Dynamic Recognition on a Budget

Σχετικά έγγραφα
Other Test Constructions: Likelihood Ratio & Bayes Tests

ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες

Μηχανική Μάθηση Hypothesis Testing

Section 8.3 Trigonometric Equations

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Concrete Mathematics Exercises from 30 September 2016

2 Composition. Invertible Mappings

Ψηφιακή Οικονομία. Διάλεξη 11η: Markets and Strategic Interaction in Networks Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

Problem Set 3: Solutions

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

5.4 The Poisson Distribution.

Instruction Execution Times

The challenges of non-stable predicates

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Solution Series 9. i=1 x i and i=1 x i.

Statistical Inference I Locally most powerful tests

PARTIAL NOTES for 6.1 Trigonometric Identities

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

Inverse trigonometric functions & General Solution of Trigonometric Equations

CE 530 Molecular Simulation

Bayesian modeling of inseparable space-time variation in disease risk

Example Sheet 3 Solutions

Approximation of distance between locations on earth given by latitude and longitude

ST5224: Advanced Statistical Theory II

Reminders: linear functions

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

6.3 Forecasting ARMA processes

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

The Simply Typed Lambda Calculus

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Section 7.6 Double and Half Angle Formulas

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Tridiagonal matrices. Gérard MEURANT. October, 2008

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

TMA4115 Matematikk 3

EE512: Error Control Coding

Stabilization of stock price prediction by cross entropy optimization

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Math 6 SL Probability Distributions Practice Test Mark Scheme

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2. Soundness and completeness of propositional logic

derivation of the Laplacian from rectangular to spherical coordinates

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Second Order Partial Differential Equations

Fractional Colorings and Zykov Products of graphs

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Homework 3 Solutions

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

Every set of first-order formulas is equivalent to an independent set

Προσωπική Aνάπτυξη. Ενότητα 2: Διαπραγμάτευση. Juan Carlos Martínez Director of Projects Development Department

6. MAXIMUM LIKELIHOOD ESTIMATION

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Review: Molecules = + + = + + Start with the full Hamiltonian. Use the Born-Oppenheimer approximation


Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

Math221: HW# 1 solutions

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

5. Choice under Uncertainty

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

Προσομοίωση BP με το Bizagi Modeler

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

Congruence Classes of Invertible Matrices of Order 3 over F 2

Συστήματα Διαχείρισης Βάσεων Δεδομένων

Partial Trace and Partial Transpose

Depth versus Rigidity in the Design of International Trade Agreements. Leslie Johns

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ

Models for Probabilistic Programs with an Adversary

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

Προσωπική Aνάπτυξη. Ενότητα 4: Συνεργασία. Juan Carlos Martínez Director of Projects Development Department

Proforma C. Flood-CBA#2 Training Seminars. Περίπτωση Μελέτης Ποταμός Έ βρος, Κοινότητα Λαβάρων

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

4.6 Autoregressive Moving Average Model ARMA(1,1)

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Proforma E. Flood-CBA#2 Training Seminars. Περίπτωση Μελέτης Ποταμός Έ βρος, Κοινότητα Λαβάρων

Second Order RLC Filters

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Ξένη Ορολογία. Ενότητα 6: Working Capital

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Test Data Management in Practice

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Numerical Analysis FMN011

These derivations are not part of the official forthcoming version of Vasilaky and Leonard

EPL 603 TOPICS IN SOFTWARE ENGINEERING. Lab 5: Component Adaptation Environment (COPE)

GREECE BULGARIA 6 th JOINT MONITORING

Matrices and Determinants

Block Ciphers Modes. Ramki Thurimella

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Transcript:

Dynamic Recognition on a Budget Sergey Karayev Mario Fritz Trevor Darrell

Logo courtesy of Jon Barron. I work in computer vision.

With a test time budget, cannot compute all features. SIFT HOG LBP SSIM color Textons

With different instances benefiting from different features, selection needs to be dynamic.

f R or

Feature selection f 0 0 β 3 β 4 Insufficient when budget is Anytime, or when budgeted across multiple instances.

Cascade Viola & Jones (CVPR 2001) R 1 1 1 Two actions: Reject and Continue.

Minimizing feature cost Chen et al. (ICML 2012), and others. R 1 1 1 Optimize both stage thresholds and order by considering feature computation cost. L(f) =l(f)+ρr(f) }{{} regularized risk + λc(f) }{{} test cost

Dynamic Feature Selection Branch on selected feature values. Be able to classify from any state.

Active Classification Gao & Koller (NIPS 2011)

Active Classification Gao & Koller (NIPS 2011) Action selection: greedy, based on expected information gain in mixture of Gaussians model (predicted by nearest neighbors in dataset).

Active Classification Gao & Koller (NIPS 2011) Action selection: greedy, based on expected information gain in mixture of Gaussians model (predicted by nearest neighbors in dataset). Feature combination: same mixture of Gaussians model.

Timely Object Recognition Karayev et al. (NIPS 2012)

Timely Object Recognition Karayev et al. (NIPS 2012) Action selection: non-myopic linear policy learned by MDP, with manually defined reward.

Timely Object Recognition Karayev et al. (NIPS 2012) Action selection: non-myopic linear policy learned by MDP, with manually defined reward. Feature combination: inference in a graphical model (but isn t the point).

Dynamic Feature Selection for Classification Karayev et al. (current)

Dynamic Feature Selection for Classification Karayev et al. (current) Action selection: non-myopic policy learned by MDP.

Dynamic Feature Selection for Classification Karayev et al. (current) Action selection: non-myopic policy learned by MDP. Feature combination: linear.

General agent-based approach. Classification Classification update state with observations receive reward (in training) classification minimize loss State State State action selection maximize expected value Observations Observations etc Action Action Action Time execute action receive feature value

Classification Classification update state with observations receive reward (in training) classification minimize loss State State State action selection maximize expected value Observations Observations etc Action Action Action MDP Time execute action receive feature value

Definition 2. The feature selection MDP consists of the tuple (S, A,T( ),R( ),γ): State s Sstores the selected feature subset H π(x) and their values and total cost C Hπ(x). The set of actions A is exactly the set of features H. The (stochastic) state transition distribution T (s s, a) can depend on the instance x. The reward function R(s, a, s ) R is manually specified, and depends on the classifier g and the instance x. The discount γ determines amount of lookahead in selecting actions: if 0, actions are selected greedily based on their immediate reward; if 1, the reward accrued by subsequent actions is given just as much weight as the reward of the current action. V π (s 0 )=E ξ {π,x} r(ξ) =E ξ {π,x} [ I i=0 γ i r i ]

action selection maximize expected value policy: action-value function: reward definition assume linearity: learning the policy

action selection maximize expected value policy: action-value function: reward definition assume linearity: learning the policy

reward definition: Anytime performance

reward definition: Anytime performance

reward definition: Anytime performance

In practice, use infogain. a = h f I Hs (Y ; h f ) I Hs (Y ; h f )(B s 1 2 c f ) c f Bs I(Y ; H π(x) )=H(Y ) H(Y H π(x) )= y Y P (y)logp (y) y,h π(x) P (y, H π(x) )logp (y H π(x) )

action selection maximize expected value policy: action-value function: reward definition assume linearity: learning the policy

learning the policy Sample the expectation: collect (state, action, reward, state) tuples by executing current policy. Update the policy: solve for weights. Iterate.

Want to be fast Classification Classification + cost, entropy, other features update state with observations receive reward (in training) classification minimize loss State State State action selection maximize expected value Observations Observations etc Action Action Action Time execute action receive feature value

How do we combine arbitrary subset of features? Accuracy Subset? Cost MRF model Naive Bayes Karayev et al. (NIPS 2012) Linear model?

Two ideas: Missing value imputation; Learning multiple linear models.

Missing value imputation Mean SVD The rank-r truncated SVD of N F matrix X c can be written as ˆX c = U R D R V T R (1) in x. The unobserved values x u are filled in by V u R ( ) 1 VR ot V R o V ot R xo. Gaussian p y y x = [ ] x o x u x u x o N N ( 0, [ ]) A C C T B ( ) C T A 1 x o, B C T A 1 C (3) (4) knn

Missing value imputation Mean SVD The rank-r truncated SVD of N F matrix X c can be written as ˆX c = U R D R V T R (1) in x. The unobserved values x u are filled in by V u R ( ) 1 VR ot V R o V ot R xo. Gaussian p y y x = [ ] x o x u x u x o N N ( 0, [ ]) A C C T B ( ) C T A 1 x o, B C T A 1 C (3) (4) knn

Missing value imputation Mean SVD The rank-r truncated SVD of N F matrix X c can be written as ˆX c = U R D R V T R (1) in x. The unobserved values x u are filled in by V u R ( ) 1 VR ot V R o V ot R xo. Gaussian p y y x = [ ] x o x u x u x o N N ( 0, [ ]) A C C T B ( ) C T A 1 x o, B C T A 1 C (3) (4) knn

Missing value imputation Mean SVD The rank-r truncated SVD of N F matrix X c can be written as ˆX c = U R D R V T R (1) in x. The unobserved values x u are filled in by V u R ( ) 1 VR ot V R o V ot R xo. Gaussian p y y x = [ ] x o x u x u x o N N ( 0, [ ]) A C C T B ( ) C T A 1 x o, B C T A 1 C (3) (4) knn

Digits Scenes

Training on feature vectors with correctly missing value distribution. Input: D = {x n,y n } N n=1; L B Result: Trained π, g π 0 random; for i 1 to max iterations do States, Actions, Costs, Labels GatherSamples(D, π i 1 ); g i UpdateClassifier(States, Labels); Rewards ComputeRewards(States, Costs, Labels, g i, L B,γ); π i UpdatePolicy(States, Actions, Rewards); end

Learning multiple classifiers. In this case, 2 separate models: and

Digits Scenes

Dynamic results.

We evaluate the following baselines: Static, greedy: corresponds to best performance of a policy that does not observe feature values and selects actions greedily (γ =0). Static, non-myopic: policy that does not observe values but considers future action rewards (γ =1). Dynamic, greedy: policy that observes feature values, but selects actions greedily. Our method is the Dynamic, non-myopic policy: feature values are observed, with full lookahead.

Synthetic random optimal Example static, non-myopic dynamic, non-myopic Feature Number Cost d i : sign of dimension i D 1 q o : label of datapoint, 2 if in quadrant o D 10

Scenes-15 bedroom suburban industrial kitchen living room coast forest highway inside city mountain open country street tall building office store Dynamic Static

feline dog vehicle (Figures from Jia Deng at Stanford and Yangqing Jia at Berkeley).

ILSVRC-65

Thank you.