Fermion anticommutation relations

Σχετικά έγγραφα
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Space-Time Symmetries

2 Composition. Invertible Mappings

Srednicki Chapter 55

Quantum Operators in the Fock Space and Wave Function Languages

Reminders: linear functions

ST5224: Advanced Statistical Theory II

Partial Trace and Partial Transpose

Derivation of Optical-Bloch Equations

( ) = a(1)b( 2 ) c( N ) is a product of N orthonormal spatial

Finite Field Problems: Solutions

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet

1 String with massive end-points

Matrix Hartree-Fock Equations for a Closed Shell System

Hartree-Fock Theory. Solving electronic structure problem on computers

Lecture 13 - Root Space Decomposition II

Review: Molecules = + + = + + Start with the full Hamiltonian. Use the Born-Oppenheimer approximation

Quantum Statistical Mechanics (equilibrium) solid state, magnetism black body radiation neutron stars molecules lasers, superuids, superconductors

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Every set of first-order formulas is equivalent to an independent set

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

EE512: Error Control Coding

C.S. 430 Assignment 6, Sample Solutions

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Lecture 2. Soundness and completeness of propositional logic

NN scattering formulations without partial-wave decomposition

Exercises to Statistics of Material Fatigue No. 5

Tridiagonal matrices. Gérard MEURANT. October, 2008

[1] P Q. Fig. 3.1

Example Sheet 3 Solutions

Andreas Peters Regensburg Universtity

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Homework 3 Solutions

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Analytical Expression for Hessian

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Variational Wavefunction for the Helium Atom

Homomorphism in Intuitionistic Fuzzy Automata

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.

Concrete Mathematics Exercises from 30 September 2016

Three coupled amplitudes for the πη, K K and πη channels without data

Orbital angular momentum and the spherical harmonics

Congruence Classes of Invertible Matrices of Order 3 over F 2

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def

Other Test Constructions: Likelihood Ratio & Bayes Tests

the total number of electrons passing through the lamp.

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Fractional Colorings and Zykov Products of graphs

Statistical Inference I Locally most powerful tests

The Hartree-Fock Equations

4 Dirac Equation. and α k, β are N N matrices. Using the matrix notation, we can write the equations as imc

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

In your answer, you should make clear how evidence for the size of the nucleus follows from your description

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

On a four-dimensional hyperbolic manifold with finite volume

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Assalamu `alaikum wr. wb.

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Galatia SIL Keyboard Information

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

The Simply Typed Lambda Calculus

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

Some Microscopic Aspects of Double Beta Decay Nuclear Matrix Elements in IBM-2

Electronic structure and spectroscopy of HBr and HBr +

Matrices and Determinants

A Note on Intuitionistic Fuzzy. Equivalence Relation

Lecture 21: Scattering and FGR

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Notes on the Open Economy

ψ ( 1,2,...N ) = Aϕ ˆ σ j σ i χ j ψ ( 1,2,!N ) ψ ( 1,2,!N ) = 1 General Equations

The ε-pseudospectrum of a Matrix

Bounding Nonsplitting Enumeration Degrees

SOLVING CUBICS AND QUARTICS BY RADICALS

Démographie spatiale/spatial Demography

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

The challenges of non-stable predicates

Solutions to Exercise Sheet 5

CRASH COURSE IN PRECALCULUS

Partial Differential Equations in Biology The boundary element method. March 26, 2013

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

Affine Weyl Groups. Gabriele Nebe. Summerschool GRK 1632, September Lehrstuhl D für Mathematik

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

Lecture 15 - Root System Axiomatics

Approximation of distance between locations on earth given by latitude and longitude

Elements of Information Theory

Symmetric Stress-Energy Tensor

Problem Set 3: Solutions

PARTIAL NOTES for 6.1 Trigonometric Identities

Numerical Analysis FMN011

Transcript:

Fermion anticommutation relations {a α,a β } = a αa β + a β a α = δ α,β {a α,a β } = {a α,a β } =0 Easy to demonstrate Rewrite antsymmetric state α 1 α 2 α 3...α N = a α 1 α 2 α 3...α N = a α 1 a α 2 α 3...α N =... = a α 1 a α 2...a α N = a α i i Ensures Pauli principle α 1 α 2...α N = a α 1 a α 2...a α N = a α 2 a α 1...a α N = α 2 α 1...α N Occupation numbers n α1 =1,n α2 =0,n α3 =1, 0,..., 0,... = α 1 α 3

Examples? One-body operators in Fock space 1 particle in sp space F = α α α F β β β Operator completely determined by all α F β N N-particle space F N = F (1) + F (2) +... + F (N) = F (i) Action of F (i) on a product state F (i) α 1 α 2 α 3...α N ) = α 1 α 2... α i 1 { } β i β i F α i αi+1... α N β i = β i β i F α i α 1...α i 1 β i α i+1...α N ) i=1

One-body operators (continued) Matrix element β i F α i same for any particle (dummy variables) Then F N α 1 α 2 α 3...α N )=F(1) α 1 α 2... α N +... + α 1 α 2...F (N) α N = β 1 F α 1 β 1 α 2...α N )+... + β N F α N α 1 α 2...β N ) β 1 β N = N i=1 β i β i F α i α 1 α 2...α i 1 β i α i+1...α N ) Since F N is symmetric it commutes with the antisymmetrizer Thus N F N α 1 α 2 α 3...α N = i=1 β i β i F α i α 1 α 2...α i 1 β i α i+1...α N A

Fock-space one-body operator Consider Fock-space operator Note the ^ notation This operator accomplishes the same as F N for any N! Use ˆF = αβ α F β a αa β [ ˆF, a α i ] = α F β [a αa β,a α i ]= α F β (a αa β a α i a α i a αa β ) αβ αβ = αβ α F β a α(a β a α i + a α i a β )= αβ α F β a αδ β,αi = α α F α i a α = β i β i F α i a β i and apply ˆF α 1 α 2 α 3...α N = ˆFa α 1 a α 2...a α N = [ˆF, a α 1 ]a α 2...a α N + a α 1 ˆFa α2...a α N = [ˆF, a α 1 ]a α 2...a α N + a α 1 [ ˆF, a α 2 ]...a α N +... + a α 1 a α 2...[ ˆF, a α N ] = N β i F α i a α 1...a α i 1 a β i a α i+1...a α N i=1 β i = N β i F α i α 1...α i 1 β i α i+1...α N i=1 β i

Examples Density operator for N particles ρ N (r) = N δ(r r i ) i=1 Second-quantized form: choose { r,m s } basis In Fock space ˆρ(r) = m s,m s d 3 r 1 d 3 r 1 r 1 m s δ(r r op ) r 1m s a r 1 m s a r 1 m s = m s a rm s a rms Kinetic energy ˆT = αβ α T β a αa β = p 1 m 1 p2 op 2m p 2m 2 a p 1 m 1 a p2 m 2 p 1 m 1 p 2 m 2 = p2 1 2m a p 1 m 1 a p1 m 1 p 1 m 1

Consider ˆN = α a αa α More examples [ Determine ˆN, a αi] = α [ a α a α,a α i ] = a α i Therefore ˆN α 1...α N = N α 1...α N Change of basis a α = α = λ λ λ α = λ a λ λ α Can be done for any state in Fock space a α = λ λ α a λ Also a α = λ α λ a λ

Similar strategy N-particles Consider Two-body operators in Fock space V N = = V = αβ αβ)(αβ V γδ)(γδ γδ V (1, 2)+ V (1, 3)+ V (1, 4)+... + V (1,N)+ V (2, 3)+ V (2, 4)+... + V (2,N)+ V (3, 4)+... + V (3,N)+.... V (N 1,N) N V (i, j) = 1 N V (i, j) 2 i<j=1 Matrix elements do not depend on the selected pair i j V (i, j) α 1..α i..α j..α N )= β i β j (β i β j V α i α j ) α 1..α i 1 β i α i+1..α j 1 β j α j+1..α N ) (β i β j V α i α j ) identical for any pair as long as quantum numbers are the same, so V N α 1 α 2 α 3...α N )= N i<j=1 β i β j (β i β j V α i α j ) α 1...β i...β j...α N )

V N More on two-body operators Note: symmetric and therefore commutes with antisymmetrizer As a consequence N V N α 1 α 2 α 3...α N = (β i β j V α i α j ) α 1...β i...β j...α N i<j=1 β i β j Fock-space operator ˆV = 1 2 αβγδ (αβ V γδ)a αa β a δa γ accomplishes the same result for any particle number! Note ordering

Use [ ˆV, a α i ] = 1 2 Two-body operator (αβ V γδ)a αa β [a δa γ,a α i ] αβγδ =...... a αa β (a δa γ a α i a α i a δ a γ ) =...... a αa β (a δ(δ γ,αi a α i a γ ) a α i a δ a γ ) =...... a αa β (a δδ γ,αi δ δ,αi a γ ) = 1 (αβ V α i δ)a 2 αa β a δ 1 (αβ V γα i )a 2 αa β a γ αβδ = (αβ V α i δ)a αa β a δ = αβδ αβγ (β i β j V α i α i )a β i a β j a αi β i β j α i Note (αβ V γδ)=(βα V δγ) since V (i, j) =V (j, i)

Use to show Employ Often used with Check! ˆV = 1 4 Two-body operators ˆV α 1 α 2 α 3...α N = ˆVa α 1 a α 2...a α N = N a α 1...[ ˆV, a α i ]...a α N αβ V γδ a αa β a δa γ αβγδ = = i=1 N (β i β i V α i α i )a α 1...a β i a β a i α i a α i+1...a α N i=1 β i β i α i N N i=1 j>i β i β j (β i β j V α i α j )a α 1...a β i...a β j...a α N f(β j, α i )[a β j a αi,a α j ]= f(β j, α j )a β j β j β j α i αβ V γδ (αβ V γδ) (αβ V δγ) = αβ ˆV γδ

Most common operator Notation often used Hamiltonian Ĥ = ˆT + ˆV = α T β a αa β + 1 2 αβ ψ ms (r) a rms (αβ V γδ)a αa β a δa γ αβγδ Use and In this basis = 2 2m 2 δ(r r )δ m s,m s (r 1 m s1 r 2 m s2 V (r, r ) r 3 m s3 r 4 m s4 ) = δ(r 1 r 3 )δ(r 2 r 4 ) Ĥ = ms + 1 2 rm s T r m s = rm s p2 2m r m s msm s d 3 r ψ ms (r){ 2 d 3 r = i 2m rm s p r m s = 2 2m 2 rm s r m s 2m 2} ψ m s (r) δ m s 1,ms 3 δ m s 2,ms 4 V ( r 3 r 4 ) d 3 r ψ ms (r)ψ m s (r )V ( r r )ψ m s (r )ψ m s (r) second quantization

IPM for fermions in finite systems IPM = independent particle model Only consider Pauli principle Localized fermions Examples Hamiltonian many-body problem: with and Ĥ 0 = ˆT + Û Ĥ 1 = ˆV Û Suitably chosen auxiliary one-body potential Many-body problem can be solved for!! Also works with fixed external potential Ĥ = ˆT + ˆV = Ĥ0 + Ĥ1 Ĥ 0 U ext U Ĥ = ˆT + Ûext + ˆV = Ĥ0 + Ĥ1

Consider in the Use second quantization { λ } basis (discrete sums for simplicity) Ĥ 0 = λλ λ (T + U) λ a λ a λ = λλ ε λ δ λ,λ a λ a λ = λ ε λ a λ a λ All many-body eigenstates of with eigenvalue Ĥ 0 are of the form Φ N n = λ 1 λ 2...λ N = a λ 1 a λ 2...a λ N E N n = N i=1 ε λi

Employ [Ĥ0,a λ i ] = ε λi a λ i Explicitly and therefore Ĥ 0 λ 1 λ 2 λ 3...λ N = Ĥ0a λ 1 a λ 2...a λ N = [Ĥ0,a λ 1 ]a λ 2...a λ N + a λ 1 Ĥ 0 a λ 2...a λ N = [Ĥ0,a λ 1 ]a λ 2...a λ N + a λ 1 [Ĥ0,a λ 2 ]...a λ N +... + a λ 1 a λ 2...[Ĥ0,a λ N ] { N } = ε λi λ 1 λ 2 λ 3...λ N i=1 Corresponding many-body problem solved! Ground state Φ N 0 = λ i F a λ i Fermi sea F

208 Pb for example Empirical potential & sp energies Ĥ 0 a α 208 Pb g.s. = [ ε α + E( 208 Pb g.s. ) ] a α 208 Pb g.s. A+1: sp energies A-1: E A+1 n E A 0 directly from experiment Ĥ 0 a α 208 Pb g.s. = [ E( 208 Pb g.s. ) ε α ] aα 208 Pb g.s. also directly from E A 0 E A 1 n Shell filling for nuclei near stability follows empirical potential

Comparison with experiment Now how to explain this potential

Phenomenological! Calculated from Woods- Saxon plus spin-orbit Neutron levels as a function of A NucPhys

Closed-shells and angular momentum Atoms: consider one closed shell (argument the same for more) nlm l = lm s = 1 2,nlm l = lm s = 1 2,...nlm l = lm s = 1 2,nlm l = lm s = 1 2 Expect? Example: He (1s) 2 = 1 2 { 1s 1s ) 1s 1s )} Consider nuclear closed shell = (1s) 2 ; L =0S =0 Φ 0 = n(l 1 2)jm j = j, n(l 1 2)jm j = j 1,..., n(l 1 2)m j = j

Angular momentum and second quantization z-component of total angular momentum Ĵ z = nljm j z n l j m a nljm a n l j m nljm n l j m = nljm m a nljm a nljm Action on single closed shell Ĵ z nlj; m = j, j +1,..., j = m m a nljm a nljm nlj; m = j, j +1,..., = j Also So total angular momentum Closed shell atoms = { j m= j } m nlj; m = j, j +1,..., j = 0 nlj; m = j, j +1,..., j Ĵ ± nlj; m = j, j +1,..., j =0 J =0 L =0 S =0

Nucleon-nucleon interaction Shell structure in nuclei and lots more to be explained on the basis of how nucleons interact with each other in free space QCD Lattice calculations Effective field theory Exchange of lowest bosonic states Phenomenology Realistic NN interactions: describe NN scattering data up to pion production threshold plus deuteron properties Note: extra energy scale from confinement of nucleons

Isospin Shell closures for N and Z the same!! Also m n c 2 m p c 2 939.56 MeV vs. 938.27 MeV So strong interaction Hamiltonian (QCD) invariant for p n But weak and electromagnetic interactions are not Strong interaction dominates consequences Notation (for now) p α n α adds proton adds neutron Anticommutation relations All others 0 {p α,p β } = δ α,β {n α,n β } = δ α,β

Z proton & N neutron state Exchange all p with n Isospin α 1 α 2...α Z ; β 1 β 2...β N = p α 1 p α 2...p α Z n β 1 n β 2...n β N ˆT + = p αn α α and vice versa ˆT = α n αp α Expect [ĤS, ˆT ± ]=0 Consider ˆT 3 = 1 2 [ ˆT +, ˆT ]= 1 2 = 1 2 will also commute with αβ ( p α n α n β p β n β p βp ) αn α αβ ( p α p β δ α,β n β n αδ α,β ) = 1 2 H S ( p α p α n ) αn α α

Check Then operators obey the same algebra as Isospin so spectrum identical and simultaneously diagonal! proton neutron For this doublet and [ ˆT 3, ˆT ± ]=± ˆT ± ˆT 1 = 1 2 ˆT 2 ˆT 3 = 1 2i ( ˆT + + ˆT ) ( ˆT + ˆT ) J x,j y,j z Ĥ S, ˆT 2, ˆT 3 rm s p = rm s m t = 1 2 rm s n = rm s m t = 1 2 T 2 rm s m t = 1 2( 1 2 + 1) rm sm t T 3 rm s m t = m t rm s m t States with total isospin constructed as for angular momentum

Z=11, N=12 vs Z=12, N=11 Examples Triplet of nuclei