Water Retention Curves

Σχετικά έγγραφα
Table 2 Suggested prediction methods to use for a given set of available input parameters per each examined soil hydraulic property) a.

SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS

GS3. A liner offset equation of the volumetric water content that capacitance type GS3 soil moisture sensor measured

Supplementary Information 1.

Figure 1 - Plan of the Location of the Piles and in Situ Tests

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

; +302 ; +313; +320,.

Χαρακτηριστικές Καµπύλες Εδάφους-Νερού Εδαφικών Υλικών από τον Ελλαδικό Χώρο

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil

Γεωπονική Σχολή, Α.Π.Θ., 54124, Θεσσαλονίκη.

ΠΡΟΣΩΡΙΝΕΣ ΕΘΝΙΚΕΣ ΤΕΧΝΙΚΕΣ ΠΡΟ ΙΑΓΡΑΦΕΣ

Conductivity Logging for Thermal Spring Well

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates

Queensland University of Technology Transport Data Analysis and Modeling Methodologies

Second Order Partial Differential Equations

Other Test Constructions: Likelihood Ratio & Bayes Tests

TRIAXIAL TEST, CORPS OF ENGINEERS FORMAT

6.3 Forecasting ARMA processes

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

VBA Microsoft Excel. J. Comput. Chem. Jpn., Vol. 5, No. 1, pp (2006)

4.6 Autoregressive Moving Average Model ARMA(1,1)

Exercises to Statistics of Material Fatigue No. 5

Physical and Chemical Properties of the Nest-site Beach of the Horseshoe Crab Rehabilitated by Sand Placement

Σχέσεις εδάφους νερού Σχέσεις μάζας όγκου των συστατικών του εδάφους Εδαφική ή υγρασία, τρόποι έκφρασης

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]

Το άτομο του Υδρογόνου

Fused Bis-Benzothiadiazoles as Electron Acceptors

E#ects of Drying on Bacterial Activity and Iron Formation in Acid Sulfate Soils

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Sample BKC-10 Mn. Sample BKC-23 Mn. BKC-10 grt Path A Path B Path C. garnet resorption. garnet resorption. BKC-23 grt Path A Path B Path C

Table S1. Summary of data collections and structure refinements for crystals 1Rb-1h, 1Rb-2h, and 1Rb-4h.

Consolidated Drained

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Homework 3 Solutions

Approximation of distance between locations on earth given by latitude and longitude

Section 8.3 Trigonometric Equations

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

ΑΞΙΟΛΟΓΗΣΗ ΤΩΝ ΥΔΡΟΔΥΝΑΜΙΚΩΝ ΧΑΡΑΚΤΗΡΙΣΤΙΚΩΝ ΠΟΡΩΔΩΝ ΜΕΣΩΝ ΜΕ ΤΗ ΧΡΗΣΗ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ RETC

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

ΘΕΡΜΟΚΗΠΙΑΚΕΣ ΚΑΛΛΙΕΡΓΕΙΕΣ ΕΚΤΟΣ ΕΔΑΦΟΥΣ ΘΡΕΠΤΙΚΑ ΔΙΑΛΥΜΑΤΑ

Supplementary Materials for. Kinetic and Computational Studies on Pd(I) Dimer- Mediated Halogen Exchange of Aryl Iodides


Biodiesel quality and EN 14214:2012

Macromechanics of a Laminate. Textbook: Mechanics of Composite Materials Author: Autar Kaw

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.

Electronic Supplementary Information (ESI)

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

Engineering Tunable Single and Dual Optical. Emission from Ru(II)-Polypyridyl Complexes. Through Excited State Design

Higher Derivative Gravity Theories

Application of Soil Physics to Rainwater Dynamics at Forested Hillslopes

Supporting information. Influence of Aerosol Acidity on the Chemical Composition of Secondary Organic Aerosol from β caryophyllene

DuPont Suva 95 Refrigerant

Soil Temperature Change and Heat of Wetting during Infiltration into Dry soils

Curran et al.,**. Davies et al ,**, ,***,**/

DuPont Suva 95 Refrigerant

Trace gas emissions from soil ecosystems and their implications in the atmospheric environment

The Technique for Improving Soil Physical Characteristics by Preventing the Formation of Soil Crust by Dressing the Sandy Pyroclastic Deposits

Na/K (mole) A/CNK

Correction Table for an Alcoholometer Calibrated at 20 o C

APPENDIX I PITTSBURGH NO. 8 WASHABILITY DATA AND RECOVERY- CURVES

Dietary success of a new key fish in an overfished ecosystem: evidence from fatty acid and stable isotope signatures

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Instruction Execution Times

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Comparison of Evapotranspiration between Indigenous Vegetation and Invading Vegetation in a Bog

Tridiagonal matrices. Gérard MEURANT. October, 2008

An experimental and theoretical study of the gas phase kinetics of atomic chlorine reactions with CH 3 NH 2, (CH 3 ) 2 NH, and (CH 3 ) 3 N

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

CE 530 Molecular Simulation

Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo

Supporting Information

College of Life Science, Dalian Nationalities University, Dalian , PR China.

Quantitative chemical analyses of rocks with X-ray fluorescence analyzer: major and trace elements in ultrabasic rocks

Αξιολόγηση των Φασματικού Διαχωρισμού στην Διάκριση Διαφορετικών Τύπων Εδάφους ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Σπίγγος Γεώργιος

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Heat exchanger. Type WT. For the reheating of airflows in rectangular ducting PD WT 1. 03/2017 DE/en

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

Περιβαλλοντικές επιδράσεις στην αύξηση και παραγωγή παραδοσιακής καλλιέργειας κοκκαριού (Allium cepa L.) Α. Λιόπα-ΤσακαΑίδη

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν.

UDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example:

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Properties of Nikon i-line Glass Series

The Simply Typed Lambda Calculus

Math 6 SL Probability Distributions Practice Test Mark Scheme

Thin Film Chip Resistors

RECIPROCATING COMPRESSOR CALCULATION SHEET

Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design

Thin Film Chip Resistors

Second Order RLC Filters

Selecting Critical Properties of Terpenes and Terpenoids through Group-Contribution Methods and Equations of State

ENSINGER High-temperature plastics. Material standard values.

Τδξάζβεζηνο θαηάιιειε γηα επεκβάζεηο ζε κνξθή πνιηνχ ή ζθφλεο; πγθξηηηθή παξνπζίαζε θπζηθψλ, ρεκηθψλ θαη κεραληθψλ ηδηνηήησλ

ARISTOTLE UNIVERSITY OF THESSALONIKI FACULTY OF FORESTRY AND NATURAL ENVIRONMENT Institute of Mountainous Water Management and Control

2 Composition. Invertible Mappings

Transcript:

Soil Physics October 28, 2008 Homework 5 Due November 9 Water Retention Curves 1. Use the model proposed by Arya and Paris (1981) to predict the soil-water characteristic curves of B22tg (21-31 cm) horizon in soil S57NJ-12-1 (Matapeake taxadjunct, Middlesex County, NJ), and IIB 22t (22-27cm) horizon in soil S58NJ-8-3 (Aura sandy loam, Gloucester County, NJ). These two soil horizons were used by Arya and Paris (1981). Information required by the model can be obtained directly from the attached sheets taken from the Soil Survey Investigation Report Nο 26 (1974). (Soil Survey Laboratory Data and Description for Some Soils of New Jersey. SCS-NJAES.) For the calculations note the following (see example): A. Use 8 mass fractions: 5 sand fractions + 2 silt fractions + 1 clay fraction. B. Particle radii are selected as the mid-point of the particle size intervals. C. In the publication, water content is expressed as gravimetric water content: you need to convert it to volumetric water content. 2. Use the nonlinear optimization technique implemented in Excel to fit the van Genuchten (1980) model to the measured soil-water characteristic curves of the B22tg (21-31 cm) horizon and the IIB 22t (22-27cm) horizon. Optimize parameters α, θr, θs, and n; and define m as m = 1-1/n. Use textural class in Table 3.4 (attached) to find estimates of the parameter values for each horizon. Use those estimates as initial values in the optimization technique. 3. Use the pedotransfer functions (PTF) by Rawls et al. (1982) 1 (attached) to generate volumetric water content (m 3 m -3 ) at matric potentials of -4, -7, -10, -33, -100, -200, -700, and -1500 kpa. 4. For each soil create a graph containing the following four plots: A) the measured soilwater retention characteristic curve (express matric potential in kpa and soil-water as volumetric water content); B) soil-water retention predicted with the model of Arya and Paris (1981); C) soil-water retention fitting with the van Genuchten (1980) model with optimized parameters, and D) soil-water retention predicted with the Rawls et al. (1982) PTFs. Compare and discuss the results together with the advantages and disadvantages of the three method used. 1 Rawls, WJ, DL Brakensiek, and KE Saxton. 1982. Estimation of soil water properties. Trans. ASAE 25: 1316-1320&1328.

pedqn CLASSIFICATION: Typic Hapludult; coarse-loamy, mixed, mesic SOIL Ma-tapeake taxad,junct SOIL Nos. S57NJ-12-1 LOCATION Middlesex County, New Jersey U. s. DEPARTMENT O AGRICULTURE SOIL CONSERVATION SERVICE SOIL SURVEY LABORATORY Beltsville, Maryland LAB. N. 5745-57458 181b TGtal Sile cla Sand and particle diameler (mml 3At Sill Oepth jln.) HGr;ron Sand 12-0.05) Silt Clay 1 V'Y,I CGI1H 10.0S- (e 0.002)1 12-11 0.0021 I 0-5 All..,Al.3 26.9 162.4 10.7 0. 5-13 A2 18.9 69.3 11.8 0.6 P: 21 B21t t!f.. 62.8 21.' 0'< 21-31 B22tg-- 38.3 46.6 15.1 1.2 31-63 lic 58.5 26.7 14.8 7.9 laa, I Md;um:5)1 Fin. V'Y fin,o Int. m 1 Inl. n 0-0.51 110.5-0.25) (0.25-0.1 (0.I-O.05f 0.05-0.0 (0.02- - 1(0.2-0.02 0.0021 Pct. 01 -< Z mil 4.0 5.3.0 0.0 30.0 32.4 42.7 2.7 3.2,4.9 7-5 31.9 37.4 42.0 1.0 2.4 '.0 7.2 28.21'4.61'7.4 6.4 7.7 11.9 J.1.1 24.1 22.5 41.4 3.7 15.9,.4 6.6 14.1 12.6 26.8 (2..{).ll 10.1 11.4 8.7 21.2 51.9 G. 0.91 0.93 0.99 0.98 0.68 9 14 2 4 40 Anll.lyses by Nev Jersey Aer. Eltp. Stn. Rutr:ers University a... 6B2a 6C1a liaur reaied llt suctions of Ayll1l- Depth a'ianic Nitr<l1ltn Gf' Ext. iron Field BClc BCIa Bul. able Cll.p&_ (In.) CllOOn 1$ Fe enslty 0. 02 10,[ 0. I 0. 33 I vater city bar bar bar bru- 1 (l:ll (1:1) bu bar 2.1 bar 6 I bar PCI. Pct. Pet. a/cc in/in Pct. ',0 0-5 6.7 0.271 25 1.1 0.78 73.7 57 9 53.7 I 48.1 41. 5 15.3 11.1 5.5 0.28 41.0 4.0,:;. 0.047 13 ;: 1.20 36.8 29.2 28.7 23.6 21.6 13.2 7.8 :; I.;; 1 ;.. 1. '8 20.4 2>., 24.8 22.0 21., 1<.4 I.0. 21-31 0.10 1.5 1.61 23.1 21.6 20.8 19.6 18.4 13.0 9.8 8.6 0.20 21.0 4.0 31-63 0.06 2.1 1.86 13.3 11.4 10.9 10.0 9 2 6.8 5.2 4.3 0.14 10.5 4.9 Edrlclabl8 bau, 58\a 5HZI CEe 5Gld RatiGs tg cliv 801 803 Blsi salur.tion Depth 6N2d 6Q1b 6P2a 602. Ed. '03 SC, (In.) J. ut. CEG Ell. 15 blr Ca/MI G,,.. acidity,..,.. iron.181,.. NH caligns caligns meq/loo I Pcl. Pcl. 0-5 0.4 0.4 0.1 0.4 1.3 29.1 30.4 2.0 0.10 0.51 4 5-13 tr. tr. 0.1 0.3 0.4 9.3 9.7 0.82 0.09 0.52 4 1:' 21 tr. tr. tr. 0.2 n.? 11.:' 11.6 0.54 0.00 0.43 2 21-31 tr. tr. tr. 0.1 0.1 8.5 8.6 0.57 0.10 0.57 1 31-63 tr. 0.8 tr. 0.1 0.9 5.8 6.7 0.45 0.14 0.29 13 4 Ac Depth M. ChI. (In.1 Clay Fraclion Analysis 7Alb d - ]A2 X ray 'm.j Mi. Inl. 'U. K> JG,b. 0-5 5 13 XXX XX 10 3 1=1-21 21-31 X XX XX 20 0 31 63 XX xx XX Anal ses bv Ne Jers<.y II r. Ex. Stll.. Rut cr f)} 11.8 21.1 45.3 66.4 83 1.:;1 15.9 34.9 50.8 56 o. '0.7 4 4<,,., 0.1 6.5 34.2 40.7 31 0.2 9.7 21.2 30.9 21 Mt.;Oo MGnlmlllilklnite. ChI... cbl6rile. Vm... Vermkulit8. mi _ mica. Inl. _ Inl8ls1r.lifl8d liver, QU... quirt!:. KI... KaGIinit8 h'lhve Imounts: bllnk;oo nol d8t8rmined. dish _ licit detectld. It... 1111:8, l small. XI.. mgdellle. lu _ i1bund8nt. Ull _ dgminanl.

PEDON CSIFICATION: Typic Hapludult; fine-loamy, mixed, mesic SOIL Aura aandt loea SOIL Nos. 858&1-8-3 LOCATION O1oucu-ter County ev Jer., U. S. OEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERViCE SOil SURVEY LABORATORY -,80,1,vII,,lo-,M,a,,,la,,,n,,d LAB. Nos. ---5,,9=16J.=-_-5,,9:::1=65< 181b Size class and putiele dilmeler (mm) 31 Tolll Sand Silt >, coarse (2-o.1J Cm Oeplh Horilon Sind Silt CII, (In.1 12-0.05) (O.OS- (e 0.002) (2-1) 0-0,5) (0.$-0.25) (0.25-0.1 (0,I-o.05)10.05-0.0(0.02-0.2-0.02 0.002) 0.002) Pel.of<2mm ).0 Coarse Irillmenh 391 C'., 1..mJ: V, J..J,. m 10' n 2.19_1 19-76 15.< 14.0 o. 19.0 29.0 17 4-0 A'2 I: I t :g :6 13.2 1.1 9. 19.7 32.2 10-15 B'l 52.8 37.0 10.2 ;: 1'.1 12.6 1.0 Q. 21.0.8 ')-= I i;2t 15JJ 33.' 15.9.9 12. ll.5 12. 9. 19.0 30.2 36 22-27 65.9 3.2 30.9 15.1 32.8 15.0 2. o. 1.8 2.7 7 1'0,. -:;-,AI. 6_ 6Cla Water retained...t uetions of' Avnil_ Field M.' cap.a- Deplh Or.anie Nilrollen Ci' Ext. i,on.,. BCle 9Ch fin.) ea,bon b:r I ene1t,. 1..ter city 0'''1 0,[ 0>0 I 0.331 (I:l) F bar hi' bar bar (1:1; 'or bar 6 I bill' KCI Pel. Pet. Pd. sloe pt in/in Pet. Mnlyee5 by II JCUL'Y,1er. Up. Stn. RutllO.,., Uniyer1ty 0-1.<0 0.08< 17 0.6 1.19 37.6 28.0 25.0 20.6 18.2 8.4 5.4 5.3 0.27 27.0 3.8-10. 0.025 15 0.6 1.45 23.4,0.. 17.2 : 12.8 11.2 7.4 4.6 in no,,, 1.'0 22.' 1,<.< 3.9. ;., I? it,, 0,, U 15-22 0.26 0.033 8 1.2 1.56 21. 3 15 5 14.2 11.7 10.5 10.2 8.6 8.2 0.11 13.1.3 22-27 0.06 0.030 1 2. 0 1.65 20.1 16.8 16.0 13.9 13.1 14.3 12.2 12.0 0.05 14.0.5 ',0 bll.elable basn 58\1 6H2a efc 6Gld Ratios to dl' 8D1 803 9all Ulration 0.,. 6N2d 60 6P2a 6Q2a 'd. 503 5C1 lin.) J.,. CEC Ell. IS b., Ca/M8 C'., K S.m acidity Som.. S.m iron wale, S.m NH 4.-.e e.tiol\s cations meq/loo Pel. Pel. 0-. tr. tr. tr. 0.1 10.6 10.1 1.46 1-10 0.1 tr. tr. 0.1.5 4.7 0.59 10-1< 0.1 tr. tr. 0.1 '. '-6 0.35 15-22 0.1 tr. tr. 0.1 5.8 6.1 0.38 5 22-27 0.1 tr. 0.1 5.8 6.0 0.19 3 Porosi t!j Iij ClllY Frldion Analys;s llb o M.. lyl1 by Ne J,rs, Arz:r. El St... Rut er3 I}} Methods refer- Oeplh MI. ChI. Mi. lnt. Q. KI. Gibbsite Hydrll.u llon_ Aggre- enced on (In.l 11, capll ClI.pll- Total Plut1e 'm.j &...t methods code eonduc '7 lory index utnbll_ sheet. la2 tiyity U, X Y 7AJ In/hr ',. ',. ',. ',. ',. 0-. 5 7 1tl.2 33.5 51. 7 93 4-10?r 7'O 25 0.? 70 10-15 15-22 1.3 15.0 24.0 39.0 61 22-27 0 7 9.2 25.7 36.9 45

EXAMPLE3.4 Textural averages of hydraulic parameters based on UNSODA unsaturilted soil hydraulic properties database and NRCS soil survey database (Leij et al., 1998). Saturated Hydraulic Soil Water Retention Conductivity Textural (1Iem) (em/d) Class N 8, 8, et n N' K, UNSODA Sand 126 0.058 0.37 0.035 3.19 74 505.8 Loamy sand 51 0.074 0.39 0.Q35 2.39 31 226.5 Sandy loam 78 0.067 0.37 0.021 1.61 50 41.6 Loam 61 0.083 0.46 0.025 1.31 31 38.3 Silt '3 0.123 0.48 0.006 1.53 2 55.7 Silt loam 101 0061 0.43 0.012 1.39 62 30.5 Sandy clay loam 37 0.086 0.40 0.033 1.49 19 969 Clay loam 23 0.129 0.47 0.030 1.37 8 1.84 Silty clay loam 20 0.098 0.55 0.027 1.41 10 7.41 Silty clay 12 0.163 0.47 0.023 1.39 6 8.40 Clay 25 0.102 0.51 0.021 1.20 23 26.0 Saturated Hydraulic Soil Water Retention Conductivity Textural (1Iem) (em/d) Class N' 8, 8, et n N' K, Soil Survey Sand 246 0.045 0.43 0.145 2.68 246 712.8 Loamy sand 315 0.057 0.41 0.124 2.28 315 350.2 Sandy loam 1183 0.065 0.41 0.075 1.89 1183 106.1 Loam 735 0.078 0.43 0.036 1.56 735 25.0 Silt 82 0.034 0.46 0.016 1.37 88 6.00 Silt loam 1093 0.067 0.45 0.020 1.41 1093 10.8 Sandy clay loam 214 0.100 0.39 0.059 1.48 214 31.4 Clay loam 364 0.095 0.41 0.019 1.31 345 6.24 Silty clay loam 641 0.089 0.43 0.010 1.23 592 1.68 Sandy clay 46 0.100 0.38 0.027 1.23 46 2.88 Silty clay 374 0.070 0.36 0.005 1.09 126 0.48 Clay 400 0.068 0.38 0.008 1.09 114 4.80 Approximate sample size for Soil Survey database.

TABLE 3. COEFFICIENT FOR LINEAR REGRESSION EQUATIONS FOR PREDUCTION OF SOIL WATER CONTENT AS SPEClFIC METRIC POTENT(ALS. r.letric Organic Bulk 0.33 bar 15 bax Couelation potential Sand. Silt, Clar. matter. density. water retention, water retention, coefficient. b. Intercept gje.m ' cm 1 fern' em.) fem) R %... -- --...-- ---.---- --.._.----.--.-------- -. Re&ression coetiiden1.$ - ----- --- - -- b < d d f h 0.7899-0.0037 0.0100-0.1315 0.58-0.04 0.6275- -0.0041 0.0239-0.08 0.57 0.1829-0.0246-0.0376 1.89-1.38 0.77 0.7135-0.0030 0.0017-0.1693 0.74-0.07 0.4829-0.0035 0.0263 0.25 0.74 0.8888-0.0003-0.0107 L53-0.81 0.91 DAUB -0.0030 0.0023 0.0311 0.81-0.10 0.4103 0.0031 0.0260 0041 0.81 0.0619-0.0002-0.0061 1.34-0.51 0.95 0.3121-0.0024 0.0032 0.0314 0.B6-0.20 0.3000-0.0024 0.0235 0.61 0.89 0.0319-0.0002 1.01-0.06 0.99 0.2576-0.0020 0.0036 0.0299 0.87-0.33 0.2391-0.0019 0.0210 0.72 0.92 0.2065-0.0016 0.0040 0.0275 0.87-0.60 0.181-1 -0.0015 0.0178 0.80 0.94 0.0136-0.0091 0.66 0.39 0.99 0.0349 0.0014 0.0055 0.0251 0.87-1.0 0.1417-0.0012 0.0151 0.85 0.96-0.0034 0.0022 0.52 0.54 0.99 0.0281 0.0011 0.0054 0.0200 0.86-2.0 0.0986 0.0009 0.0116 0.90 0.97 -O.OOU 0.0026 0.36 0.69 0.99 0.0238 O.OOOB 0.0052 0.0190 0.84-4.0 0.0649-0.0006 0.0085 0.93 0.98-0.0038 0.0026 0.24-0.79 0.99 0.0216 0.0006 0.0050 0.0161 0.81-7.0 0.0429-0.0004 0.0062 0.94 0.98-0.0021 0.0024 0.16 0.86 0.99 0.0205 0.0005 0.0049 0.0154 0.81-10.0 0.0309-0.0003 0.0049 0.95 0.99-0.0019 0.0022 0.11 0.89 0.99-15.0 0.0260 0.0050 0.0158 0.80 Sand (%) + silt ('0)... clay (%) = 100 Sand = 2.0-0.5 mm Sill 0.05-0.002 mm Cia}' < 0.002 Ox = a + b x: sand (%) + e x silt ('io) d d x cla}' (%) + c x organic matter (%) + f x bulk density (g/cm) ) + g x: 0.33 bar moistu.re (cm] fcm J )... h x 15 bar moisture (cm ' lem 3 ) Ox = predicted water reli!ntion (em] Icm 3 ) for a given metric (x) potential a-n = reji:ression coefficients