Chapter 1 Complex numbers

Σχετικά έγγραφα
COMPLEX NUMBERS. 1. A number of the form.

Section 8.3 Trigonometric Equations

Section 7.6 Double and Half Angle Formulas

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Inverse trigonometric functions & General Solution of Trigonometric Equations

CRASH COURSE IN PRECALCULUS

Trigonometric Formula Sheet

Matrices and Determinants

PARTIAL NOTES for 6.1 Trigonometric Identities

EE512: Error Control Coding

Areas and Lengths in Polar Coordinates

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Section 9.2 Polar Equations and Graphs

Example Sheet 3 Solutions

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Homework 3 Solutions

Section 8.2 Graphs of Polar Equations

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Areas and Lengths in Polar Coordinates

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Finite Field Problems: Solutions

Trigonometry 1.TRIGONOMETRIC RATIOS

F19MC2 Solutions 9 Complex Analysis

Math221: HW# 1 solutions

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

If we restrict the domain of y = sin x to [ π 2, π 2

Presentation of complex number in Cartesian and polar coordinate system

SOLVING CUBICS AND QUARTICS BY RADICALS

Srednicki Chapter 55

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

( ) 2 and compare to M.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

MathCity.org Merging man and maths

2 Composition. Invertible Mappings

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Math 6 SL Probability Distributions Practice Test Mark Scheme

Not for reproduction

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

derivation of the Laplacian from rectangular to spherical coordinates

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Problem 1.1 For y = a + bx, y = 4 when x = 0, hence a = 4. When x increases by 4, y increases by 4b, hence b = 5 and y = 4 + 5x.

Homework 8 Model Solution Section

Second Order RLC Filters

Solutions to Exercise Sheet 5

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Quadratic Expressions

Second Order Partial Differential Equations

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

C.S. 430 Assignment 6, Sample Solutions

w o = R 1 p. (1) R = p =. = 1

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Tridiagonal matrices. Gérard MEURANT. October, 2008

Differential equations

Chapter 6 BLM Answers

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Reminders: linear functions

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Numerical Analysis FMN011

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

Problem Set 3: Solutions

AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop

Derivations of Useful Trigonometric Identities

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Approximation of distance between locations on earth given by latitude and longitude

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Differentiation exercise show differential equation

Paper Reference. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced. Thursday 11 June 2009 Morning Time: 1 hour 30 minutes

Section 7.7 Product-to-Sum and Sum-to-Product Formulas

Concrete Mathematics Exercises from 30 September 2016

Strain gauge and rosettes

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Solution to Review Problems for Midterm III

Answer sheet: Third Midterm for Math 2339

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem.

*H31123A0228* 1. (a) Find the value of at the point where x = 2 on the curve with equation. y = x 2 (5x 1). (6)

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου

is like multiplying by the conversion factor of. Dividing by 2π gives you the

TRIGONOMETRIC FUNCTIONS

2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν.

D Alembert s Solution to the Wave Equation

IIT JEE (2013) (Trigonomtery 1) Solutions

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Principles of Mathematics 12 Answer Key, Contents 185

Solution Series 9. i=1 x i and i=1 x i.

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Transcript:

Complex numbers MC Qld- Chapter Complex numbers Exercise A Operations on and representations of complex numbers a u ( i) 8i b u + v ( i) + ( + i) + i c u + v ( i) + ( + i) i + + i + 8i d u v ( i) ( + i) ( i) e u v ( i)( + i) + i i 8i + 8i f u v i i + i i i i+ 8i i i 0 ( + 8 i) 0 ( + 8i) 0 0. 0.8i g u ( i) ( i) 9 i + i i a v + i ( ) + (). b v + w + i + ( + i) + i + + 8i 9i 9 c v i d w+ v e ( + i+ ( + i) ( + i + i) ( + i) i w i () + ( ) 7. f vv ( + i)( i) + i i i g w w ( + i) ( + i) ( + 8i)( 8i) i + i i 8 h v v i + i i i i ( + i) 0. 0.i i w i + i i i i i 7 ( i) 7 0.0 0.i a z a + bi Show that z z z LHS z a bi a+ bi a bi a bi a + b z a bi RHS z ( a + b ) z z z b zz LHS RHS z LHS RHS So zz z a Let z + i r () + () r 8 r zz (a + bi) (a bi) a b i a + b z ( a + b ) a + b a bi a + b LHS

MC Qld- Complex numbers θ tan π θ ( st quadrant) z cis z. cis b Let z i r () + ( ) r θ tan ( ) ( th quadrant) π θ π r cis π r. cis c z + i r ( ) + () r θ tan ( ) ( nd quadrant) θ π r cis π r. cis π d z + i r ( ) + () r + r 8 r 7 r.9 θ tan ( st quadrant) θ 0.8 z.9 cis(0.8) e z i r ( ) + ( ) r + r 8 r 7 r.9 θ tan ( th quadrant) θ 0.8 z.9 cis( 0.8) f z + i r () + () r + 9 r r θ tan ( st quadrant) θ 0. z cis(0.) g z i r ( ) + ( ) r r θ tan ( rd quadrant) θ ( π + 0.) θ.0 z cis(.0) h z + i r ( ) + () r r θ tan θ (π 0.) θ.0 z cis(.0) i z + i r () + () r r θ tan θ 0.9 z cis(0.9) a z cis ( nd quadrant) ( st quadrant) z cos + isin z 0. + i 0.8 z +.i b z cis z cos + isin z 0.8 + i 0. z.98 +.i z. +.i c z 0 cis π z 0cos + isin z 0 0. + i 0 0.8 z 0 + 7.i π d z 8 cis π π z 8cos + isin z 8 0.707 + i 8 0.707 z..i e z i cis(π) z i (cos(π) + i sin(π)) i ( + 0) i

Complex numbers MC Qld- f z cis() z (cos() + i sin()) 0. + i 0.8. +.i g z cis() z (cos() + i sin()) z 0. + i 0.9 z. +.7i h z cis( ) z (cos( ) + i sin( )) z 0. + i 0.8 z.08.8i See answers above 7 See answers above 8 a u v cis 8 cis π π ( 8) cis + cis π 8 π + cis π b u v 8 8 cis π cis π 8 π cis π c v u 8 8 cis π π cis 8 π π cis π d u cis cis π cis + cis e v 8 π cis cis(π) (cos(π) + i sin(π)) 9 a Let z + i r + r. tan(θ) θ tan θ 0. In polar form z. cis(0.) z b + i z. cis(0.) z. 0. z. cis(0.) c + i. cis(0.). (cos(0.) + i sin(0.)). + 0.i 0 a Let z + i r + r. tan(θ) θ tan () θ. z. cis(.) z z.. z. cis(0.) z. cos(0.) +. sin(0.)i z.7 + 0.80i.7 0.80i.7 + 0.80i.7 0.80i z.7 0.80i (.7 + 0.80 ).7 0.80i.9 0. 0.i b i i (0 + i) c Let z r cis cos + isin 0.7 + 0.7i i + +

MC Qld- Complex numbers tan(θ) θ π π z z π z cis π z π π π ( th quadrant) π <θ π cos + isin 0. + 0.8i Operation on z Geometric relationship to z a z Reflection in x-axis b iz Anticlockwise rotation of 90 c z Rotation of 80 d iz Clockwise rotation of 90 Investigation Complex numbers and matrices a z + i A I + H 0 0 0 + 0 0 0 0 + 0 b A + ( ) ( ) + ( ) + ( ) + 9 + + 9 7 7 This corresponds to the complex number a + bi where 7 ai + BH 7 0 0 ai + BH a b 0 + 0 a b b a a b 7 So b a 7 Therefore a 7 and b, giving the complex number 7 + i z ( + i)( + i) 9 + i + i + i 7 + i So A corresponds to the complex number z c A ( ) 9 + A corresponds to the complex number c + di where ci + dh 0 0 ci + dh c d 0 + 0 c d d c c d So d c c d d c Therefore c and d So A corresponds to the complex number i z ( + i) i + i i

Complex numbers MC Qld- a b i 9 i i i So the complex number corresponding to A is the inverse of z, z. a b 0 0 b a a b 0 + 0 ai + bh which corresponds to the complex number a + bi a b T b a a b b a a 0 0 b 0 0 ai bh which corresponds to the complex number a bi, the complex conjugate of a + bi. So the transpose corresponds to the conjugate. a b b a a b a b b c + a b a b a b + + b a a + b a + b a 0 b 0 a b 0 a b 0 + + a b I + a + b a + b which corresponds to the complex number a b i a + b a + b (a + bi) a bi a+ bi a bi a bi a b i a bi a + b a b a + b a + b which is the inverse of a + bi So the inverse of the matrix corresponds to the inverse of its corresponding complex number. a c det b b a a a b ( b) a + b a+ bi ( a + b ) a + b So the determinant corresponds to the modulus squared. Investigation e iθ Show that e iθ cos(θ)+ i sin(θ) LΗS e iθ n θ θ n θ +... + ( ) +...!! ( n)! + n+ θ θ n θ i θ + +... + ( ) +...!! (n + )! i But n θ θ n θ cos(θ) +... + ( ) +...!! ( n)! n+ θ θ n θ sin(θ) θ +... + ( ) +...!! (n + )! So LHS (cos(θ)) + i(sin(θ)) cos(θ) + i sin(θ) RHS, as required iθ iθ e + e Show that cos(θ) iθ iθ RHS e + e ( ) ( iθ i θ e + e ) [(cos(θ) + i sin(θ)) + (cos( θ) + i sin( θ))] (cos(θ) + i sin(θ) + cos(θ) i sin(θ)) ( cos(θ)) cos(θ) LHS, as required To express sin(θ) in terms of e iθ and e iθ we first need to have an i sin(θ) term, so we multiply and divide by i. We also multiply and divide by, because we expect to have had two i sin(θ) terms added together, similarly to question. sin(θ) (i sin(θ)) i To have only a sin(θ) term remaining, the cos(θ) terms must cancel out so sin(θ) (cos(θ) + i sin(θ) cos(θ) + i sin(θ)) i [(cos(θ) + i sin(θ)) (cos(θ) i sin(θ))] i [(cos(θ) + i sin(θ)) (cos( θ) + i sin( θ))] i i (eiθ e iθ ) iθ iθ e e i θ Show that cos(iθ) e + e LHS cos(iθ) ii ( θ) ii ( θ) e + e e θ θ + e θ θ e + e RHS, as required log ( x ) xlog e () e θ x e e using the expansion for e x x xlog e () ( xlog e()) ( xlog e()) e + xlog e() + + +...!! x In e x x In e x In ( x In ) ( x In ) e + x In+ + +!!

MC Qld- Complex numbers By using the value of log e () from a table and by taking many terms from the expansion, an accurate value for x can be computed to a certain number of decimal places, depending on the amount of terms used. Investigation e iθ and de Moivre s theorem a Prove that v w rr cis( θ + θ ), where v r cis(θ ) and w r cis(θ ) LHS v w [r (cos(θ ) + i sin(θ ))] [r (cos(θ ) + i sin(θ ))] iθ iθ ( re )( r e ) rr i i e θ + θ ( ) rr i e θ + θ rr cis( θ + θ ) RHS, as required b Prove that v w rr cis( θ θ), where v r cis(θ ) and w r cis(θ ) LHS v w rcis( θ) r cis( θ ) iθ re iθ re r iθ iθ e r r i( θ θ ) e r r θ θ r cis( ) RHS, as required c Prove that v n n r cis nθ, where v r cis(θ ) LHS v n (r cis(θ )) n i ( n re θ ) n ni ( ) r e θ n in ( ) r e θ n r cis( nθ ) RHS, as required a Show that cos(θ) cos (θ) sin (θ) LHS cos(θ) ix ix ( ) ( ) ( i θ i θ e + e e + e ), since cos(x) ( iθ iθ e + e ) ( iθ ) ( iθ ) e + e (cos( θ ) + i sin( θ )) + (cos( θ ) + i sin( θ )) (cos( ) sin( )) (cos( ) sin( )) θ + i θ + θ i θ (cos ( θ ) + i sin( θ )cos( θ ) + i sin ( θ ) + cos ( θ) isin( θ)cos( θ) + i sin( θ)) (cos ( ) sin θ ( θ )) cos (θ) sin (θ) RHS, as required b Show sin(θ) sin(θ) cos(θ) LHS sin(θ) ( ) ( ) ( i θ i θ e e ), i Since sin(x) ix ix ( e e ) i ( iθ iθ e e ) i ( iθ ) ( iθ e e ) i (cos( θ ) + i sin( θ )) (cos( θ ) + i sin( θ )) i (cos( θ ) + i sin( θ )) (cos( θ ) i sin( θ )) i (cos ( θ ) + i sin( θ )cos( θ ) + i sin ( θ ) i cos ( θ) + isin( θ)cos( θ) i sin ( θ)) (i sin( θ)cos( θ )) i sin(θ) cos(θ) RHS, as required a i i i i 0 + i cos + isin e iπ i So i i ( e ) i π e π e b e π i e e π i e[ cos( π) + isin( π) ] e( + 0i) e c log ( i) e First express i in polar form Let z i r cis(θ) r ( ) + ( ) + tan(θ) tan(θ) θ tan, (th quadrant) π So z π π So log e( i) loge iπ e e log ( ) π iπ e + e e log() log( )

Complex numbers MC Qld- 7 π log e() i log e( e) iπ loge Exercise B Factorisation of polynomials in C a z + z i z (i) (z + i)(z i) b z + 7 z 7i z ( 7 i) ( z+ 7 i)( z 7 i) c z + 8z + (z + 8z + ) + (z + ) + 9 (z + ) 9i (z + ) (i) (z + + i)(z + i) d z z + 9 9 z z+ + 9+ z + 7 z + 7i z 7 i z 7 7 z + i z i e z z + 7 z z+ + 7 z + z i (z ) (i) (z + i)(z i) f 9z + z 8 9z z+ + 9 9z z + [(z ) i ] [(z ) (i) ] (z + i)(z i) a z 8 Let w z z 8 w 8 (w + 9)(w 9) (z + 9)(z 9) (z 9i )(z + )(z ) (z (i) )(z + )(z ) (z + i)(z i) (z + )(z ) b z z Let w z z z w w (w )(w + ) (z )(z + ) ( z ( ) )( z i ) ( z+ )( z )( z+ i)( z i) c z + 0z + Let w z z + 0z + w + 0w + (w + )(w + ) (z + )(z + ) (z i )(z i ) (z (i) )(z (i) ) (z + i)(z i)(z + i)(z i) d z + z 0 Let w z z + z 0 w + w 0 (w + )(w ) (z + )(z ) ( z + i )( z ( ) ) ( z + ( i) )( z ( ) ) ( z+ i)( z i)( z+ )( z ) a f(z) z z + z + 8 f( ) ( ) ( ) + ( )+ 8 8 + 8 0 So (z + ) is a factor of f(z) Let f(z) (z + )(z + pz + q) So z z + z + 8 (z + )(z + pz + q) z z + z + 8 z + pz + qz + z + pz +q z z + z + 8 z + (p + )z + (p + q)z + q p + q 8 p q So f(z) (z + )(z z + ) (z + )(z z + 9 9 + ) (z + )[(z ) + ] (z + )[(z ) i ] ( z+ )[( z ) ( i) ] ( z+ )( z + i)( z i) The three factors of f(z) are z +, z + i and z i b f(z) z + z + z f() () + () + () + + 0 so (z ) is a factor of f(z) Let f(z) (z )(z + pz + q) So z + z + z (z )(z + pz + q) z + z + z z + pz + qz z pz q z + z + z z + (p )z + (q p)z q p q p q So f(z) (z )(z + z + ) (z )(z + z + + ) (z )[(z + ) + ] (z )[(z + ) i ]

MC Qld- 8 Complex numbers ( z )[( z+ ) ( i) ] ( z )( z+ + i)( z+ i) The three factors of f(z) are z, z+ + i and z+ i c f(z) z z z + 0 f( ) ( ) ( ) + + 0 8 + 0 So (z + ) is a factor of f(z) Let f(z) (z + )(z + pz +q) So z z z + 0 (z + )(z + pz + q) z z z + 0 z + pz + qz + z +pz + q z z z + 0 z + (p + )z + (p + q)z + q p + q 0 p q So f(z) (z + )(z z + ) 9 9 ( z+ ) z z+ + 9+ 0 ( z+ ) z + ( z+ ) z + ( z+ ) z i ( z+ ) z i ( z+ ) z + i z i The three factors of f(z) are z +, z + i and z i d f(z) z + z z f( ) ( ) + ( ) ( ) + + 0 So (z + ) is a factor of f(z) Let f(z) (z + )(z + pz + q) So z + z z (z + )(z + pz + q) z + z z z + pz + qz + z + pz +q z + z z z + (p + )z + (p + q)z + q p + q p So f(z) (z + )(z + z ) (z + )(z )(z + ) The three factors of f(z) are z +, z and z + e f(z) z z z f( ) ( ) ( ) ( ) + 0 So (z + ) is a factor of f(z) f() () () () 8 8 8 0 So (z ) is a factor of f(z) Let f(z) (z + )(z )(z + pz + q) So z z z (z + )(z )(z + pz + q) z z z (z z + z )(z + pz + q) z z z (z z )(z + pz + q) z z z z + pz + qz z pz qz z pz z + 0z z z z + (p )z + (q p )z + ( q p)z q p 0 q p q So f(z) (z + )(z )(z + z + ) (z + )(z )(z + z + + ) (z + )(z )[(z + ) + ] (z + )(z )[(z + ) i ] (z + )(z )[(z + ) (i) ] (z + )(z )(z + + i)(z + i) The four factors of f(z) are z +, z, z + +i and z + i. f f(z) z Let w z Then z w (w + )(w ) So f(z) (z + )(z ) Let f(z) g(z)h(z) such that g(z) z + and h(z) z g(z) z + g( ) ( ) + + 0 So (z + ) is a factor of g(z) Let g(z) (z + )(z +pz + q) So z + (z + )(z +pz + q) z + z + pz + qz + z + pz + q z + 0z + 0z + z + (p + )z + (p + q)z +q p + 0 q p So g(z) (z + )( z z +) ( z+ ) z z+ + ( z+ ) z + ( z+ ) z i ( z+ ) z i ( z+ ) z + i z i h(z) z h() () 0 So (z ) is a factor of h(z) Let h(z) (z )(z + rz + s) So z (z )(z + rz + s) z z + rz + sz z rz s z + 0z + 0z z + (r )z + (s r)z s r 0 s r s So h(z) (z )(z + z +) ( z ) z + z+ + ( z ) z+ + ( z ) z+ i ( z ) z+ i

Complex numbers MC Qld- 9 ( z ) z+ + i z+ i Since f(z) g(z)h(z), we can now write f(z) ( z+ ) z + i z i ( z ) z+ + i z+ i ( z )( z ) + z + i z i z i z i + + The six factors of f(z) are z +, z, z + i, z i, z+ + i and z+ i a + i is a zero of P(z) z + z 0z + Let z + i, then z i is another zero Let z be the third zero. Then P(z) (z z )(z z )(z z ) (z i)(z + i)(z z ) [(z ) + ](z z ) (z z + + )(z z ) (z z + )(z z ) so z + z 0z + (z z + )(z z ) Comparing the left- and right-hand sides: z z Therefore the two zeros required are i and b + i is a zero of P(z) z + 9z +z + Let z + i, then z i is another zero Let z be the third zero. Then P(z) (z z )(z z )(z z ) (z + i)(z + + i)(z z ) [(z + ) + ](z z ) (z + z + + )(z z ) (z + z + )(z z ) So z +9z + z + (z + z + )(z z ) Comparing the left- and right-hand sides: z z Therefore the two zeros required are i and c i is a root of P(z) z 0z + z Let z i, then z + i is another root let z be the third root, then P(z) (z z )(z z )(z z ) (z + i) (z i) (z z ) [(z ) + ](z z ) (z 8z + + )(z z ) (z 8z + 7)(z z ) So z 0z + z (z 8z + 7)(z z ) Comparing the left- and right-hand sides: 7 z z Therefore the two roots required are + i and z z + z z + 7 If z i is a factor, then z +i is a factor Let P(z) z z + z z + 7, then P(z) has factors (z i) and (z + i) Let P(z) (z i) (z + i)(z + pz + q) (z + 9)(z + pz + q) z + pz + qz + 8z + 9pz +9q z + pz + (q + 8)z + 9pz +9q So z z + z z + 7 z + pz + (q + 8)z + 9pz + 9q p 9q 7 q So P(z) (z i)(z + i)(z z + ) (z i)(z + i)(z z + ) (z i)(z + i)((z ) + ) (z i)(z + i) (( z ) i ) (z i)(z + i) z i z + i Therefore the remaining factors are z + i, z i, z + i and. P(z) z + ( + i)z + i P( i) ( i) + ( + i)( i) + i i i i + i 0, as required P( ) ( ) + ( + i)( ) + i 9 9 i + i 0, as required So i and are the zeros pf P(z) E 7 P(z) z ( + i)z + ( + i)z P(z) (z ) Q(z), where Q(z) is a polynomial Let Q(z) z + pz + q. Then P(z) (z )(z + pz + q) z + pz + qz z pz q z + (p )z + (q p)z q So z ( + i)z + ( + i)z z + (p )z + (q p)z q P ( + i) q P i q P i So Q(z) z iz + Q(i) (i) i(i) + + + D 8 P(z) is a polynomial of degree so Let P(z) (z z )(z z )(z z )(z z ) ai and bi are roots, so let z ai and z bi If ai is a root so is ai, and if bi is a root so is bi, so let z ai and z bi The term that does not contain z is given by z z z z ai bi ai bi a b i a b E 9 P(z) z + z z + a, P( i) 0 P( i) ( i) + ( i) ( i) + a () () (i) + ()(i) (i) + ( i + i ) + i + a i + i + i + i + a 8 7i + 7i + a a 8 0 So a 8 C 0 a Let P(z) z + z + az + 8 If (z + ) is a factor of P(z), P( ) 0 So P( ) ( ) + ( ) + a( ) + 8 0 8 + a + 8 0 a a

MC Qld- 0 Complex numbers b Let P(z) z + az + z If (z + i) is a factor of P(z), P( i) 0 So P( i) ( i) + a( i) + ( i) 0 i a i 0 a a c Let P(z) z + z +8z + a If (z + i) is a factor of P(z), P( + i) 0 So P( + i) ( + i) + ( + i) + 8( + i) + a 0 [( ) + ( ) (i) + ( )(i) + (i) ] + ( i + i ) 8 + i + a 0 ( + i + 8i) + ( i ) 8 + i + a 0 ( i) + ( i) 8 + i + a 0 i 9 i 8 + i + a 0 + a 0 a d Let P(z) z z i + az i If i is a root of P(z), P(i) 0 P(i) (i) (i) i + a(i) i 0 8i + 8i + ia i 0 ia i a a Let P(z) z + az + 8z + b If and are roots, P( ) 0 and P() 0 P( ) ( ) + a( ) + 8( ) + b 7 + 9a + b 9a + b 0 So 9a + b [] P() () + a() + 8() + b 8 + a + + b a + b + 0 So a + b [] Subtracting [] from [] gives 9a a + a 7 a Substituting back into [] gives 9() + b + b b 8 b Let P(z) z + az + bz 7z + If and are zeros of P(z), P() 0 and P() 0 P() () + a() + b() 7() + + a + b 8 + a + b + 0 0 So a + b 0 a + b [] P() () + a() + b() 7() + + a + b 7 + a + b + 0 So a + b [] Subtracting [] from [] gives a a + a 9 a Substituting back into [] gives ( ) + b + b b c Let P(z) z + aiz + bz i If i and i are roots of P(z), P(i) 0 and P(i) 0 P(i) (i) + ai(i) + b(i) i 8i ia + ib i ia + ib 0i 0 So ia + ib 0i a b 0 [] P(i) (i) + ai(i) + b(i) i 7i 9ia + ib i 9ia + ib 9i 0

Complex numbers MC Qld- So 9ia + ib 9i a b [] Subtracting [] from [] gives a a + 0 a Substituting into [] gives ( ) b 0 b 0 b a Let P(z) z iz + aiz + b If (z + ) is a factor of P(z), P( ) 0 P( ) ( ) i( ) + ai( ) + b i ai + b (b ) (a + )i 0 + 0i Therefore, b 0 a + 0 b a b Let P(z) az z + biz + i If (z i) is a factor, P(i) 0 P(i) a(i) (i) + bi(i) + i ai + b + i ( b) (a )i 0 + 0i Therefore, b 0 a 0 b a c Let P(z) z + aiz + iz + ( + i)b If (z + i) is a factor, P( i) 0 P( i) ( i) + ai( i) + i( i)+(+i)b 8i ai + + b + bi ( + b) + (8 + b a) 0 + 0i Therefore + b 0 8 + b a 0 b 8 a 0 a a Since complex roots occur in conjugate pairs, an odd number of roots must have at least one real root. Let P(z) (z z )(z z )(z z ) and i are zeros, so let z and z i. Since i is a zero, i must also be a zero, so let z i So P(z) (z )(z i)( z + i) (z )(z + ) z + z z z z + z a P(z) z + z + z + 08 ai is a solution to P(z), so P(ai) 0 P(ai) (ai) + (ai) + (ai) + 08 a i a + ai + 08 (08 a ) + (a a )i 0 + 0i So 08 a 0 a a 0 a 0 a(a ) 0 a ± a 0 a a ± a must be such that both real and imaginary parts equal zero, so we discard the a 0 solution. Therefore a ±. b P(z) z + iz z i If ai is a solution to P(z), P(ai) 0 P(ai) (ai) + i(ai) ai i a i a i ai i (a + a + a + )i 0i So a + a + a + 0 Let f(a) a + a + a + f( ) ( ) + ( ) + ( ) + + + 0 So a + is a factor of f(a) Let f(a) (a + )(a + pa + q) a + pa + qa + a + pa + q a + (p + )a + (p + q)a + q So a + a + a + a + (p + )a + (p + q)a + q p + q p So f(a) (a + )(a + a + ) (a + )(a + )(a + ) 0 a, a, a Let P(z) z + i P(i) (i) + i i + i 0 So (z i) is a factor of P(z) Let P(z) (z i)[z + (a + bi)z + (c + di)], where a, b, c, d R P(z) (z i)[z + (a + bi)z + (c + di)] z + (a + bi)z + (c + di)z iz i(a + bi)z i(c + di) z + (a + bi)z + (c + di)z iz + (b ai)z + (d ci) z + (a + bi i)z + (c + di + b ai)z + (d ci) z + [a + (b )i]z + [(c + b) + (d a)i]z + (d ci) So z + z + [a + (b )i]z + [(c + b) + (d a)i]z + (d ci) a + (b ) 0 + 0i d ci 0 + i so a 0 b 0 d 0 c b c Therefore P(z) (z i)[z + (0 + i)z + ( + ci)] (z i)(z + iz ) 7 a P(z) z ( + i)z + (i )z + (7 + i)z i Show P() 0 P() () ( + i)() + (i )() + (7 + i)() i + i + i + 7 + i i 0 + 0i 0, as required b P(z) (z ) Q(z) Let Q(z) [z + (a + bi)z + (c + di)z + (e + fi)], where a, b, c, d, e, f R So P(z) (z )[z + (a + bi)z + (c + di)z + (e + fi)] z + (a + bi)z + (c + di)z + (e + fi)z z (a + bi)z (c + di)z (e + fi) z + (a + bi )z + [(c + di) (a + bi)]z + [(e + fi) (c + di)]z (e + fi) z + [(a ) + bi]z + [(c a) + (d b)i]z + [(e c) + (f d)i]z (e + fi) So z ( + i)z + (i )z + (7 + i)z i z + [(a i) + bi]z + [(c a) + (d b)i]z + [(e c) + (f d)i] (e + fi) Equation coefficients gives ( + i) (a ) + bi i (a ) + bi So a b a 0 (i ) (c a) + (d b)i + i (c a) + (d b)i So c a d b c 0 d + c d 0 i (e + fi) + i e + fi So e f Therefore Q(z) z + (a + bi)z + (c + di)z + (e + fi) z + (0 i)z + ( + 0i)z + ( + i) z z i z + + i c Q(z) (z a) + b, where a c and b R Let a c + di, where c, d R Q(z) (z a) + b [z (c + di)] + b z + z (c + di) + z(c + di) (c + di) + b z (c + di)z + (c + cdi d )z [c + c di + c(di) + (di) ] + b

MC Qld- Complex numbers z (c + di)z + [(c d ) + cdi]z (c + c di cd d i) + b z (c + di)z + [(c d ) + cdi]z [(c cd b) + (c d d )i] So z iz z + + i z (c + di)z + [(c d ) + cdi]z [(c cd b) + (c d d )i] i (c + di) + i [(c cd b) (c d d )i] i c + di So (c cd b) So c 0 d (0 (0)() b) So a 0 + i b a i b 8 Let P(z) z + z + 8z + 0z + Since ( z+ i) is a factor of P(z), ( z i) must also be a factor since P(z) has real coefficients Let P(z) ( z+ i)( z i)( z + pz+ q) (z + )(z + pz + q) z + pz + qz + z + pz + q z + pz + (q + )z + pz + q So z + z + 8z + 0z + z + pz + (q + )z + pz + q p q q So P(z) ( z+ i)( z i)( z + p+ ) ( z+ i)( z i)[( z + p+ ) + ] ( z+ i)( z i)[( z+ ) + ] ( z+ i)( z i)[( z+ ) i ] ( z+ i)( z i)[( z+ ) ( i) ] ( z+ i)( z i)( z+ + i)( z+ i) 9 P(z) 9z + (9i )z + ( i)z + i If P( i) 0, (z + i) is a factor of P(z) Let P(z) (z + i)[9z + (a + bi)z + (c + di)], where a, b, c, d R P(z) (z + i)[9z + (a + bi)z + (c + di)] 9z + (a + bi)z + (c + di)z + 9iz + i(a + bi)z + i(c + di) 9z + (a + bi)z + (c +di)z + 9iz + ( b + ai)z + ( d + ci) 9z + [a + (b + 9)i]z + [(c b) + (d + a)i]z + ( d + ci) So 9z + (9i )z + ( i)z + i 9z + (a + (b + a)i)z + [(c b) + (d + a)i]z + ( d + ci) a + (b + a)i 9i d + ci i a + (b + a)i +9i d + ci 0 + i So a b + 9 9 So d 0 c b 0 d 0 Therefore p(z) (z +i)[9z + ( + 0i)z + ( + 0i)] (z + i)(9z z + ) (z + i) 9z z+ + 9 ( z+ i) z + ( z+ i) (z ) i (z + i)(z + i)(z i) 0 a + z a z az + z a z + az + a 0 Let P(z) z + az + a We want to solve for a such that P(z) 0. If i is a zero of P(z), then P ( i) 0. So P ( i) ( i) + a( i) + a 0 9 a + a 0 a + 0 0 a Investigation The exact values of cos and sin z x +yi, z z (x + yi) x + x (yi) + 0x (yi) + 0x + (yi) + x(yi) + (yi) x + x yi 0x y 0x y i + xy + y i So x + x yi 0x y 0x y i + xy + y i x + x yi 0x y 0x y i + xy + y i (x 0x y + xy ) + (x y 0x y + y )i Equating the real parts gives x 0x y + xy z x + y z So z kπ kπ z cis(θ) Therefore z So x + y x + y y x x 0x y + xy x 0x y + x(y ) x 0x ( x ) + x( x ) x 0x + 0x + x( x + x ) x 0x + 0x + x 0x + x x 0x + x x 0x + x 0 The two exact positive solutions for x are and z kπ, k N kπ kπ x + yi cos + isin k x + yi cos + isin So x cos, from part We reject the x solution because this would be when k 0, giving x cos(0). 7 Pythagoras theorem gives cos + sin + sin + + sin

Complex numbers MC Qld- + sin sin sin π + π 0 + sin 0 + sin + The positive square root was taken because the angle π is in the first quadrant, so sin must be positive. Exercise C Solving equations in C a x + x + 0 (x + x + ) + 0 (x + ) + 0 (x + ) x + ± x ± i b x 8x + 0 (x 8x + ) + 0 (x ) + 9 0 (x ) 9 x ± 9 x ± i c x x + 9 0 (x x + 9) 9 + 9 0 (x 7) + 00 0 (x 7) 00 x 7 ± 00 x 7 ± 0i d x x + 0 x x+ 9 + 0 x + 0 9 x x x ± x ± i e x x + 0 x x + 0 x x + 0 x x + 0 x x+ + 0 x + 0 x x x ± ± i x ± i a z z z + 0 0 Let P(z) z z z + 0 0 P( ) ( ) ( ) ( ) + 0 8 + + 0 0 So z is a solution So (z + ) is a factor Let P(z) (z + )(z + pz + q) z + pz + q + z + pz + q z + (p + )z + (p + q)z + q So z z z + 0 z + (p + )z + (p + q) + q p + q 0 p q So P(z) (z + )(z z + ) 0 So z + 0 z z + 0 z a b c ( ) ± ( ) z z ± 9 0 z ± z i ± b z z + z 0 Let P(z) z z + z 0 P() () () + () + 0 So z is a solution So (z ) is a factor Let P(z) (z )(z + pz + q) z + pz + qz z pz q z + (p )z + (q p)z q So z z + z z + (p )z + (q p)z q p q p q So P(z) (z )(z z + ) 0 So z 0 z z + 0 z a b c ( ) ± ( ) z z ± 8 z ± 7 z 7 ± i c z 7z + 0z 8 0 Let P(z) z 7z + 0z 8 0 P() () 7() + 0() 8 8 + 0 8 0 So z is a solution So (z ) is a factor Let P(z) (z )(z + pz + q) z + pz + qz z pz q z + (p )z + (q p)z q

MC Qld- Complex numbers So z 7z + 0z 8 z + (p )z + (q p)z q p 7 q 8 p q So P(z) (z )(z z + ) 0 So z 0 z z + 0 z a, b, c ( ) ± ( ) z z ± 9 z ± z ± i d z z + z 0 Let P(z) z z + z 0 P() () () + () 9 08 + 0 0 So z is a solution So (z ) is a factor Let P(z) (z )(z + pz + q) z + pz + qz z p q z + (p )z + (q p)z q So z z + z z + (p )z + (q p)z q p q p q So P(z) (z )(z z + ) 0 So z 0 z z + 0 z a, b, c ( ) ± ( ) z z ± z ± z i ± e z 0z + z 0 0 Let P(z) z 0z + z 0 0 P() () 0() + () 0 80 + 8 0 0 So z is a solution So (z ) is a factor Let P(z) (z )(z + pz + q) z + pz + qz 8z pz q z + (p 8)z + (q p)z q So z 0z + z 0 z + (p 8)z + (q p)z q p 8 0 q 0 p q 0 So P(z) (z )(z z + 0) 9 (z ) z z+ 9+ 0 (z ) z + (z )[(z ) i ] (z )(z + i)(z i) 0 So z 0 z + i 0 z i 0 z z i z + i z i i f(z) z, g(z) z z +, h(z) z z + z Show that f(z) g(z) h(z) f(z) g(z) (z )(z z + ) z z + z z + z z z + z h(z), as required h(z) 0 So f(z) g(z) 0 (z )(z z + ) 0 So z 0 z z + 0 z a b c ( ) ± ( ) z z ± z ± z i a x + x + 0 y + y + 0, with y x (y + )(y + 9) 0 (x + )(x + 9) 0 x + 0 x + 9 0 x x 9 x ± x ± 9 x ±i x ± i b z z 0 y y 0, with y z (y )(y + ) 0 (z )(z + ) 0 z 0 z + 0 z z z ± z ± z ± z ± i c 9z + z 0 9y + y 0, with y z (9y )(y + ) 0 (9z )(z + ) 0 9z 0 z + 0 z 9 z z ± 9 z ± z ± z ± i d x + x + 9 0 y + y + 9 0, with y x (y + )(y + ) 0 (y + ) 0 (x + ) 0 x + 0 x x ±

Complex numbers MC Qld- (z ) + 0 (z ) i x ± x ± z ± z ± i z ± i B a + i i Let z + i. Take a and b x + + ( ) x + x + x x ± x ± x ± y y y ± y ± y ± Therefore the two roots z, z are z + i and z i So + i is ( + i) or ( + i ) b + 0i Let z + 0i. Take a and b 0 x + + 0 x + 7 x + x 7 x x ± y y y ± Therefore the two roots z, z are z + i and z i So + 0i is + i or i c + i Let z + i. Take a and b x + + x + x + x 8 8 x ± 9 x ± 9 x ± y 8 y 8 y 9 y ± 9 7 y ± y 7 ± Therefore the two roots z and z are z 9 7 i + 9 7 and z i So + i is (9 + 7 i ) or (9 + 7 i ) 7 Let z i z i. Take a 0 b x 0+ 0 + x x ± x ± x ± y 0 y y ±

MC Qld- Complex numbers y ± y ± Therefore the two roots z and z are z z So i i is ( + i ) and ( + i ) + i and 8 One root of a ( + i) is a 8 Let z a 8 and z be the other root The root z is obtained by rotating z through an angle of π c So z a π 8 7π a C 8 (Note that we subtract π c rather than adding it to give an angle such that π < Arg(z) π) 9 a z i If w i r cis(θ) r tan(θ) ( ) + ( ) tan π ( th quadrant) π So w + kπ Let z π + kπ π z + kπ π + π k k 0 z cis π π k z + π The two square roots of i in polar form are cis π and b z + i If w + i r cis(θ) r + tan(θ) tan θ θ tan () ( st quadrant) π So w + kπ Let z + kπ k 0 z z + kπ () + kπ 8 + kπ 8 cis 8 π k z + π 8 9 π 8 9 π π 8 7 π 8 The two square roots of + i in polar form are 8 and 7 π 8 c z + i If w + i r cis(θ) r ( ) + ( ) + 8 8 tan(θ) tan(θ) θ π + tan ( ) ( nd quadrant) π π π So w 8 + kπ Let z 8 + kπ z 8 + kπ kπ + 9 k 0 z 9 π k z + 9

Complex numbers MC Qld- 7 + π 9 8π cis 9 π k z + 9 + π 9 π 9 π π 9 π 9 The three cube roots of + i are 9, 8π 9 and π 9 d z i If w i r cis(θ) r 0 + sin(θ), cos(θ) 0 π θ So w + kπ Let z + kπ z + kπ kπ + k 0 z π k z + + π π π k z + + 8π 9π π π π π e z i If w i r cis(θ) r ( ) + ( ) tan(θ) tan(θ) θ π + tan () ( rd quadrant) π π + π π So w + kπ Let z k 0 z π + kπ π + kπ π kπ + z π π π k z + 8 π + π π π π k z + π + π π π π π The three cube roots of i are π, π and π 0 Let z ( i) So z i Let z w w i r cis(θ) r sin(θ) 0 + ( ), π θ cos(θ) 0 π So w + kπ

MC Qld- 8 Complex numbers So z π + kπ π z + kπ π kπ + π k 0 z π π cos + isin i i π π k z + π π π cos + isin i π π k z + 7π 7π 7π cos + isin π π cos isin i i Sum i+ i i i + i 0 i+ i i So ( i) is i, i or i and they sum to zero. a Let z If w r cis(θ) r sin(θ) 0 cos(θ) θ 0 So w cis(kπ) Let z cis(kπ) z [ cis( kπ )] kπ b k 0 z cis(0) (cos(0) + i sin(0)) k z cos + isin cos + isin i + + i π k z π π cos + isin cos isin i i The three cube roots of are, + i and i a z z cis(kπ) z (cis( kπ )) kπ kπ k 0 z cis(0) k z i k z cis(π) k z π i The four solutions in Cartesian form are, i, and i b z z cis(kπ) z (cis( kπ )) kπ kπ

Complex numbers MC Qld- 9 k 0 z cis(0) k z i k z cis( π ) k z π i The four solutions in Cartesian form are,, i and i c z z cis(kπ) z (cis( kπ )) kπ kπ k 0 z cis(0) k z z cos + isin + i + i k z cos + isin cos + isin i + + i k z cis(π) π k z π π cos + isin cos isin i i π k z π π cos + isin cos isin i i The six solutions in Cartesian form are, + i, + i,, i and. i d z 7 z 7 cis(kπ) z (7cis( kπ )) 7 kπ kπ k 0 z cis(0) k z cos + isin k z z + i + i cos + isin cos + isin i + + i k z cis ( π ) k z π π π cos + isin cos isin k z i i π π π cos + isin

MC Qld- 0 Complex numbers cos isin i i The six solutions in Cartesian form are, z z cis(kπ) z (cis( kπ )), + i, + i, i and i kπ k 0 z cis(0) k z π k z π k z π π π 8π k z 8π π π The five solutions in polar form are cis(0),, π, π and π Investigation Current and voltage iωt V Reiω L+ R+ Ice iωc I cos(0t) A I 0 cos(ω t) A So I 0 s and ω 0 R 80 Ω L 0. H C 0 F V i 0t Re i 0 0. + 80 + e i 0 0 0it Re 9.i+ 80 + e (.9 0 ) i i Re 9.i+ 80 + (cos(0 t) isin(0 t)) + (.9 0 ) i i Re 80 9. (cos(0 ) sin(0 )) (.9 0 ) i t i t + + 80 (cos(0 t)) + i 9. sin(0 t) (.9 0 ) 00 cos(0 t) 9. sin(0 t) (.9 0 ) 00 cos(0t) + 70 sin(0t)

Complex numbers MC Qld- Exercise D Graphs of complex relations: rays, lines and circles a b f g g h c h 7 a d i b c e j d f a a C b E B D a e f b b g c c h d d e 8 a e f b

MC Qld- Complex numbers c d e f g h 9 a b c d e f 0 B D a b c d e f g h Chapter review a u ( i) 8 i b u + v ( i) + ( + i) + i c u v ( i) ( + i) 8 + 0i i i + i u d v i i + i i 8 0i i+ i i 7 i 9 7 9 9 i e u + v ( i) + (+i) 9i + + 0i + i f u + v + i, from part (e) + + 7.0 a z b w + ( ) + c z i d z + w ( + i) + ( + i) + i + + 0 0. e zw ( + i)( i) i i 8i 0i f w ( + i) i + i i i i i i z + i r +

Complex numbers MC Qld- 8 tan(θ) tan(θ) θ tan () ( st quadrant) π z cos + sin + i + i a u v π π π + 9π + π π π π π u b v π cis π π cis 9 π π cis π c v d π 8 cis(π) u π π π π 8 a Let z + i and w i + z + i r tan(θ) + + θ θ π z So w z tan ( ) ( st quadrant) π cis(π) cos(π)+ isin(π) b Let z i and w i z i r + 8 tan(θ) tan(θ) θ tan ( ) ( th quadrant) π π z 8 So w z z π 8 π 8 cis 8 8

MC Qld- Complex numbers i cos sin 8 8 8 8 + 0. + 0.9i 7 x + x + (x + x + 9) 9 + (x + ) 8 ( x + ) ( 8) (x + + 8)(x + 8) ( x + + ) ( x + ) A 8 Let P(z) z 8 z + z If i is a zero, then i must also be a zero. From the multiple choice the other zero must be either or, so we test them P() () () + () 7 7 + 0 P( ) ( ) ( ) + ( ) 7 7 78 0 So the third zero must be. A 9 a P(z) z z + 89 (z z + ) + 89 (z 8) + (z 8) i (z 8) (i) (z 8 + i)(z 8 i) b P(z) z + z 7z + P( ) ( ) + ( ) 7( ) + 8 + 9 + 8 + 0 So (z + ) is a factor of p(z) Let P(z) (z + )(z + pz + q) z + pz + qz + 8z + pz + q z + (p + 8)z + (q + p)z + q So z + z 7 + z + (p + 8)z + (q + p)z + q p + 8 q p q So P(z) (z + )(z z + ) (z + )(z z + ) (z + ) z z+ + (z + ) z + (z + ) z i (z + ) z i (z + ) z + iz i 0 P(z) z + z + az + 9z 9, P(i) 0 P(i) (i) + (i) + a(i) + 9(i) 9 8 7i 9a + 7i 9 8 7i 9a+ 7i 9 7 9a 0 7 a 9 a 8 Let z i So z i, Take a and b x x + + ( ) + + 7 x + 00 x + 0 x x ± ± ± 0 y y y ± ± ± 0 So i is D z + i If w r + i r cis(θ) ( ) + tan(θ) θ tan π So w cis + kπ Let z cis + kπ z + kπ 0 0 i ± ( st quadrant) π kπ + 8 k 0 z π 8 k z π π + 8 + π 8

Complex numbers MC Qld- π 8 k z π π + 8 + π 8 π 8 C π π 8 π 8 z 8 will have 8 solutions which will be evenly spaced on an Argand diagram, so they will be spaced 0 apart 8 E a x x + 0 a, b, c ± ( ) x ± 0 ± ± i ± i b z 8 + i. Take a 8 and b x 8+ 8 + x 8 + + x 8 + 89 x 8 + 7 x x ± ± ± y 8 y 9 y ± 9 y ± ± Therefore z i ± + ± ( + i ) c z + 8 0 z 8 z 8 cis(kπ) z ( 8 cis(kπ) ) 8 kπ kπ k 0 z cis(0) k z cos + isin cos + isin i + i π k z π π cos + isin cos isin i + i The three cube roots of 8 are, i and + i The graph is a ray with angle π clockwise from the horizontal and shifted in the positive direction of the Im(z) axis so E vertical line at Re(z) 7 So B 7 Ray with angle π anticlockwise from the horizontal and shifted units in the negative direction of the Re(z) axis and units in the positive direction of the Im(z) axis. So C 8 Circle of radius with centre at 0 + i. So A ( ) 9 Circle of radius with centre at i. So D 0 Sketch the graph of π z:arg( z i) on an Argand diagram.

MC Qld- Complex numbers Sketch the graph of {z: Im (z + 0 + i) } on the complex plane. Illustrate {z: z + i } on the complex plane. Modelling and problem solving a z w π π π π cis π π cos + sin i b z cos + isin c + i + i w cos + isin i + z w + i + i + i i + i i i+ i i i ( + ) + ( ) i d i Equating the results from parts (a) and (c) gives π π cos + sin i + + i Equating the real parts gives π + cos ii Equating the imaginary parts of part (d) i gives π sin π sin π iii tan π cos + + ( ) ( + ) (8 ) c z, w cos zw π + π + π π π π cos sin i + π π cos + sin i z cos + isin i + + i + i w cos + isin i + + i zw ( + i) ( + i) + i+ i+ i ( ) + ( + )i Therefore ( ) π π cos + sin i ( ) + ( + ) i

Complex numbers MC Qld- 7 Equating the real and imaginary paths gives π cos π sin + π cos π sin + π tan π sin π cos + + + + ( + ) + + 8 + +, as required a z + z i z (8i) (z + 8i)( z 8i) b z + y i y (8i), with y z (y + 8i)(y 8i) (z + 8i)(z 8i) c i Show that ( + i) 8i ( + i) + i + i + 8i 8i, as required ii Show that ( i) 8i ( i) + i + i 8i 8i, as required d z + (z + 8i)(z 8i) [z ( i) ][z ( + i) ] (z + i)(z + i)(z + + i)(z i) e z + (z + i)(z + i)(z + + i)(z i) [(z + i)(z + + i)][(z + i)(z i)] [z + ( + i) z + ( i) z + ( i)( + i)] [z + ( i) z + ( + i) z + ( + i)( i)] [z + ( + i + i)z + + i i i ] [z + ( i + i) z + + i i i ] (z + z + 8)(z z + 8)