8./0-0 5. ( 67 -(4 *+(,-.( / 0 -+ (3) :; 0. +. ( 64-5 $%& 35 46 75 ) &!&! % ( '!%&! $ #! ) &! &!% ( '!- %&!+,* $ # % */- <. * *(>8.. =<$.% (+ 4 6 =% = $ ) / :;< # 4 5 6 74 8. % / 0 3+ A H I 74.% ( # G % / * EF / # 4 B 6 % 74 7/ &D / ;@ % A / EF / 6 ( # A / / O 6 N / )% K L 4 0/ EF / J B K L 'D 74 / $ #6 $%S )* / N $%S-$%P ( Q ( / /.6 )/ = U<! #6 $%S J ) T / K% 74 ( # G % / :;< # 4 B 6 % ' X 4* ( 0 4 Y% / $ # 4 5 6 V % )/ /8 Q ( /.6 / ).6 ( 0 # 4 5 6 4 Z +!/ 4* ( ) / K% 74 D# % / M # 4 5 6 V % / 4* ( %J D# X 4 # &/ = 4!/ %J V % 74 +( / 74 ( / 4* (!/ 6.6.+ )!. $%P $ (+ :; +[ Investigation of Different Material Distributions and Thermal Boundary Conditions on Stress Field of FGM Rotating Hollow Disk A. Yavari M.H. Abolbashari PhD Student, Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran Professor, Department of Mechanical Engineering, Lean Production Engineering Research Center, Ferdowsi University of Mashhad, Mashhad, Iran Abstract This study aims at investigation the effects of material distribution and thermal boundary condition on stress field of FGM rotating hollow disk. For this purpose, three different problems with four distribution functions for material properties and three different thermal boundary conditions have been applied. Young s modulus, density, and coefficient of thermal expansion distributions are defined as functions of the radius, and Poisson's ratio is assumed uniformly because it has equal value in two considered materials. The first, with assumption of elastic perfectly plastic behavior for material, disk plastic area rate with linear, power, exponential, and logarithmic material property distributions at three different temperature boundary conditions is studied and the best distribution for minimizing plastic area is detected. In the following with the assumption of constant rotational speed, thermal boundary conditions and external and internal radius of the disc, by utilizing criterion Von-Mises stress and the Taguchi method, the distribution of material properties for minimizing the maximum Von-Mises stress in each of the thermal boundary conditions is introduced. Finally, the sensitivity of Von Mises stress subject to the rotational speed, thermal boundary conditions, and material properties of the inner and outer radii is investigated by utilizing the Taguchi method. It s concluded that the sensitivity of maximum Von-Mises stress to temperature distribution is more than to material distribution and rotating speed. Keywords: FGM, Rotating Disk, Thermo Elastic, Stress, Strain. * abolbash@um.ac.ir :
/ ( # A ` <L &W %P + / ;;_ X $ [] + H.% 6 xo_. s (+ 4 6 =% $. ` <L &W / B/ + +) _ V06 + 74 % /4%&/ & / [3] X+ J.% ( y Z +$ $%P + ;;_ 6 6 + 74 [4] 4. % / 4n X / (+ 4 6 =% 4n +$ + [5] + E/.% % / ;;_ G % / (+ +$ $%P Y% 6 / I N6 ` A 4 +). ;@ [6] + )*&6. / (+ 4 6 =% * $ $%P G 0 % pf M 4 # 7 4 6 =% $ $ [7] + E/. 0 # / )O = / (+ $ 6*= ( [8] X+ H%. G G 0 $ * (+ 4 6 =% / ;% Ez 4 ) 0 $. 4.% 6 =% 6 74 Z + $ /!( _ )*< + % / / [] X+, E ` / (+ 4 p4 + $ [0] ;e D.= 6 =% V06 % (+ 4 $ $ / ;;_ $%P NJ. s 6 =% 7/M $ ( # A / ) /! + / g+ % / 74 / 0.% 6 : 0 J $ ' 7/ &D ;@ )O / W 6 ( # A % $ 74 / 74 + / % 6 Q ( g+.% EY J M &D / J Q ( / 0/ EF / ;@.6/ ` N/G 5_ ) / )/4 4 Y% / _YF.% 6 NJ ABAQUS *(Z MATLAB *(Z # 4 5 6 74 8. 7W % / / 4 6 =% = $ ) / :;< / EY ;@ % ( 8) 4* ( (+ $%S )* /.6 % / %_ V EF 74 7/ &D / * 4 * # _ $ #6 ( # G 0 # 4 B 6 % B - + )! (+ / = E0 E ` N_ P/ / + O ;/G 0.6/ = a% / 4 [ % )! ;% / 84 I% # EF ) & A / EOO_. # 4e +W ++ / f( +4% ( # G Y% + =# + g+ Y;< 4 (+.[] # % j_ 4 6/ E*;( % _% $ % 4 kp0. '+ )[+ Nl _ 6 E 8. / / / 6 Y% + )! O = 4 % ( #= 4 # IO Z_% / *;( $ ' a% % E `.[] f -; / +) EY mv/ % ;V % + / B/ E ` kp0.64n ' <L &W 0/ EF /.6 ( # A $ 4% *W T& 4 +$ += M NS( +T% +6/ = $ N;_ / :;< EOO_.6/ +Q ( 4 (+ 4 6 =% (+ + / ;W 4.% 6 Y% _YF 6+ J % % +% +) Y% E0/ X / +% 4 E60 [3] X+ Y% / [4] X+ 0 6. N;_ ; Y ) )/ # X, #P K L *( 0 4 4 6 =% N6 N E_YF E6 K L % / * +p / $ * FG W [5] X+ * g+. G % / $ 74 [7 6] + [. &/ V06 &W %P K L E ` :;< # 4 5 6 74 8. % /... ). s $ / ;;_ X $ [8] X+ A _ Et< 4 0/ %P K L +) + u 8. [] +.( # 6 %P + ) 0 _YF ) % ;@ [0] X+ D. s 0/% 8. * 4 * # ( # A / % ` [] X+. NJ w -6 )O (+ 4 6 =% $ $ +N6 6 A3 F 4 +) O. % / 5
!/ J_ J D *+ E *$ -- ABAQUS *(Z (+ ( 0 &W 6 Y% E ` % ) / P 4 74 6!/ +/TO D + % &/.%.6 += $* % N6 / ) 0 $ / IV / 0/ (% % 5 / 5 NV / +% /.6 TO P 35 040 4 ;@ NJ / P 0 ( # A / 6 U<! )u / + /.6 += = / ( '+ P 35NJ &/)4( # A / +P 0!/.6 ( # A % 6 Q ( '+ P + X 7/ / W / / /TO 4 0/ // : 0 ) %_ P + / 74.6 IV Z K; + 5%.6 ABAQUS*(Z ) / 5/ K;*(Z 7G Z# ABAQUS *(Z 6 s X /.% G.6 NJ 6 N EF / ;@ 6 ( # A u= / # G J ) ) # +.6 4 #4% + + 4 B + $%P e + E ` -% 4( ` :;< NP / TW N= B u= / 0.6 ' / W /.6, * ( ε ) J * ε = α(r)t(r) N.% $ J + % $ * $.[] 6 )/()0 EF / 6 r M //.% ε = e + ε r +, + )! K / e θ e r T(r) () () 0 $%P M.[] % / () EF/ ε θ g+.% ε r () () 0 _ V06 _ V06 % y#/ NFJ $%P. Step. Eigenstrains * * ε = e + ε θ r θ N.+ )! Q ( /.6 U<! 74 ) % / #4 5 6 V % )/ /8 74 7/ &D K 8. $ :;< J &D $ % &/ J % /!/ 4* ( / %J ).6 ( 0 D# X 4 Y% / M V % / 4* (!/ / ' 74 ( # A / X 4 * A /.6 xo_.%6 / &/ D# ;C/ / - D ; E -- $ $ 6 () N6 u )+ % 6 =% (+ 4 }% / * G Et< '% ~. # G % / :;< 4( N6 A $.% 6 Q ( $ H / K / % (-) (:) + 4 +74.% 6 U<! () N6 Y% / 6 ( # A % EF / % A.4% _ )O ;@ $ ;@ _ ( # A b a * / $ + ( ω ) O K / $.6 : 0 4 0/ EF / ( υ) $ 74_ - F 4 V %.% 6 )% K L / / O 6 N / )% K L / IW.6 )/ = EF / A 'D ( α) # B K L ( E) H I K ( υ) )% K L ( K) # #% ( ρ) / x;0 K / (-) (:) / (σ Y ) T;.[5] % 6 )! 6/ Z 4 Z ( # A /8 A $ <L []$ *.6 53
/ σ Y ( MPa ) υ 7 0 / 3 50 0 / 3 Z 4 Z - E/ 0 K( W/ m. C ) 0 3 ρ ( Kg / m ) 700 5700 α ( 0 6 / 0 C ) 3 0 E( GPa ) 70 5 Z A l (:) ZrO (-) 5 6 74 8. % / X # IJ Z;0 /8 / % N= ( # 0 G. *;-+ +74 74 / (6) (5) (4) (3) F(r) = F r + β 5/ ( ln ( Fin Fout ) ln ( b a )) 0 = Fin a F F (r ) = EF /.% -4- K / '.6 (3) :) (4) :) (5) :) (6) :) + )! K / b a F out F in 6 : 0 F/ (6) (3) 7/.6/ $ F in 4 + $ %.6/ N6 F out A4 H>-+I <.(J C/ -5- &/ Y I / + )%& u 4 D#.% D# X Y &/ +X 0 n F 0 (r ) β 0 in out F(r) = F e β F = F e 0 βa 0 in β = ln(f in / F out ) a b 0 in out F(r) = F0 Ln ( β r) F = F Ln( βa) 0 β = ln(f F ) ln(b a) out F = (F F ) (a b) β = (af bf ) (a b) + K% $ </ T& r in in β = exp((f ln a F ln b) (F F )) out in in out 0 + s*w +NV. Y% 6 +4 / y# 8. + ) %+ J u D# O TA $ / 4% &/ 6 %6 $ *+(,-.( -3- % _ / Nt $ / W / ( # A YF (x-y) $ _YF ) ) ` 4 _% / G( $ a%.% 6.6 ( # A YF V06 ) / // % u= / % * 4 * # M 4 ;@ / 4 5 6 //.( $ u r σ r J % / = 0 = 0 T T N6 ` )O Y z _ IJ $ ).6: 0 4 EF / ;@ r=a r=b / W / (i) (ii) 6.( Y;@ 6 / N6 x/ # 4 5 6 6 ( # # 4 5 6.6 ( # A :;< 4 ( /D X / +` )g+ Ot + [ +/ S0/ /H% '+ 6 +0F ' u +} D + % [ +NS( 6 Q ( (:) # 4 B 6. /! 0 C / 5_ 70 0 C /8 EF / 5_ $ a% / /W K L B 6 /.6/ 0 W / m 0 C # IO NJ 5% J / )% 4 0/ # 350 3 u 4 % J / 4 B 6.6 += %_ ;@ _ Nt /8 U<! / _ / $ 4 ) A 3 F /.% ( # G Z;0 / / K% (-) #4 B 6!/ # IO IJ /8 0 / _ / Nt $ $ N= 5_.% ƒs= _ X # 4 B 6.6/ 4 W 4 = f( [Y % xv $ 6 Q ( # Q ( ( ) # 4 B 6.% 50 0 C 70 0 C $ 6 ( + # IO 4 ) A 3 F /.% 50 0 C / ) # 4 B 6 :;< # 4 A t<! /8 / _ / 6 Nt $... ) 54
!/ J_ J % J 6 5 4 +N6 74 &D ( # A / 6 I (:) # 4 B 6 / K / ' 6 5 4 +N6 / W /.+ )! ( ) (-) J / 74 8. ) # 4 B 6 +. +! W 88 70 / 4 N6 E ` _ #% W 4 50 / 5 N6 ;% + / J 74 y %5070/ 6N6 (-) # 4 B 6 74 7/ &D E ` 4 ' # 4 B 6 /.% = / 4 5 6 74 8. 7W % / / 6 =% = $ ) / :;< # EY ;@ % ( 8) 4* ( (+ 4.6 % / %_ V EF/ * 4 * # _ $ #6 $%S )* - # 4 B 6 % 74 7/ &D / U<! 74 ) % / ( # G 0 - ( / N $%S-$%P J.6 74 g+.6 ( # A! r = a A $ 6 : 0 # / % N6 r = b (:) % N6 F in (6) (3) 5/ IW / W / //.6/ (-).% (-) / / F out (:) / / 5 /5 K / $ g+ 8 / ) V % %.6( # A #% W5$ (7) / EF / ( 8 ) 4* ( 74 + / $ 6 I % 6 : 0 74 &D ( # A / # 4 B 6 % 4 Z % / T% / ' / &/ +! / $ g+.6.6 I (8)/ EF O / ( + /.6 Z + ) $.6 Y# a% ) / 6 ( # A : FS= 4 EF / ) ) 3+ ksl.6 U<! 3+ /..6/ 4n 0G $ 4* ( )* G 6 0 3+ / y# 8. +( 0. % ( + / 6 U<! %6 NG +( Z % xo_.6 0 %.% 6 ( # A &D X W IW +@ / W / 0/ ;J.3 (E!4 J u) 0 D# E!4 J u + 4 W / W /.6 -< K% 8 +( 0 6 A +( 4 Z K 0 W / ' / N/O -< A 3+ / )% / Z4P +4 % +( 0 / W / A xo_.6 ) % 6 Y% L6 J u 4 Z + / B/.% 6 ( # A EY 4 K 6 ( %_ / 6 s X 4 Y% / +,.6 += = 6J u E!4 Z / 4* D# +I( 4 4 % / X4 / )D.6 Y% % & 3+ / K% 6/ 4* (!/ )* D + xo_ D / 4 w % A 4 J &/ U=6 $ A /.6 Y% % &/ * / I'% 6 0 Y / ) D# X!/ 0 /.6/ 6. 0W [3-] 7W K- L$ -3 [4] 7W xg NJ / _ *W N;_ / 74 A /. # 4 % O ) 4 V % Z = EF / A 0 C = EF / $ 8 / 4 B 6 74 / )% /.6 ( # ( # A ( ) # KJ / V06 74.6 G 0 C N6 xg NJ _ ƒ*w X 4 Y% / 6 I (3) N6 # )+.% 6 )! (3) / X _F % x T+ / +_ 6.+ )! 6( # 55
4 / Tout o =50 C Tin o o =70 C Tin =50 ˆ6 xˆv C Tin o =70 C T = h = o 350 C m W 0C 5 6 74 8. % / #6 $%S J 4* ( 74 --7 N6 74 / $ 6 I % )! ( ) (-) (:) # 4 B 6 % / (:) #4 B 6 $ 6.+ $%S D 6 / 5 4 K / (-) / ( ) # 4 B 6 $ g+.6 #6 6 $%S 7 K 6 ( # A :;< #4 5 6 - F.% :;< #... ) 4 Y% / 6 I KJ / V06 74-3 F []7W xg NJ _ *W X σ = σ + σ σ + σ r Mises r r θ θ normal r ri = r r o i (7) (8) / 6 I % J 74-4 F (:) #4 B 6 / 6 I % J 74-5 F (-) #4 B 6 74 / $ #6 $%S )* (:) # 4 B 6 / ' )! H / -7 :-7 +N6 ( ) (-) -7 :-7 +N6 #)+.% 6 # 4 B 6 + 74 ` / 6 #6 $%S )* J 74 ` / SV. # G 8. _ * $ #6 $%S J 4* ( 74 :-7 N6 74 / $ 6 I % )! ( ) (-) (:) # 4 B 6 % / & $ (:) # 4 B 6.+ /. / = #6 $%S.% F 8 J / J (-) # 4 B 6 $%S J $ N ( ) # 4 B 6 0L (:) # 4 B 6 $ //.6 K% 0L ( ) # 4 B 6 K% _ 3S= 4 8 6 4 +N6 x/ %.% % 74 56
!/ J_ J +J / $ 74 6 ( 0 () 5/ 7/ / 4 g+.6/ -< N/G (6) (3) 5/ x/ ' V % % 5 / 5 K / ;% W 5 8 / ) ( 3 ( # A /.6 ( # A 74 7/ a% &D Z + / $ % (4 3 ) 64 kv % 6 ( # A () IW x/ $!/ 4* ( %_ / :;< K.6% / / 74 ( 0 &! J u ( # A D# X 4 Y% /./ + 4 6 / 0 L6 6 Y% D# X IV / Minitab*(Z 4 +, 4 B 6 / K / (5) (3) IW.6 % / % 4 :;< K 6 ( ) (-) (:) # J + /!/ 4* ( s L6 J u.% 6 %_ +N% 4* ( / W / 0G V Iu *( mv/ + / = IJ $ X // % &/ $D.T+ ) + I / 6 * / I'% 4 D# 3 IW / W / D# NJ N6.6 Y%.% 6 )! (:) / # 4 B 6 / / 6.% &/ *# U=6 u / ' % / -< &/ + )! g+ 4 3S= /.% 4* (!/ ) $ % 74 / 6 74 7/ / ' 74 7/. Smaller is better.+ )! = 4 &/ ( / 6 I % J 74-6 F ( ) #4 B 6 #6 $%S J 4* ( 74-7N6 / 74 / 6 I % $.+ )! ( ) (-) (:) # 4 B 6 % #6 $%S / 5 J (:) # 4 B 6 F 8 J g+. / = J (-) # 4 B 6 $ 4 ( ) # 4 B 6 / W / $.% 6 $%S K / -7 N6 x/ 74 / #6 $%S F. #6 $%S J 4* ( 74-7 N6 74 / $ 6 I % ( ) (-) (:) # 4 B 6 % / ' (:) # 4 B 6 / 6.+ )! #6 $%S / 4 J $ 4 B 6 / O J / = $ g+.6 %_ F 54 (-) # 7 / 5 K / ( ) # 4 B 6-7 :-7 +N6 4.% 6 $%S 4 B 6 / 74 6 +! 4 B 6 / ' 74 (-) #.+ #6 $%S ( ) (:) # # 4 5 6 V % )/ /8 Q ( / - 74 7/ 8. $ $ % # 4 B 6 % /!/ 4* ( / $ 7/ ( % 4 Z + / A /.6 % / IW x/ $ 74.6: 0 a% &D N6 x/ 6 Q ( %= / )% / ( ) (-) (:) # 4 5 6 4 Z + / 8 57
% / 8. 74 # 4 5 6 / :; <... ) 74 /K ( ) (: ) () (-) / ( ) (-) (: ) # 4 B 6 % / ' ( )N 6 6I ( ) N 6 M 06 % (-) N 6 # 6 $ %S (: ) N 6 J 4* ( 7 4-7 F C = 58
!/ J_ J :;< +K /!/ 4* ( O -3 E/!/ ( (MPa)4* 48 / 3 45 / 3 38 / 5 36 / 7 / 7 70 / 3 65 / 3 8 / 7 85 / 4 8 / 76 / 7 68 / 0 / 7 370 / 3 33 / 0 385 / 0 (:) #4 B 6 L6 J u 74 M / ' ' ' ' 3 4 5 6 7 8 0 3 4 5 6 -< N/G M 4! -8 F = $ % ) 74 7/ I J Z J Z% J Z&D J F F % Al = A = F = F + F = % Al + % ZrO 3 3 3 3 F = FA + F B = % Al + % ZrO 3 3 3 3 F = F = % ZrO A B 3 4 B M ( % - E/ 74 M ' Z + / B/ % 74 +( () +a% a% a% 3a% 4a% % /* / I'% - F (:) #4 B 6 / 74 7/ EF / / J J D# g+.6 0 U<!.% &! 74 / 74 #4 B 6 / D# NJ 4 IW x/ 0N6 / 6.+ )! (-) + / D# 6-< +*# 7/ / 6 / SV.+!/ 4* ( *# )V / 3S= / 7/ 74 / D# NJ 5 IW % /.6 -< A. +! N6 ) ( ) # 4 B 6 )V / 4 *D / 3S= / D# 6. ( 0$ 5
/ :;< +K /!/ 4* ( O-5 E/!/ ( (MPa)4* 35 / 8 36 / 6 30 / 0 33 / 3 353 / 0 36 / 7 38 / 3 337 / 8 360 / 0 36 / 38 / 4 336 / 4 474 / 5 38 / 30 / 6 330 / 8 ( ) #4 B 6 L6 J u 74 M / ' ' ' ' 3 4 5 6 7 8 0 3 4 5 6 :;< +K /!/ 4* ( O -4 E/!/ ( (MPa)4* 33 / 3 38 / 0 363 / 8 345 / 3 45 / 44 / 4 43 / 7 3 / 7 46 / 3 455 / 3 434 / 3 405 / 5 437 / 7 408 / 37 / 0 368 / 8 (-) #4 B 6 L6 J u 74 M / ' ' ' ' 3 4 5 6 7 8 0 3 4 5 6 :;< # 4 5 6 74 8. % /... ) % /* / I'% -0 F (-) #4 B 6 / 74 7/ % /* / I'% - F ( ) #4 B 6 / 74 7/ V % / 4* (!/ %J ) -3 A / M xo_ (6) 5/% / ' 74 ( # M / SV 6 Q ( % / /.6 +) / / W / * (+() V % 5_ ( %J )* % / / (a%) -< 4 /.6 U<! 7 6 IW 6/ ` N/G 4* % 5 /5 K / g+.6 ( # A #% W 5 $ Y% )/ A % &/ K ) / #4 5 64 Z + / % Z4P D# X 4 (-) # 4 B 6 / (4 5 ) 04 ( ) (:) % 4 6 %_ 4* ( (4 4 ) 56 U<!!/ 4* ( ) / A + / D# X 4 Y% / % J.6 xo_ 4 6 Z / # 4 5 6 4 Z.6 60
!/ J_ J J u :;< +K /!/ 4* ( O -8 E/!/ ( (MPa)4* 43 / 550 / 8 83 / 5 077 / 5 034 / 5 350 / 0 86 / 573 / 7 45 / 7 0 / 65 / 463 / 77 / 0 57 / 8 / 06 / 3 (:) #4 B 6 L6 V % 700 0 0 700 700 0 0 700 :;< +K /!/ 4* ( O - E/!/ ( (MPa)4* 550 / 6 50 / 60 / 3 44 / 3 0 / 0 74 / 6 57 / / 0 / 0 07 / 8 30 / 3 570 / 7 36 / 7 53 / 0 684 / 8 65 / (-) #4 B 6 L6 J u V % 800 800 800 800 3 4 5 6 7 8 0 3 4 5 6 3 4 5 6 7 8 0 3 4 5 6 V % ( % -6 E/ V % Z + / B/ % +( +a% a% a% 3a% 4a% 4 :;< K 6 / ;@ L6 J u % / NV. # %_!/ 4* ( NJ % (:) # 4 B 6 / K / 0 8 IW $D / W /.% 6 Z ( ) (-) I'% * J % A!/ 4* ( ( # A % &/ $D J / * /.6 # 4 B 6 % +( -7E/ Z + / B/ % ( ) (-) (:) #4 B 6 ( ) (-) (:) 00 800 5_ 700 0 / ( ) (-) (:) # 4 B 6 / D# NJ a% a% 3a% 4a% N6.% 6 )! 4 3 +N6 K I'% E ` / W / + )! 4* (!/ A a% &D * / 4 K / y 8. / (:) # 4 B 6. M 6
/ # 4 B 6 6 3 N6 + M / 4* (!/ (-) + )! / %J V %. $ 4 y 8. / B 6 4* (!/ 4 N6 x/ g+ 4 K / y 8 / ( ) # 4 6. M )V / 4* (!/ / y# 8 / $ J u //.y# J u ( $ A J ) # _ (+ 4 6 =% + 4 74 / # 5 6 ( # '+ y 8..% = /!/.6!/ 6/ / / M % /* / I'% - F V % (:) #4 B 6 :;< # 4 5 6 74 8. % /... ) M % /* / I'% -4 F V % ( ) #4 B 6 *(4 ( D# _ *W +X 4 Y% / -4 % (+ 4 6 =% =+$ 4* y 8. )*.( # G % / EY J 74 _ V % 4 4* (!/.+ )! $ J / _ $ #6 $%S )* ( # A / - % 74 7/ &D / * 4 * # 0/ # 5 6 ) Q ( /8 / # 4 B 6 74 V % 74 (-) # 4 B 6 / ( ) (:) # 4 B 6 / '.+ #6 $%S # 4 5 6 V % )/ /8 Q ( / - 74 7/ $ $ % 4 B 6 % 4* (!/ ) /.6 ( 0IWEF / # M % /* / I'% -3 F 4 B 6 V % (-) # L6 J u :;< +K /!/ 4* ( O -0 E/!/ ( (MPa)4* 43 / 04 / 57 / 6 708 / 3 843 / 3 74 / 3 4 / 57 / 68 / 6 5 / 8 033 / 8 338 / 8 848 / 40 / 0 58 / 0 / 6 ( ) #4 B 6 V % 00 00 00 00 3 4 5 6 7 8 0 3 4 5 6 6
J J_!/ 63 [0] Chen W. Q., Lee K. Y., Stresses in rotating cross-ply laminated hollow cylinders with arbitrary axial, Strain Analysis, vol.3, pp. 437-445, 4. [] Mian M. A., Spencer A. J. M., Exact solutions for functionally graded and laminated elastic materials, Solid Mechanics, vol. 46, pp. 83-5, 8. [] Chen J., Ding H., Chen W., Threedimensional analytical solution for a rotating disc of functionally graded materials with transverse isotropy, Applied Mechanics, vol. 77, pp. 4-5, 7. [3] Hosseini Kordkheili S. A., Naghdabadi R., Thermoelastic analysis of a functionally graded rotating disk, Composite Structures, vol. 7, pp. 508-56, 7. [4] Zenkour A. M., Stress distribution in rotating composite structures of functionally graded solid disks, Materials Processing Technology, vol. 0(7), pp. 35-357,. [5] Bayat M., Sahari B. B., Saleem M., Aidy Ali., Wong S. V., Thermoelastic solution of a functionally graded variable thickness rotating disk with bending based on the first-order shear deformation theory, Thin-walled Structure, vol. 47, Issue 5, pp. 568-58,. [6] Shahzamanian M. M., Sahari B. B., Bayat M., Mustapha F., Ismarrubie Z.N., Finite element analysis of thermo elastic contact problem in functionally graded axisymmetric brake disks, Composite Structures, vol., Issue 7, pp. 5-60, 00. [7] Bayat M., Saleem M., Sahari B. B., Hamouda A. M. S., Mahdi E., Thermo elastic analysis of functionally graded rotating disk with small and large deflections, Thin-Walled Structures, vol. 45, Issues 7-8, pp. 677-6, 7. [8] Singh S. B., Ray S., Creep analysis in an isotropic FGM rotating disc of Al SiC composite, Materials Processing Technology, vol. 43-44, pp. 66-6, 3. [] Z. Nejad M., Rahimi G. H., Elastic analysis of FGM rotating cylindrical pressure vessels, the Chinese Institute of Engineers, Vol. 33, No. 4, pp. 55-530, 00. [0] ÇAllioĞLu H., Stress analysis in a functionally graded disc under mechanical loads and a steady state temperature distribution, Sadhana vol. 36, pp. 53-64, 0. [] Roy Ranjit K., A Primer on the Taguchi Method (Competitive Manufacturing Series), Society of Manufacturing Engineers., New York, 0. [] Taguci G., Chowdhury S., Wu Y., Taguchi s Quality Engineering Handbook, John Wiley & Sons, Inc., Hoboken, New Jersey, New York, 5. [3] Taguci G., Jugulum R., The Mahalanobis- Taguchi Strategy (A Pattern Technology System), John Wily & Sons, Inc., New York,. / D# NJ &! O - E/ 4 B 6 % 74 7/ ( ) (-) (:) # 74 7/ 4 B 6 # ' (:) (-) ( ) % J 6 + % $ % % Z.! j_ 4 5 6 K% (+ 4 6 =% $ J u / ;@!/ %J 6 N / ) # _ 74 / # 5 6 ( # A # 5 6-3.% = /!/ + 4.( e N;_ & 4W Yt )= J [] +@ 4 Y% / FGM = +$ $%P %&!+, ;V ; Z% I 6 / N6 `.33 ( 75 _Y 6 4 $ [] Afsar A. M., Go J., Finite element analysis of thermoelastic field in a rotating FGM circular disk, Applied Mathematical Modeling, vol. 34, pp. 330-330, 00. 4 X0 N;_ N = } +6 6+ J [3] (FGM) (+ 4 6 =% T<L k % %!+, ;V ; (DQM) ; Y E0/ X 4 Y% / )/ 3 _Y 6 $ %&.30 0 G/_ A _ 4 _ 0 6 [4] / p J FGM N6 N E_YF E6 K L '! $ %& ; # ) )/ X 4 Y%.38)/&/ I% 5 _Y 6 40;W * [5] Leissa A. W., Milton V., The design of orthotropic materials for stress optimization, Solids Structures, vol. 4, pp. 57-56, 78. [6] Jain R., Ramachandra K., Simha K. R. Y., Rotating anisotropic disc of uniform strength, Mechanical Science, vol. 4, pp. 63-648,. [7] Jain R., Ramachandra K., Simha K. R. Y., Singularity in rotating orthotropic discs and shell, Solids Structures, vol. 37, pp. 035-58, 0. [8] Zhou F., Ogawa A., Elastic solutions for a solid rotating disk with cubic anisotropy, Applied Mechanics, vol. 6, pp. 8-83,. [] Ramu S. A., Iyengar K. J., Quasi-three dimensional elastic stresses in rotating disks, Mechanical Science, vol. 6, pp. 473-477, 74.
... % / 8. ) 74 :;< # 4 5 6 / [4] Boresi P., Schmidt R. J., Advanced Mechanics of Materials, John Wily & Sons, Inc., New York, 3. 64