision Processes to Role-playing Game

Eigenfunction expansion for penny-shaped and circumferential cracks

Grey Cast Irons. Technical Data

Surface Mount Multilayer Chip Capacitors for Commodity Solutions

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ

Feasible Regions Defined by Stability Constraints Based on the Argument Principle

3o/B Mάθημα: Δικτύωμα / 2D-Truss in Batch

Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data

1. In calculating the shear flow associated with the nail shown, which areas should be included in the calculation of Q? (3 points) Areas (1) and (5)

PRESENTATION TITLE PRESENTATION SUBTITLE

Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention

Example Sheet 3 Solutions

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Μειέηε, θαηαζθεπή θαη πξνζνκνίσζε ηεο ιεηηνπξγίαο κηθξήο αλεκνγελλήηξηαο αμνληθήο ξνήο ΓΗΠΛΩΜΑΣΗΚΖ ΔΡΓΑΗΑ

ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. ΘΕΜΑ: «ιερεύνηση της σχέσης µεταξύ φωνηµικής επίγνωσης και ορθογραφικής δεξιότητας σε παιδιά προσχολικής ηλικίας»

Figure 1 - Plan of the Location of the Piles and in Situ Tests

ΣΥΓΚΡΙΣΗ ΑΝΑΛΥΤΙΚΩΝ ΚΑΙ ΑΡΙΘΜΗΤΙΚΩΝ ΜΕΘΟ ΩΝ ΓΙΑ ΤΗ

Creative TEchnology Provider

Probability and Random Processes (Part II)

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΖΩΝΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΟΛΙΣΘΗΤΙΚΗΣ ΕΠΙΚΙΝΔΥΝΟΤΗΤΑΣ ΣΤΟ ΟΡΟΣ ΠΗΛΙΟ ΜΕ ΤΗ ΣΥΜΒΟΛΗ ΔΕΔΟΜΕΝΩΝ ΣΥΜΒΟΛΟΜΕΤΡΙΑΣ ΜΟΝΙΜΩΝ ΣΚΕΔΑΣΤΩΝ

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

Injection Molded Plastic Self-lubricating Bearings

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Transcript:

8./0-0 5. ( 67 -(4 *+(,-.( / 0 -+ (3) :; 0. +. ( 64-5 $%& 35 46 75 ) &!&! % ( '!%&! $ #! ) &! &!% ( '!- %&!+,* $ # % */- <. * *(>8.. =<$.% (+ 4 6 =% = $ ) / :;< # 4 5 6 74 8. % / 0 3+ A H I 74.% ( # G % / * EF / # 4 B 6 % 74 7/ &D / ;@ % A / EF / 6 ( # A / / O 6 N / )% K L 4 0/ EF / J B K L 'D 74 / $ #6 $%S )* / N $%S-$%P ( Q ( / /.6 )/ = U<! #6 $%S J ) T / K% 74 ( # G % / :;< # 4 B 6 % ' X 4* ( 0 4 Y% / $ # 4 5 6 V % )/ /8 Q ( /.6 / ).6 ( 0 # 4 5 6 4 Z +!/ 4* ( ) / K% 74 D# % / M # 4 5 6 V % / 4* ( %J D# X 4 # &/ = 4!/ %J V % 74 +( / 74 ( / 4* (!/ 6.6.+ )!. $%P $ (+ :; +[ Investigation of Different Material Distributions and Thermal Boundary Conditions on Stress Field of FGM Rotating Hollow Disk A. Yavari M.H. Abolbashari PhD Student, Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran Professor, Department of Mechanical Engineering, Lean Production Engineering Research Center, Ferdowsi University of Mashhad, Mashhad, Iran Abstract This study aims at investigation the effects of material distribution and thermal boundary condition on stress field of FGM rotating hollow disk. For this purpose, three different problems with four distribution functions for material properties and three different thermal boundary conditions have been applied. Young s modulus, density, and coefficient of thermal expansion distributions are defined as functions of the radius, and Poisson's ratio is assumed uniformly because it has equal value in two considered materials. The first, with assumption of elastic perfectly plastic behavior for material, disk plastic area rate with linear, power, exponential, and logarithmic material property distributions at three different temperature boundary conditions is studied and the best distribution for minimizing plastic area is detected. In the following with the assumption of constant rotational speed, thermal boundary conditions and external and internal radius of the disc, by utilizing criterion Von-Mises stress and the Taguchi method, the distribution of material properties for minimizing the maximum Von-Mises stress in each of the thermal boundary conditions is introduced. Finally, the sensitivity of Von Mises stress subject to the rotational speed, thermal boundary conditions, and material properties of the inner and outer radii is investigated by utilizing the Taguchi method. It s concluded that the sensitivity of maximum Von-Mises stress to temperature distribution is more than to material distribution and rotating speed. Keywords: FGM, Rotating Disk, Thermo Elastic, Stress, Strain. * abolbash@um.ac.ir :

/ ( # A ` <L &W %P + / ;;_ X $ [] + H.% 6 xo_. s (+ 4 6 =% $. ` <L &W / B/ + +) _ V06 + 74 % /4%&/ & / [3] X+ J.% ( y Z +$ $%P + ;;_ 6 6 + 74 [4] 4. % / 4n X / (+ 4 6 =% 4n +$ + [5] + E/.% % / ;;_ G % / (+ +$ $%P Y% 6 / I N6 ` A 4 +). ;@ [6] + )*&6. / (+ 4 6 =% * $ $%P G 0 % pf M 4 # 7 4 6 =% $ $ [7] + E/. 0 # / )O = / (+ $ 6*= ( [8] X+ H%. G G 0 $ * (+ 4 6 =% / ;% Ez 4 ) 0 $. 4.% 6 =% 6 74 Z + $ /!( _ )*< + % / / [] X+, E ` / (+ 4 p4 + $ [0] ;e D.= 6 =% V06 % (+ 4 $ $ / ;;_ $%P NJ. s 6 =% 7/M $ ( # A / ) /! + / g+ % / 74 / 0.% 6 : 0 J $ ' 7/ &D ;@ )O / W 6 ( # A % $ 74 / 74 + / % 6 Q ( g+.% EY J M &D / J Q ( / 0/ EF / ;@.6/ ` N/G 5_ ) / )/4 4 Y% / _YF.% 6 NJ ABAQUS *(Z MATLAB *(Z # 4 5 6 74 8. 7W % / / 4 6 =% = $ ) / :;< / EY ;@ % ( 8) 4* ( (+ $%S )* /.6 % / %_ V EF 74 7/ &D / * 4 * # _ $ #6 ( # G 0 # 4 B 6 % B - + )! (+ / = E0 E ` N_ P/ / + O ;/G 0.6/ = a% / 4 [ % )! ;% / 84 I% # EF ) & A / EOO_. # 4e +W ++ / f( +4% ( # G Y% + =# + g+ Y;< 4 (+.[] # % j_ 4 6/ E*;( % _% $ % 4 kp0. '+ )[+ Nl _ 6 E 8. / / / 6 Y% + )! O = 4 % ( #= 4 # IO Z_% / *;( $ ' a% % E `.[] f -; / +) EY mv/ % ;V % + / B/ E ` kp0.64n ' <L &W 0/ EF /.6 ( # A $ 4% *W T& 4 +$ += M NS( +T% +6/ = $ N;_ / :;< EOO_.6/ +Q ( 4 (+ 4 6 =% (+ + / ;W 4.% 6 Y% _YF 6+ J % % +% +) Y% E0/ X / +% 4 E60 [3] X+ Y% / [4] X+ 0 6. N;_ ; Y ) )/ # X, #P K L *( 0 4 4 6 =% N6 N E_YF E6 K L % / * +p / $ * FG W [5] X+ * g+. G % / $ 74 [7 6] + [. &/ V06 &W %P K L E ` :;< # 4 5 6 74 8. % /... ). s $ / ;;_ X $ [8] X+ A _ Et< 4 0/ %P K L +) + u 8. [] +.( # 6 %P + ) 0 _YF ) % ;@ [0] X+ D. s 0/% 8. * 4 * # ( # A / % ` [] X+. NJ w -6 )O (+ 4 6 =% $ $ +N6 6 A3 F 4 +) O. % / 5

!/ J_ J D *+ E *$ -- ABAQUS *(Z (+ ( 0 &W 6 Y% E ` % ) / P 4 74 6!/ +/TO D + % &/.%.6 += $* % N6 / ) 0 $ / IV / 0/ (% % 5 / 5 NV / +% /.6 TO P 35 040 4 ;@ NJ / P 0 ( # A / 6 U<! )u / + /.6 += = / ( '+ P 35NJ &/)4( # A / +P 0!/.6 ( # A % 6 Q ( '+ P + X 7/ / W / / /TO 4 0/ // : 0 ) %_ P + / 74.6 IV Z K; + 5%.6 ABAQUS*(Z ) / 5/ K;*(Z 7G Z# ABAQUS *(Z 6 s X /.% G.6 NJ 6 N EF / ;@ 6 ( # A u= / # G J ) ) # +.6 4 #4% + + 4 B + $%P e + E ` -% 4( ` :;< NP / TW N= B u= / 0.6 ' / W /.6, * ( ε ) J * ε = α(r)t(r) N.% $ J + % $ * $.[] 6 )/()0 EF / 6 r M //.% ε = e + ε r +, + )! K / e θ e r T(r) () () 0 $%P M.[] % / () EF/ ε θ g+.% ε r () () 0 _ V06 _ V06 % y#/ NFJ $%P. Step. Eigenstrains * * ε = e + ε θ r θ N.+ )! Q ( /.6 U<! 74 ) % / #4 5 6 V % )/ /8 74 7/ &D K 8. $ :;< J &D $ % &/ J % /!/ 4* ( / %J ).6 ( 0 D# X 4 Y% / M V % / 4* (!/ / ' 74 ( # A / X 4 * A /.6 xo_.%6 / &/ D# ;C/ / - D ; E -- $ $ 6 () N6 u )+ % 6 =% (+ 4 }% / * G Et< '% ~. # G % / :;< 4( N6 A $.% 6 Q ( $ H / K / % (-) (:) + 4 +74.% 6 U<! () N6 Y% / 6 ( # A % EF / % A.4% _ )O ;@ $ ;@ _ ( # A b a * / $ + ( ω ) O K / $.6 : 0 4 0/ EF / ( υ) $ 74_ - F 4 V %.% 6 )% K L / / O 6 N / )% K L / IW.6 )/ = EF / A 'D ( α) # B K L ( E) H I K ( υ) )% K L ( K) # #% ( ρ) / x;0 K / (-) (:) / (σ Y ) T;.[5] % 6 )! 6/ Z 4 Z ( # A /8 A $ <L []$ *.6 53

/ σ Y ( MPa ) υ 7 0 / 3 50 0 / 3 Z 4 Z - E/ 0 K( W/ m. C ) 0 3 ρ ( Kg / m ) 700 5700 α ( 0 6 / 0 C ) 3 0 E( GPa ) 70 5 Z A l (:) ZrO (-) 5 6 74 8. % / X # IJ Z;0 /8 / % N= ( # 0 G. *;-+ +74 74 / (6) (5) (4) (3) F(r) = F r + β 5/ ( ln ( Fin Fout ) ln ( b a )) 0 = Fin a F F (r ) = EF /.% -4- K / '.6 (3) :) (4) :) (5) :) (6) :) + )! K / b a F out F in 6 : 0 F/ (6) (3) 7/.6/ $ F in 4 + $ %.6/ N6 F out A4 H>-+I <.(J C/ -5- &/ Y I / + )%& u 4 D#.% D# X Y &/ +X 0 n F 0 (r ) β 0 in out F(r) = F e β F = F e 0 βa 0 in β = ln(f in / F out ) a b 0 in out F(r) = F0 Ln ( β r) F = F Ln( βa) 0 β = ln(f F ) ln(b a) out F = (F F ) (a b) β = (af bf ) (a b) + K% $ </ T& r in in β = exp((f ln a F ln b) (F F )) out in in out 0 + s*w +NV. Y% 6 +4 / y# 8. + ) %+ J u D# O TA $ / 4% &/ 6 %6 $ *+(,-.( -3- % _ / Nt $ / W / ( # A YF (x-y) $ _YF ) ) ` 4 _% / G( $ a%.% 6.6 ( # A YF V06 ) / // % u= / % * 4 * # M 4 ;@ / 4 5 6 //.( $ u r σ r J % / = 0 = 0 T T N6 ` )O Y z _ IJ $ ).6: 0 4 EF / ;@ r=a r=b / W / (i) (ii) 6.( Y;@ 6 / N6 x/ # 4 5 6 6 ( # # 4 5 6.6 ( # A :;< 4 ( /D X / +` )g+ Ot + [ +/ S0/ /H% '+ 6 +0F ' u +} D + % [ +NS( 6 Q ( (:) # 4 B 6. /! 0 C / 5_ 70 0 C /8 EF / 5_ $ a% / /W K L B 6 /.6/ 0 W / m 0 C # IO NJ 5% J / )% 4 0/ # 350 3 u 4 % J / 4 B 6.6 += %_ ;@ _ Nt /8 U<! / _ / $ 4 ) A 3 F /.% ( # G Z;0 / / K% (-) #4 B 6!/ # IO IJ /8 0 / _ / Nt $ $ N= 5_.% ƒs= _ X # 4 B 6.6/ 4 W 4 = f( [Y % xv $ 6 Q ( # Q ( ( ) # 4 B 6.% 50 0 C 70 0 C $ 6 ( + # IO 4 ) A 3 F /.% 50 0 C / ) # 4 B 6 :;< # 4 A t<! /8 / _ / 6 Nt $... ) 54

!/ J_ J % J 6 5 4 +N6 74 &D ( # A / 6 I (:) # 4 B 6 / K / ' 6 5 4 +N6 / W /.+ )! ( ) (-) J / 74 8. ) # 4 B 6 +. +! W 88 70 / 4 N6 E ` _ #% W 4 50 / 5 N6 ;% + / J 74 y %5070/ 6N6 (-) # 4 B 6 74 7/ &D E ` 4 ' # 4 B 6 /.% = / 4 5 6 74 8. 7W % / / 6 =% = $ ) / :;< # EY ;@ % ( 8) 4* ( (+ 4.6 % / %_ V EF/ * 4 * # _ $ #6 $%S )* - # 4 B 6 % 74 7/ &D / U<! 74 ) % / ( # G 0 - ( / N $%S-$%P J.6 74 g+.6 ( # A! r = a A $ 6 : 0 # / % N6 r = b (:) % N6 F in (6) (3) 5/ IW / W / //.6/ (-).% (-) / / F out (:) / / 5 /5 K / $ g+ 8 / ) V % %.6( # A #% W5$ (7) / EF / ( 8 ) 4* ( 74 + / $ 6 I % 6 : 0 74 &D ( # A / # 4 B 6 % 4 Z % / T% / ' / &/ +! / $ g+.6.6 I (8)/ EF O / ( + /.6 Z + ) $.6 Y# a% ) / 6 ( # A : FS= 4 EF / ) ) 3+ ksl.6 U<! 3+ /..6/ 4n 0G $ 4* ( )* G 6 0 3+ / y# 8. +( 0. % ( + / 6 U<! %6 NG +( Z % xo_.6 0 %.% 6 ( # A &D X W IW +@ / W / 0/ ;J.3 (E!4 J u) 0 D# E!4 J u + 4 W / W /.6 -< K% 8 +( 0 6 A +( 4 Z K 0 W / ' / N/O -< A 3+ / )% / Z4P +4 % +( 0 / W / A xo_.6 ) % 6 Y% L6 J u 4 Z + / B/.% 6 ( # A EY 4 K 6 ( %_ / 6 s X 4 Y% / +,.6 += = 6J u E!4 Z / 4* D# +I( 4 4 % / X4 / )D.6 Y% % & 3+ / K% 6/ 4* (!/ )* D + xo_ D / 4 w % A 4 J &/ U=6 $ A /.6 Y% % &/ * / I'% 6 0 Y / ) D# X!/ 0 /.6/ 6. 0W [3-] 7W K- L$ -3 [4] 7W xg NJ / _ *W N;_ / 74 A /. # 4 % O ) 4 V % Z = EF / A 0 C = EF / $ 8 / 4 B 6 74 / )% /.6 ( # ( # A ( ) # KJ / V06 74.6 G 0 C N6 xg NJ _ ƒ*w X 4 Y% / 6 I (3) N6 # )+.% 6 )! (3) / X _F % x T+ / +_ 6.+ )! 6( # 55

4 / Tout o =50 C Tin o o =70 C Tin =50 ˆ6 xˆv C Tin o =70 C T = h = o 350 C m W 0C 5 6 74 8. % / #6 $%S J 4* ( 74 --7 N6 74 / $ 6 I % )! ( ) (-) (:) # 4 B 6 % / (:) #4 B 6 $ 6.+ $%S D 6 / 5 4 K / (-) / ( ) # 4 B 6 $ g+.6 #6 6 $%S 7 K 6 ( # A :;< #4 5 6 - F.% :;< #... ) 4 Y% / 6 I KJ / V06 74-3 F []7W xg NJ _ *W X σ = σ + σ σ + σ r Mises r r θ θ normal r ri = r r o i (7) (8) / 6 I % J 74-4 F (:) #4 B 6 / 6 I % J 74-5 F (-) #4 B 6 74 / $ #6 $%S )* (:) # 4 B 6 / ' )! H / -7 :-7 +N6 ( ) (-) -7 :-7 +N6 #)+.% 6 # 4 B 6 + 74 ` / 6 #6 $%S )* J 74 ` / SV. # G 8. _ * $ #6 $%S J 4* ( 74 :-7 N6 74 / $ 6 I % )! ( ) (-) (:) # 4 B 6 % / & $ (:) # 4 B 6.+ /. / = #6 $%S.% F 8 J / J (-) # 4 B 6 $%S J $ N ( ) # 4 B 6 0L (:) # 4 B 6 $ //.6 K% 0L ( ) # 4 B 6 K% _ 3S= 4 8 6 4 +N6 x/ %.% % 74 56

!/ J_ J +J / $ 74 6 ( 0 () 5/ 7/ / 4 g+.6/ -< N/G (6) (3) 5/ x/ ' V % % 5 / 5 K / ;% W 5 8 / ) ( 3 ( # A /.6 ( # A 74 7/ a% &D Z + / $ % (4 3 ) 64 kv % 6 ( # A () IW x/ $!/ 4* ( %_ / :;< K.6% / / 74 ( 0 &! J u ( # A D# X 4 Y% /./ + 4 6 / 0 L6 6 Y% D# X IV / Minitab*(Z 4 +, 4 B 6 / K / (5) (3) IW.6 % / % 4 :;< K 6 ( ) (-) (:) # J + /!/ 4* ( s L6 J u.% 6 %_ +N% 4* ( / W / 0G V Iu *( mv/ + / = IJ $ X // % &/ $D.T+ ) + I / 6 * / I'% 4 D# 3 IW / W / D# NJ N6.6 Y%.% 6 )! (:) / # 4 B 6 / / 6.% &/ *# U=6 u / ' % / -< &/ + )! g+ 4 3S= /.% 4* (!/ ) $ % 74 / 6 74 7/ / ' 74 7/. Smaller is better.+ )! = 4 &/ ( / 6 I % J 74-6 F ( ) #4 B 6 #6 $%S J 4* ( 74-7N6 / 74 / 6 I % $.+ )! ( ) (-) (:) # 4 B 6 % #6 $%S / 5 J (:) # 4 B 6 F 8 J g+. / = J (-) # 4 B 6 $ 4 ( ) # 4 B 6 / W / $.% 6 $%S K / -7 N6 x/ 74 / #6 $%S F. #6 $%S J 4* ( 74-7 N6 74 / $ 6 I % ( ) (-) (:) # 4 B 6 % / ' (:) # 4 B 6 / 6.+ )! #6 $%S / 4 J $ 4 B 6 / O J / = $ g+.6 %_ F 54 (-) # 7 / 5 K / ( ) # 4 B 6-7 :-7 +N6 4.% 6 $%S 4 B 6 / 74 6 +! 4 B 6 / ' 74 (-) #.+ #6 $%S ( ) (:) # # 4 5 6 V % )/ /8 Q ( / - 74 7/ 8. $ $ % # 4 B 6 % /!/ 4* ( / $ 7/ ( % 4 Z + / A /.6 % / IW x/ $ 74.6: 0 a% &D N6 x/ 6 Q ( %= / )% / ( ) (-) (:) # 4 5 6 4 Z + / 8 57

% / 8. 74 # 4 5 6 / :; <... ) 74 /K ( ) (: ) () (-) / ( ) (-) (: ) # 4 B 6 % / ' ( )N 6 6I ( ) N 6 M 06 % (-) N 6 # 6 $ %S (: ) N 6 J 4* ( 7 4-7 F C = 58

!/ J_ J :;< +K /!/ 4* ( O -3 E/!/ ( (MPa)4* 48 / 3 45 / 3 38 / 5 36 / 7 / 7 70 / 3 65 / 3 8 / 7 85 / 4 8 / 76 / 7 68 / 0 / 7 370 / 3 33 / 0 385 / 0 (:) #4 B 6 L6 J u 74 M / ' ' ' ' 3 4 5 6 7 8 0 3 4 5 6 -< N/G M 4! -8 F = $ % ) 74 7/ I J Z J Z% J Z&D J F F % Al = A = F = F + F = % Al + % ZrO 3 3 3 3 F = FA + F B = % Al + % ZrO 3 3 3 3 F = F = % ZrO A B 3 4 B M ( % - E/ 74 M ' Z + / B/ % 74 +( () +a% a% a% 3a% 4a% % /* / I'% - F (:) #4 B 6 / 74 7/ EF / / J J D# g+.6 0 U<!.% &! 74 / 74 #4 B 6 / D# NJ 4 IW x/ 0N6 / 6.+ )! (-) + / D# 6-< +*# 7/ / 6 / SV.+!/ 4* ( *# )V / 3S= / 7/ 74 / D# NJ 5 IW % /.6 -< A. +! N6 ) ( ) # 4 B 6 )V / 4 *D / 3S= / D# 6. ( 0$ 5

/ :;< +K /!/ 4* ( O-5 E/!/ ( (MPa)4* 35 / 8 36 / 6 30 / 0 33 / 3 353 / 0 36 / 7 38 / 3 337 / 8 360 / 0 36 / 38 / 4 336 / 4 474 / 5 38 / 30 / 6 330 / 8 ( ) #4 B 6 L6 J u 74 M / ' ' ' ' 3 4 5 6 7 8 0 3 4 5 6 :;< +K /!/ 4* ( O -4 E/!/ ( (MPa)4* 33 / 3 38 / 0 363 / 8 345 / 3 45 / 44 / 4 43 / 7 3 / 7 46 / 3 455 / 3 434 / 3 405 / 5 437 / 7 408 / 37 / 0 368 / 8 (-) #4 B 6 L6 J u 74 M / ' ' ' ' 3 4 5 6 7 8 0 3 4 5 6 :;< # 4 5 6 74 8. % /... ) % /* / I'% -0 F (-) #4 B 6 / 74 7/ % /* / I'% - F ( ) #4 B 6 / 74 7/ V % / 4* (!/ %J ) -3 A / M xo_ (6) 5/% / ' 74 ( # M / SV 6 Q ( % / /.6 +) / / W / * (+() V % 5_ ( %J )* % / / (a%) -< 4 /.6 U<! 7 6 IW 6/ ` N/G 4* % 5 /5 K / g+.6 ( # A #% W 5 $ Y% )/ A % &/ K ) / #4 5 64 Z + / % Z4P D# X 4 (-) # 4 B 6 / (4 5 ) 04 ( ) (:) % 4 6 %_ 4* ( (4 4 ) 56 U<!!/ 4* ( ) / A + / D# X 4 Y% / % J.6 xo_ 4 6 Z / # 4 5 6 4 Z.6 60

!/ J_ J J u :;< +K /!/ 4* ( O -8 E/!/ ( (MPa)4* 43 / 550 / 8 83 / 5 077 / 5 034 / 5 350 / 0 86 / 573 / 7 45 / 7 0 / 65 / 463 / 77 / 0 57 / 8 / 06 / 3 (:) #4 B 6 L6 V % 700 0 0 700 700 0 0 700 :;< +K /!/ 4* ( O - E/!/ ( (MPa)4* 550 / 6 50 / 60 / 3 44 / 3 0 / 0 74 / 6 57 / / 0 / 0 07 / 8 30 / 3 570 / 7 36 / 7 53 / 0 684 / 8 65 / (-) #4 B 6 L6 J u V % 800 800 800 800 3 4 5 6 7 8 0 3 4 5 6 3 4 5 6 7 8 0 3 4 5 6 V % ( % -6 E/ V % Z + / B/ % +( +a% a% a% 3a% 4a% 4 :;< K 6 / ;@ L6 J u % / NV. # %_!/ 4* ( NJ % (:) # 4 B 6 / K / 0 8 IW $D / W /.% 6 Z ( ) (-) I'% * J % A!/ 4* ( ( # A % &/ $D J / * /.6 # 4 B 6 % +( -7E/ Z + / B/ % ( ) (-) (:) #4 B 6 ( ) (-) (:) 00 800 5_ 700 0 / ( ) (-) (:) # 4 B 6 / D# NJ a% a% 3a% 4a% N6.% 6 )! 4 3 +N6 K I'% E ` / W / + )! 4* (!/ A a% &D * / 4 K / y 8. / (:) # 4 B 6. M 6

/ # 4 B 6 6 3 N6 + M / 4* (!/ (-) + )! / %J V %. $ 4 y 8. / B 6 4* (!/ 4 N6 x/ g+ 4 K / y 8 / ( ) # 4 6. M )V / 4* (!/ / y# 8 / $ J u //.y# J u ( $ A J ) # _ (+ 4 6 =% + 4 74 / # 5 6 ( # '+ y 8..% = /!/.6!/ 6/ / / M % /* / I'% - F V % (:) #4 B 6 :;< # 4 5 6 74 8. % /... ) M % /* / I'% -4 F V % ( ) #4 B 6 *(4 ( D# _ *W +X 4 Y% / -4 % (+ 4 6 =% =+$ 4* y 8. )*.( # G % / EY J 74 _ V % 4 4* (!/.+ )! $ J / _ $ #6 $%S )* ( # A / - % 74 7/ &D / * 4 * # 0/ # 5 6 ) Q ( /8 / # 4 B 6 74 V % 74 (-) # 4 B 6 / ( ) (:) # 4 B 6 / '.+ #6 $%S # 4 5 6 V % )/ /8 Q ( / - 74 7/ $ $ % 4 B 6 % 4* (!/ ) /.6 ( 0IWEF / # M % /* / I'% -3 F 4 B 6 V % (-) # L6 J u :;< +K /!/ 4* ( O -0 E/!/ ( (MPa)4* 43 / 04 / 57 / 6 708 / 3 843 / 3 74 / 3 4 / 57 / 68 / 6 5 / 8 033 / 8 338 / 8 848 / 40 / 0 58 / 0 / 6 ( ) #4 B 6 V % 00 00 00 00 3 4 5 6 7 8 0 3 4 5 6 6

J J_!/ 63 [0] Chen W. Q., Lee K. Y., Stresses in rotating cross-ply laminated hollow cylinders with arbitrary axial, Strain Analysis, vol.3, pp. 437-445, 4. [] Mian M. A., Spencer A. J. M., Exact solutions for functionally graded and laminated elastic materials, Solid Mechanics, vol. 46, pp. 83-5, 8. [] Chen J., Ding H., Chen W., Threedimensional analytical solution for a rotating disc of functionally graded materials with transverse isotropy, Applied Mechanics, vol. 77, pp. 4-5, 7. [3] Hosseini Kordkheili S. A., Naghdabadi R., Thermoelastic analysis of a functionally graded rotating disk, Composite Structures, vol. 7, pp. 508-56, 7. [4] Zenkour A. M., Stress distribution in rotating composite structures of functionally graded solid disks, Materials Processing Technology, vol. 0(7), pp. 35-357,. [5] Bayat M., Sahari B. B., Saleem M., Aidy Ali., Wong S. V., Thermoelastic solution of a functionally graded variable thickness rotating disk with bending based on the first-order shear deformation theory, Thin-walled Structure, vol. 47, Issue 5, pp. 568-58,. [6] Shahzamanian M. M., Sahari B. B., Bayat M., Mustapha F., Ismarrubie Z.N., Finite element analysis of thermo elastic contact problem in functionally graded axisymmetric brake disks, Composite Structures, vol., Issue 7, pp. 5-60, 00. [7] Bayat M., Saleem M., Sahari B. B., Hamouda A. M. S., Mahdi E., Thermo elastic analysis of functionally graded rotating disk with small and large deflections, Thin-Walled Structures, vol. 45, Issues 7-8, pp. 677-6, 7. [8] Singh S. B., Ray S., Creep analysis in an isotropic FGM rotating disc of Al SiC composite, Materials Processing Technology, vol. 43-44, pp. 66-6, 3. [] Z. Nejad M., Rahimi G. H., Elastic analysis of FGM rotating cylindrical pressure vessels, the Chinese Institute of Engineers, Vol. 33, No. 4, pp. 55-530, 00. [0] ÇAllioĞLu H., Stress analysis in a functionally graded disc under mechanical loads and a steady state temperature distribution, Sadhana vol. 36, pp. 53-64, 0. [] Roy Ranjit K., A Primer on the Taguchi Method (Competitive Manufacturing Series), Society of Manufacturing Engineers., New York, 0. [] Taguci G., Chowdhury S., Wu Y., Taguchi s Quality Engineering Handbook, John Wiley & Sons, Inc., Hoboken, New Jersey, New York, 5. [3] Taguci G., Jugulum R., The Mahalanobis- Taguchi Strategy (A Pattern Technology System), John Wily & Sons, Inc., New York,. / D# NJ &! O - E/ 4 B 6 % 74 7/ ( ) (-) (:) # 74 7/ 4 B 6 # ' (:) (-) ( ) % J 6 + % $ % % Z.! j_ 4 5 6 K% (+ 4 6 =% $ J u / ;@!/ %J 6 N / ) # _ 74 / # 5 6 ( # A # 5 6-3.% = /!/ + 4.( e N;_ & 4W Yt )= J [] +@ 4 Y% / FGM = +$ $%P %&!+, ;V ; Z% I 6 / N6 `.33 ( 75 _Y 6 4 $ [] Afsar A. M., Go J., Finite element analysis of thermoelastic field in a rotating FGM circular disk, Applied Mathematical Modeling, vol. 34, pp. 330-330, 00. 4 X0 N;_ N = } +6 6+ J [3] (FGM) (+ 4 6 =% T<L k % %!+, ;V ; (DQM) ; Y E0/ X 4 Y% / )/ 3 _Y 6 $ %&.30 0 G/_ A _ 4 _ 0 6 [4] / p J FGM N6 N E_YF E6 K L '! $ %& ; # ) )/ X 4 Y%.38)/&/ I% 5 _Y 6 40;W * [5] Leissa A. W., Milton V., The design of orthotropic materials for stress optimization, Solids Structures, vol. 4, pp. 57-56, 78. [6] Jain R., Ramachandra K., Simha K. R. Y., Rotating anisotropic disc of uniform strength, Mechanical Science, vol. 4, pp. 63-648,. [7] Jain R., Ramachandra K., Simha K. R. Y., Singularity in rotating orthotropic discs and shell, Solids Structures, vol. 37, pp. 035-58, 0. [8] Zhou F., Ogawa A., Elastic solutions for a solid rotating disk with cubic anisotropy, Applied Mechanics, vol. 6, pp. 8-83,. [] Ramu S. A., Iyengar K. J., Quasi-three dimensional elastic stresses in rotating disks, Mechanical Science, vol. 6, pp. 473-477, 74.

... % / 8. ) 74 :;< # 4 5 6 / [4] Boresi P., Schmidt R. J., Advanced Mechanics of Materials, John Wily & Sons, Inc., New York, 3. 64