Supporting Information

Σχετικά έγγραφα
Bifunctional Water Activation for Catalytic Hydration of Organonitriles

Diels-Alder reaction of acenes with singlet and triplet oxygen - theoretical study of two-state reactivity

Striking Difference between Succinimidomethyl and Phthalimidomethyl Radicals in Conjugate Addition to Alkylidenemalonate Initiated by Dimethylzinc

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Supporting Information. A single probe to sense Al(III) colorimetrically and. Cd(II) by turn-on fluorescence in physiological

DFT Kinetic Study of the Pyrolysis Mechanism of Toluene Used for Carbon Matrix

Supporting Information. DFT Study of Pd(0)-Promoted Intermolecular C H Amination with. O-Benzoyl Hydroxylamines. List of Contents

Reaction of Lithium Diethylamide with an Alkyl Bromide and Alkyl Benzenesulfonate: Origins of Alkylation, Elimination, and Sulfonation.

Supporting Information

Supporting Information. Identification of Absolute Helical Structures of Aromatic Multi-layered Oligo(m-phenylurea)s in Solution.

Structural Expression of Exo-Anomeric Effect

Zn 2 +, Studies on the Structures and Antihyperglycemic Effects of Zn 2 +, Cu 2 +, Ni 2 + 2Metformin Complexes. ZHU, Miao2Li LU, Li2Ping YANG, Pin Ξ

Accessory Publication

Title N-H versus C-H Activation of a Pyrrole Imine at {Cp*Ir}: A Computational and Experimental Study

Supporting Information

Supplementary Materials for. Kinetic and Computational Studies on Pd(I) Dimer- Mediated Halogen Exchange of Aryl Iodides

A Selective, Sensitive, Colorimetric and Fluorescence Probe. for Relay Recognition of Fluoride and Cu (II) ions with

Nesting Complexation of C 60 with Large, Rigid D 2 Symmetrical Macrocycles

Electronic Supplementary Information for

Supporting Information

Figure S12. Kinetic plots for the C(2)-H/D exchange reaction of 2 CB[7] as a function

Table of Contents 1 Supplementary Data MCD

Supporting Information for

Electronic Supplementary Information

Supporting Information

Supporting Information

Supporting Information. Lithium Cadmate-Mediated Deprotonative Metalation of Anisole: Experimental and Computational Study

Experimental and Theoretical Evidence of the Au(I) Bi(III) Closed-Shell Interaction

Syntheses and Characterizations of Molecular Hexagons and Rhomboids and Subsequent Encapsulation of Keggin-Type Polyoxometalates by Molecular Hexagons

Supporting Information

Capture of Benzotriazole-Based Mannich Electrophiles by CH-Acidic Compounds

Ethyl Nitroacetate in Aza-Henry Addition on Trifluoromethyl Aldimines: A Solvent-Free Procedure To Obtain Chiral Trifluoromethyl α,β-diamino Esters

Supplementary Information for

Electronic Supplementary Information:

Alkyl-functionalization of 3,5-bis(2-pyridyl)-1,2,4,6- thiatriazine

Supporting Information To. Microhydration of caesium compounds: Journal of Molecular Modeling

Mild Aliphatic and Benzylic hydrocarbon C H Bond Chlorination Using Trichloroisocyanuric Acid (TCCA)

Supporting Information

Supporting Material. Hydrogen Oxidation and Production Using Nickel-Based Molecular Catalysts with Positioned Proton Relays

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013

Supporting Information

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008

Photo-Induced Self-Assembly of Pt(II)-Linked Rings and Cages via the Photolabilization of a Pt(II) Pyridine Bond

Synthesis, characterization and luminescence studies of

Electronic Supplementary Information

SUPPORTING INFORMATION

Enhancing σ/π-type Copper(I) thiophene Interactions by Metal Doping (Metal = Li, Na, K, Ca, Sc)

Butadiene as a Ligand in Open Sandwich Compounds

10-π-electron arenes à la carte: Structure. Sr, Ba; n = 6-8) complexes

Photostimulated Reduction of Nitriles by SmI 2. Supporting information

Supporting Information. A Combined Crossed Molecular Beams and ab Initio Investigation on the Formation of Vinylsulfidoboron (C 2 H

Pt-Ag Clusters and their Neutral Mononuclear Pt(II) Starting Complexes: Structural and Luminescence Studies.

LP N to BD* C-C = BD C-C to BD* O-H = LP* C to LP* B =5.

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Engineering Tunable Single and Dual Optical. Emission from Ru(II)-Polypyridyl Complexes. Through Excited State Design

Asymmetric H/D exchange reaction of fluorinated aromatic ketones

ELECTRONIC SUPPORTING INFORMATION

Electronic structure and spectroscopy of HBr and HBr +

Electronic Supplementary Information (ESI)

Extremely Strong Halogen Bond. The Case of a Double-Charge-Assisted Halogen Bridge

Supporting Information

Supporting Information. Crown Ether Complexes of Actinyls: A Computational Assessment of

Chemical Communications. Electronic Supporting Information

Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical

An experimental and theoretical study of the gas phase kinetics of atomic chlorine reactions with CH 3 NH 2, (CH 3 ) 2 NH, and (CH 3 ) 3 N

Electronic Supplementary Information DFT Characterization on the Mechanism of Water Splitting Catalyzed by Single-Ru-substituted Polyoxometalates

Carbohydrates in the gas phase: conformational preference of D-ribose and 2-deoxy-D-ribose

Sculpting the β-peptide foldamer H12 helix via a designed side chain shape

Intermolecular Aminocarbonylation of Alkenes using Cycloadditions of Imino-Isocyanates. Supporting Information

Supporting Information for:

Supporting Information. Fluorinated Thiophene-Based Synthons: Polymerization of 1,4-Dialkoxybenzene

stability and aromaticity in the benzonitrile H 2 O complex with Na+ or Cl

Iodine-catalyzed synthesis of sulfur-bridged enaminones and chromones via double C(sp 2 )-H thiolation

D-Glucosamine-derived copper catalyst for Ullmann-type C- N coupling reaction: theoretical and experimental study

Supplementary!Information!

Supplementary materials

Push-Pull Type Porphyrin Based Sensitizers: The Effect of Donor Structure on the Light- Harvesting Ability and Photovoltaic Performance

of the methanol-dimethylamine complex

Supporting Information

Fused Bis-Benzothiadiazoles as Electron Acceptors

Zebra reaction or the recipe for heterodimeric zinc complexes synthesis

Supporting Information

Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones

Electronic Supplementary Information

The role of exchange in systematic DFT errors for some organic reactions: Electronic supplementary information

Synthesis and spectroscopic properties of chial binaphtyl-linked subphthalocyanines

Electronic Supplementary Information

Electronic Supplementary Information

Supporting Information

Nickel and Platinum PCP Pincer Complexes Incorporating an Acyclic Diaminoalkyl Central Moiety Connecting Imidazole or Pyrazole Rings

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006


Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Electronic Supplementary Information

Supporting Information

Rhodium-Catalyzed Direct Bis-cyanation of. Arylimidazo[1,2-α]pyridine via Double C-H Activation

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Supporting Information for: electron ligands: Complex formation, oxidation and

Nitric oxide (NO) reactivity studies on mononuclear Iron(II) complexes supported by a tetradentate Schiff base Ligand

Transcript:

Supporting Information Wiley-VCH 2006 69451 Weinheim, Germany

Rhodium(I) Complexes of a PBP Ambiphilic Ligand: Evidence for a Metal Borane Interaction** Sébastien Bontemps, Heinz Gornitzka, Ghenwa Bouhadir, Karinne Miqueu, Didier Bourissou* Contents Computational details S1 Results. S4 Z-matrix and total ZPE energy.... S6 Spectroscopic data.......s13 -S1-

Computational details Calculations were performed with the Gaussian 98 program, [1,2] using the density functional method. [3] The hybrid exchange functional B3LYP and the gradient-corrected functional BP86 were used. B3LYP is a three parameter functional developed by Becke which combines the Becke gradient-corrected exchange functional [4a] and the Lee-Yang-Parr and Vosko-Wilk-Nusair correlation functionals [4b] with part of exact HF exchange energy. BP86 consists of Becke 88 gradient correction for exchange [5a] and Perdew 86 expression for the correlation energy. [5b] Different basis set were retained for all the calculations. The 6-31G* [6] basis set was used for C, P, B, Cl, N and H. Six basis set-recp (relativistic effective core potential) [LanL2DZ, [7] CEP-31G, [8] SDD, [9] LanL2DZ+f, CEP+f and SDD+f] were retained for Rh. The first and second basis sets, denoted as LanL2DZ and CEP-31G, are double ζ valence basis sets associated with the ECPs of Hay/Wadth and Stevens/Basch/Krauss, respectively. The third, denoted as SDD, is the combination of the Huzinaga-Dunning double ζ basis set on lighter elements with the Stuttgart/Dresden basis set-recp on transition metals. Finally, the fourth, fifth and sixth, denoted as LanL2DZ+f, CEP-31G+f and SDD+f, are respectively the LanL2DZ, CEP-31G and SDD basis sets augmented with an f-type polarization function with an exponent of 1.350 [10] [Rh(α c )=1.350]. The optimized structures were confirmed as true minima on the potential energy through vibrational analysis. The frequencies were calculated with analytical second derivative. All total energies have been zero-point energy (ZPE) and temperature corrected using unscaled density functional frequencies. The electronic structure of the model complex 4* was studied using Natural Bond Orbital (NBO) analysis. [11] The NBO-3.1 program was used to gain insight into the nature of the interaction between rhodium and boron and to evaluate the energy of donor/acceptor interaction (interaction between filled and empty orbitals). The Natural Localized Molecular Orbitals (NLMO) obtained from the NBO analysis was plotted by using the molecular graphic package Molekel. [12] -S2-

References [1] Gaussian 98, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, R. E. Stratman, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. K. Rabuck, Raghavachari, J. B. Foresman, J. Cioslowswi, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. Martin, D. J. Fox, T. Keith, M. A. Al- Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Jonhson, W. Chen, M. W. Wong, J. L. Andres, M. Head-Gordon, E. S. Replogle, J. A. Pople, Gaussian 98, Revision A.7, Gaussian, Inc., Pittsburgh PA, 1998. [2] W. J. Hehre, L. Radom, P.v.R. Schleyer, J. A. Pople, Ab Initio Molecular Orbital Theory, John Wiley and Sons: New York, 1986. [3] R. G. Parr, W. Yang, Functional Theory of Atoms and Molecules, R. Breslow, J. B. Goodenough, Eds., Oxford University Press: New York, 1989. [4] a) A. D. Becke, J. Chem. Phys. 1993, 98, 5648-5652; b) C. Lee, W. Yang, R. G. Parr, Phys. Rev. 1988, B37, 785-789. [5] a) A. D. Becke, Phys. Rev. 1988, A38, 3098-3100; b) J. P. Perdew, Phys. Rev. 1986, B33, 8822-8824; c) J. P. Perdew, Phys. Rev. 1986, B34, 7406 (erratum). [6] a) G. A. Petersson, M. A. Al-Laham, J. Chem. Phys. 1991, 94, 6081-6090; b) G. A. Petersson, A. Bennett, T. G. Tensfeldt, M. A. Al-Laham, W. A. Shirley, J. Mantzaris, J. Chem. Phys. 1988, 89, 2193-2218. [7] a) T. H. Dunning Jr., P. J. Hay, In Modern Theoretical Chemistry, H. F. Schaefer III, Ed.; Plenum : New York, 1976, 1-28; b) P. J. Hay, W. R. Wadt, J. Chem. Phys. 1985, 82, 270-283; c) W. R. Wadt, P. J. Hay, J. Chem. Phys. 1985, 82, 284-298; d) P. J. Hay, W. R. Wadt, J. Chem. Phys. 1985, 82, 299-310. [8] a) W. Stevens, H. Basch, J. Krauss, J. Chem. Phys. 1984, 81, 6026-6033; B) W. Stevens, J. Krauss, H. Basch, J. Chem. Phys. 1992, 70, 612-630; c) T. R. Cunduri, W. Stevens, J. Chem. Phys., 1992, 98, 5555-5565. [9] a) M. Dolg, in Modern Methods and Algorithm of Quantum Chemistr; Grotendorst J., Ed.; John von Neuman Institute for Computing: Jülich, 2000, vol 1, pp 479-508; b) M. Dolg, U. Wedig, H. Stoll, H. Preuss, J. Chem. Phys. 1987, 86, 866-872; c) D. Andrae, U. Häussermann, M. Dolg, H. Stoll, H. Preuss, Theor. Chim. Acta. 1990, 77, 123-141. [10] A. W. Ehlers, M. Böhme, S. Dapprich, A. Gobbi, A. Höllwarth, V. Jonas, K. F. Köhler, R. Stegmann, A. Veldkamp, G. Frenking, Chem. Phys. Lett. 1993, 208, 111-114. [11] a) A. E. Reed, L. A. Curtiss, F. Weinhold, Chem. Rev. 1988, 88, 899-926; b) J. P. Foster, F. Weinhold, J. Am. Chem. Soc. 1980, 102, 7211-7218. [12] a) P. F. Flükiger, Development of the molecular graphics package MOLEKEL and its application to selected problems in organic and organometallic chemistry, thèse, Université de Geneva, Suisse, 1992; b) S. Portmann, H. P. Lüthi, MOLEKEL: An Interactive Molecular Graphics Tool. Chimia, 54, 2000. -S3-

Results The structural parameters for the model complex 4* were determined at different levels of theory. The BP86 functional led to a significantly better agreement between the optimized geometry of 4* and the X-ray diffraction study of 4 than the B3LYP functional. At the BP86/6-31G*(C,P,B,Cl,N,P,H) level of theory, only marginal differences were observed for the various basis sets used for Rh (LanL2DZ, CEP-31G and SDD), and the addition of a f function did not induce noticeable variations. Table S1. Selected bond lengths and angles (in Å and, respectively) predicted for the model complex 4*. H 2 N B Ph Me 2 P Rh N 4* PMe 2 Cl N B P Rh N Cl P Rh-P Rh-B PRhP PRhB ΣRh α ΣB α X-ray 2.286(1)/2.256(1) 2.295(5) 97.62(4) 80.1(1)/83.6(1) 360.2 340.3 B3LYP/LanL2DZ(Rh)* 2.296/2.265 2.458 97.52 78.13/81.38 359.3 344.6 BP86/LanL2DZ(Rh)* 2.282/2.249 2.392 97.39 78.61/82.04 359.2 342.8 BP86/CEP-31G(Rh)* 2.281/2.251 2.384 97.38 78.51/81.97 359.2 339.2 BP86/SDD(Rh)* 2.274/2.241 2.381 97.41 78.63/82.10 359.2 342.2 BP86/LanL2DZ+f(Rh)* 2.279/2.244 2.392 97.33 78.59/82.07 359.2 342.8 BP86/CEP-31G+f(Rh)* 2.278/2.347 2.385 97.33 78.49/81.98 359.2 342.2 BP86/SDD+f(Rh)* 2.271/2.237 2.382 97.35 78.61/82.11 348.6 342.2 * The 6-31G* basis set was used for C,P,B,Cl,N,P,H. -S4-

Table S2. Stabilizing interaction dz2 (Rh) pπ (B) (kcal/mol) for complex 4* at different calculation levels. Hybridization of the NLMO involving the Rh and Boron atoms. dz2 (Rh) pπ (B) Acceptor NBO pπ (B) NLMO Rh B % dz2 (Rh) % pπ (B) % s (B) % p (B) B3LYP/LanL2DZ(Rh)* stabilizing interaction (kcal/mol) 34.8 81.8 14.9 11.6 88.3 BP86/LanL2DZ(Rh)* 29.6 81.1 15.6 12.2 87.7 BP86/CEP-31G (Rh)* 55.2 79.3 17.1 12.7 87.3 BP86/SDD (Rh)* 50.6 80.5 16.1 12.5 87.4 BP86/LanL2DZ+f (Rh)* 30.0 81.0 15.6 12.2 87.7 BP86/CEP-31G+f(Rh)* 57.6 79.9 16.7 12.7 87.2 BP86/SDD+f(Rh)* 50.1 80.1 16.3 12.6 87.4 * The 6-31G* basis set was used for C,P,B,Cl,N,P,H. Whatever the basis set, the stabilizing interaction dz2 (Rh) pπb is rather large (> 29.6 kcal/mol). Although the precise value for this donor-acceptor interaction is meaningless, its magnitude is in agreement with a strong interaction between the rhodium and boron atoms. The concerned NLMO has about 80 % contribution from the dz2 (Rh) orbital, with major delocalization tails (16 %) from the vacant boron orbital pπb. This transfer of electron density from the metal to the σ-acceptor ligand is accompanied by some hydridization of the boron atom (around 12 % s and 88 % p). Figure S1. Molekel plots (cutoff : 0.04) for the Donor NBO, Acceptor NBO and NLMO involving the rhodium and boron atoms at the BP86/[CEP-31G+f(Rh),6-31G*(C,P,B,Cl,N,P,H)] level of theory. B B Rh Rh Donor NBO dz2 (Rh) Acceptor NBO pπ (Β) -S5- NLMO dz2 (Rh) / pπ (Β)

Z-Matrix and ZPE total energy (ua) 4 * [B3LYP/LanL2DZ(Rh)/6-31G*(C,P,B,Cl,N,P,H)] C -0.657861-0.275142 2.800336 C -0.061681 0.745588 2.025696 C -0.470514 2.068422 2.302724 C -1.417210 2.361283 3.288780 C -1.989794 1.328853 4.034332 C -1.604374 0.007765 3.784249 B 1.048709 0.411790 0.932367 Rh -0.316979-0.644356-0.817753 Cl -0.769004-2.879433 0.099583 C 1.761378 1.698168 0.240468 C 1.336085 2.266475-0.977498 C 1.950693 3.407404-1.516280 C 3.015723 4.007998-0.849249 C 3.460827 3.461145 0.357945 C 2.843485 2.328470 0.887218 P -0.060209 1.394585-1.771407 C 2.105434-0.748243 1.304399 C 2.604651-1.629696 0.323008 C 3.609128-2.559727 0.606764 C 4.143102-2.634766 1.894052 C 3.661261-1.780440 2.886685 C 2.657564-0.853897 2.593431 P 1.775148-1.463564-1.292330 N -2.482713-0.332309-0.503299 C -3.266910-1.100189-1.287943 C -4.646902-1.134177-1.194163 C -5.293135-0.350500-0.220036 C -4.473722 0.439582 0.603983 C -3.098800 0.415401 0.429865 N -6.666823-0.326038-0.111389 C 0.230483 1.490491-3.601160 C 3.017630-0.584168-2.356861 C 1.775114-3.120813-2.103016 C -1.471364 2.587056-1.615144 H -7.171734-1.110858-0.500542 H -7.051238 0.006672 0.762609 H -2.457861 1.009958 1.068029 H -4.901252 1.062099 1.384568 H -5.216005-1.775900-1.860667 H -2.752086-1.727190-2.007105 H 2.286388-0.207643 3.385289 H 4.061285-1.842752 3.896210 H 4.916671-3.363473 2.122369 H 3.966648-3.241181-0.161884 H 3.215276 1.913992 1.821299 H 4.296790 3.916995 0.883526 H 3.498963 4.887108-1.267753 H 1.607367 3.824987-2.460499 H -0.023818 2.888750 1.746100 H -1.699445 3.394544 3.480187 H -2.723577 1.550466 4.806022 H -2.044849-0.804747 4.357560 H -0.388803-1.308716 2.603282 H 1.323003-3.025767-3.095928 H 2.793997-3.506648-2.217253 H 1.169089-3.802741-1.505018 H 2.694444-0.600380-3.403207 H 3.141234 0.451645-2.034372 H 3.984243-1.094554-2.285687 H -0.624817 1.038283-4.113655 H 0.333883 2.526395-3.942003 H 1.129261 0.935558-3.876582 H -2.359965 2.188997-2.114360 H -1.703305 2.742422-0.559156 H -1.205303 3.550173-2.063883 Etot(ZPE) : -2433.970304 ua -S6-

4 * [BP86/LanL2DZ(Rh)/6-31G*(C,P,B,Cl,N,P,H)] C -0.700722-0.329085 2.780949 C -0.096538 0.704354 2.013994 C -0.508301 2.032901 2.304658 C -1.464982 2.318718 3.294676 C -2.044756 1.273340 4.032461 C -1.656146-0.053287 3.769637 B 1.020558 0.377894 0.915483 Rh -0.299295-0.621657-0.810830 Cl -0.729272-2.871148 0.040629 C 1.757265 1.684614 0.275321 C 1.336037 2.285900-0.937495 C 1.953074 3.443703-1.455490 C 3.023584 4.030436-0.766552 C 3.466572 3.453082 0.436913 C 2.843102 2.302779 0.943478 P -0.065273 1.414167-1.737189 C 2.085073-0.779149 1.299932 C 2.610418-1.635822 0.299041 C 3.624471-2.570583 0.568621 C 4.141972-2.675550 1.869907 C 3.635226-1.847333 2.884175 C 2.622918-0.914351 2.600723 P 1.780011-1.415201-1.316550 N -2.449227-0.344946-0.495986 C -3.225531-1.126840-1.292539 C -4.614286-1.162348-1.217975 C -5.281525-0.368286-0.253767 C -4.470388 0.433380 0.582462 C -3.085167 0.413230 0.429631 N -6.661624-0.342791-0.168745 C 0.211221 1.534941-3.575030 C 3.025217-0.494260-2.353410 C 1.784589-3.049385-2.187490 C -1.483739 2.605527-1.556457 H -7.163152-1.138258-0.562620 H -7.063330-0.001492 0.703953 H -2.445716 1.015937 1.079652 H -4.913556 1.063884 1.360642 H -5.175500-1.816097-1.894447 H -2.690944-1.764230-2.002319 H 2.230015-0.285769 3.409440 H 4.024219-1.936600 3.905928 H 4.924199-3.410430 2.092733 H 4.000707-3.233231-0.220884 H 3.213418 1.861083 1.876971 H 4.309065 3.900514 0.978305 H 3.514435 4.924856-1.167335 H 1.609114 3.884245-2.400168 H -0.050351 2.863410 1.752904 H -1.749705 3.359065 3.496892 H -2.787793 1.489646 4.809762 H -2.102864-0.877696 4.338898 H -0.427942-1.369511 2.570181 H 1.334698-2.920003-3.186985 H 2.813560-3.432534-2.307056 H 1.169200-3.752877-1.606950 H 2.710250-0.491151-3.411546 H 3.132020 0.542855-2.000464 H 4.003329-1.001645-2.280583 H -0.661709 1.099506-4.090660 H 0.328630 2.583993-3.900316 H 1.107051 0.965929-3.865522 H -2.383651 2.208045-2.054930 H -1.703427 2.748042-0.486893 H -1.218249 3.581048-2.000388 Etot(ZPE) : -2434.108959 ua -S7-

4 * [BP86/CEP-31G(Rh)/6-31G*(C,P,B,Cl,N,P,H)] C -0.672545-0.301670 2.797565 C -0.085945 0.723580 2.006253 C -0.509129 2.052742 2.277442 C -1.459747 2.346503 3.271077 C -2.021953 1.308888 4.032943 C -1.621539-0.018103 3.790220 B 1.022806 0.388569 0.899983 Rh -0.302346-0.644304-0.792036 Cl -0.715610-2.864105 0.084077 C 1.745209 1.695865 0.241130 C 1.309069 2.278286-0.975707 C 1.910244 3.435487-1.513021 C 2.980370 4.040993-0.839848 C 3.438370 3.482712 0.367016 C 2.830092 2.332785 0.892729 P -0.090953 1.380976-1.750789 C 2.106067-0.748285 1.298047 C 2.632119-1.615071 0.306291 C 3.660499-2.532615 0.580099 C 4.192003-2.609924 1.877710 C 3.684481-1.771877 2.883620 C 2.658039-0.855875 2.595380 P 1.778481-1.428587-1.302341 N -2.446977-0.370422-0.475985 C -3.227340-1.152870-1.269460 C -4.616133-1.180663-1.196450 C -5.280605-0.378386-0.237253 C -4.466256 0.423578 0.595535 C -3.081159 0.396233 0.444882 N -6.660504-0.345171-0.154295 C 0.172845 1.478626-3.592879 C 3.002349-0.514477-2.370799 C 1.792656-3.078753-2.144383 C -1.516381 2.567282-1.581527 H -7.166251-1.139308-0.545372 H -7.062057 0.003986 0.715331 H -2.439586 1.000556 1.091154 H -4.906819 1.060463 1.369959 H -5.179624-1.834747-1.870593 H -2.695408-1.795021-1.976898 H 2.264992-0.219389 3.397878 H 4.084516-1.839986 3.902779 H 4.985566-3.331306 2.104624 H 4.037613-3.203078-0.202444 H 3.211928 1.906468 1.828731 H 4.280723 3.944922 0.896130 H 3.459409 4.935028-1.255568 H 1.554512 3.861276-2.460157 H -0.064648 2.878013 1.707147 H -1.753302 3.387415 3.457312 H -2.760316 1.531387 4.812934 H -2.054443-0.836764 4.378180 H -0.389959-1.342938 2.604627 H 1.324493-2.973418-3.138203 H 2.824464-3.450654-2.274345 H 1.196957-3.781108-1.542512 H 2.674480-0.533792-3.424840 H 3.103425 0.529914-2.037945 H 3.986396-1.010592-2.300607 H -0.698996 1.027836-4.097046 H 0.278960 2.523840-3.934063 H 1.072163 0.913758-3.880636 H -2.417362 2.157841-2.068374 H -1.730394 2.726266-0.513095 H -1.259152 3.537081-2.042434 Etot(ZPE) : -2434.710409ua -S8-

4 * [BP86/SDD(Rh)/6-31G*(C,P,B,Cl,N,P,H)] C -0.676463-0.275931 2.802717 C -0.086744 0.741549 2.003545 C -0.506914 2.073822 2.264436 C -1.458562 2.377492 3.254070 C -2.025009 1.347079 4.022620 C -1.626642 0.017412 3.791462 B 1.020566 0.395297 0.898774 Rh -0.301222-0.644982-0.787210 Cl -0.722017-2.854465 0.105722 C 1.746604 1.695635 0.230481 C 1.313992 2.265965-0.993280 C 1.918593 3.416154-1.541671 C 2.988968 4.026035-0.872900 C 3.443106 3.479977 0.341039 C 2.831223 2.337197 0.878001 P -0.086709 1.362700-1.759125 C 2.100387-0.741796 1.305585 C 2.624047-1.616562 0.319561 C 3.648061-2.537249 0.599672 C 4.177976-2.609012 1.898207 C 3.673696-1.762083 2.898346 C 2.651645-0.843226 2.603759 P 1.770951-1.436968-1.289510 N -2.437942-0.368437-0.476159 C -3.216854-1.156672-1.265980 C -4.605598-1.186179-1.193893 C -5.272132-0.380254-0.238866 C -4.459582 0.428109 0.589627 C -3.074335 0.402302 0.440048 N -6.651651-0.350544-0.155609 C 0.173950 1.443707-3.602443 C 2.998572-0.535402-2.364879 C 1.781603-3.092689-2.121186 C -1.509241 2.553781-1.601855 H -7.156273-1.146887-0.543533 H -7.054764 0.004149 0.711001 H -2.434123 1.010126 1.084263 H -4.901482 1.068105 1.360715 H -5.167237-1.845823-1.864211 H -2.683035-1.802805-1.968693 H 2.261930-0.199490 3.402112 H 4.073136-1.825173 3.918065 H 4.968083-3.332513 2.130342 H 4.022241-3.214374-0.178543 H 3.209699 1.920566 1.819779 H 4.285072 3.946418 0.867072 H 3.470745 4.914633-1.297037 H 1.565941 3.832410-2.494170 H -0.059864 2.893768 1.688346 H -1.749612 3.420585 3.431866 H -2.764020 1.577381 4.799705 H -2.061618-0.795697 4.385624 H -0.397277-1.319585 2.617514 H 1.299841-2.996425-3.109526 H 2.814093-3.459131-2.261345 H 1.197240-3.794601-1.507913 H 2.675608-0.569522-3.420149 H 3.098309 0.513372-2.045648 H 3.981944-1.031083-2.282976 H -0.700298 0.991203-4.101130 H 0.281269 2.486499-3.950850 H 1.071204 0.874842-3.888516 H -2.412332 2.139240-2.080650 H -1.720777 2.729711-0.535574 H -1.249755 3.515614-2.078070 Etot(ZPE) : -2435.193795 ua -S9-

4 * [BP86/LanL2DZ+f (Rh)/6-31G*(C,P,B,Cl,N,P,H)] C -0.697692-0.314164 2.785570 C -0.095263 0.715155 2.011792 C -0.507149 2.045164 2.295421 C -1.462573 2.336172 3.285130 C -2.040859 1.294730 4.029630 C -1.651932-0.033190 3.773961 B 1.020726 0.383189 0.913679 Rh -0.300392-0.626225-0.806136 Cl -0.728190-2.867591 0.056739 C 1.755833 1.686449 0.265283 C 1.333101 2.279072-0.951174 C 1.948615 3.433993-1.477217 C 3.019000 4.026351-0.792847 C 3.463326 3.457557 0.414195 C 2.841341 2.310024 0.928859 P -0.068272 1.399716-1.742798 C 2.085705-0.771564 1.303240 C 2.609546-1.632980 0.305777 C 3.623999-2.566343 0.578441 C 4.143360-2.664831 1.879529 C 3.638147-1.831580 2.890443 C 2.625341-0.900041 2.603931 P 1.775995-1.418656-1.309177 N -2.444094-0.349459-0.492871 C -3.221106-1.134496-1.286105 C -4.609828-1.168630-1.211882 C -5.276928-0.369764-0.251535 C -4.465444 0.435214 0.581151 C -3.080243 0.413531 0.428920 N -6.656949-0.343038-0.167041 C 0.205693 1.508841-3.581989 C 3.021851-0.503826-2.351230 C 1.781244-3.056778-2.173423 C -1.486011 2.593746-1.569778 H -7.159070-1.139701-0.557702 H -7.058909 0.002930 0.703686 H -2.440774 1.019085 1.076190 H -4.908350 1.069719 1.356210 H -5.171174-1.825054-1.885634 H -2.686928-1.775496-1.992929 H 2.233678-0.267420 3.410100 H 4.028714-1.915760 3.912027 H 4.925922-3.398585 2.104895 H 3.999109-3.232840-0.208364 H 3.212635 1.874949 1.865072 H 4.305697 3.909471 0.952041 H 3.508734 4.918551-1.199905 H 1.603638 3.867942-2.424566 H -0.050442 2.872656 1.738157 H -1.747529 3.377511 3.481804 H -2.782980 1.515125 4.806655 H -2.097413-0.854518 4.348613 H -0.424519-1.355635 2.580551 H 1.329160-2.932272-3.172562 H 2.810592-3.438740-2.293630 H 1.168344-3.759149-1.588970 H 2.708074-0.507947-3.409723 H 3.128207 0.535665-2.005306 H 3.999967-1.010535-2.274025 H -0.668505 1.071098-4.093537 H 0.323551 2.555730-3.914012 H 1.100465 0.937195-3.870465 H -2.386635 2.193622-2.064872 H -1.705093 2.744524-0.501211 H -1.219913 3.565767-2.020961 Etot(ZPE) : -2434.111267 ua -S10-

4 * [BP86/CEP-31G+f(Rh)/6-31G*(C,P,B,Cl,N,P,H)] C -0.668641-0.286393 2.802231 C -0.083940 0.734397 2.003839 C -0.507179 2.064970 2.267864 C -1.456310 2.364183 3.261276 C -2.016853 1.330826 4.030133 C -1.616177 0.002609 3.794726 B 1.023416 0.393624 0.897790 Rh -0.303911-0.648755-0.786881 Cl -0.714790-2.859500 0.100892 C 1.744291 1.697247 0.230574 C 1.306236 2.271426-0.989407 C 1.906017 3.425510-1.534796 C 2.976565 4.035981-0.866743 C 3.436328 3.485834 0.343178 C 2.829415 2.338917 0.877017 P -0.094452 1.367365-1.755815 C 2.107166-0.740979 1.300584 C 2.631312-1.612693 0.312284 C 3.660030-2.528957 0.588892 C 4.193799-2.599678 1.885977 C 3.688257-1.756381 2.888502 C 2.661365-0.841736 2.597485 P 1.774005-1.432698-1.295274 N -2.442055-0.374288-0.472616 C -3.223011-1.159244-1.263493 C -4.611745-1.186109-1.190736 C -5.276162-0.380159-0.234567 C -4.461580 0.424462 0.595402 C -3.076515 0.396078 0.445243 N -6.656004-0.346095-0.152030 C 0.165801 1.454058-3.599189 C 2.997832-0.524890-2.369637 C 1.788142-3.086809-2.130255 C -1.519023 2.556165-1.592720 H -7.162143-1.141226-0.540556 H -7.057742 0.006638 0.716060 H -2.434972 1.002798 1.089208 H -4.901960 1.064490 1.367323 H -5.175275-1.842324-1.862758 H -2.691376-1.804095-1.968697 H 2.269904-0.201053 3.397419 H 4.090184-1.819302 3.907251 H 4.987662-3.320002 2.115218 H 4.035628-3.203427-0.190938 H 3.212577 1.918868 1.815312 H 4.278998 3.951996 0.868304 H 3.454587 4.927609-1.288770 H 1.548912 3.845029-2.484202 H -0.064017 2.886985 1.691888 H -1.750057 3.406039 3.441813 H -2.754119 1.557607 4.809927 H -2.047702-0.812724 4.388294 H -0.385751-1.328647 2.615157 H 1.317184-2.986455-3.123286 H 2.820131-3.457772-2.261514 H 1.195229-3.787720-1.524016 H 2.669963-0.550636-3.423552 H 3.099125 0.521519-2.043331 H 3.981809-1.020705-2.296518 H -0.707404 1.000901-4.098901 H 0.271781 2.497170-3.946788 H 1.064127 0.886965-3.885614 H -2.421050 2.144288-2.075603 H -1.731622 2.722850-0.525160 H -1.261668 3.522582-2.060599 Etot(ZPE) : -2434.712662 ua -S11-

4 * [BP86/SDD+f(Rh)/6-31G*(C,P,B,Cl,N,P,H)] Rh -0.303048-0.649711-0.781644 Cl -0.721739-2.849226 0.124787 P -0.089772 1.347891-1.765034 P 1.766102-1.442231-1.281531 N -2.433044-0.372275-0.472360 N -6.647238-0.351372-0.153531 B 1.021230 0.401028 0.896312 C -0.672224-0.258509 2.807795 C -0.084611 0.753834 2.000638 C -0.504812 2.087639 2.253406 C -1.454906 2.397497 3.242592 C -2.019560 1.371976 4.018965 C -1.620850 0.040992 3.796190 C 1.745871 1.697146 0.218885 C 1.311576 2.258293-1.008439 C 1.915075 3.404706-1.565763 C 2.985813 4.019941-0.902464 C 3.441395 3.483042 0.315017 C 2.830647 2.343891 0.860902 C 2.101414-0.733751 1.308504 C 2.622791-1.614351 0.326618 C 3.646867-2.533867 0.610158 C 4.179152-2.598239 1.908134 C 3.677239-1.745125 2.904222 C 2.655012-0.827555 2.606231 C -3.212423-1.163451-1.259254 C -4.601120-1.191999-1.187652 C -5.267760-0.381947-0.236178 C -4.455112 0.429451 0.589224 C -3.069875 0.402563 0.440365 C 0.168010 1.416348-3.609524 C 2.993952-0.547932-2.363241 C 1.776493-3.102448-2.105024 C -1.511337 2.541771-1.615221 H -7.152186-1.148877-0.538617 H -7.050651 0.007235 0.711318 H -2.429742 1.013058 1.082056 H -4.896987 1.072943 1.357402 H -5.162674-1.854123-1.855579 H -2.678781-1.812656-1.959263 H 2.267183-0.178914 3.401536 H 4.078623-1.802369 3.923522 H 4.969291-3.320794 2.143113 H 4.019192-3.215692-0.164842 H 3.210226 1.934317 1.805334 H 4.283660 3.953715 0.836781 H 3.466783 4.905640-1.333536 H 1.561246 3.813910-2.520863 H -0.059044 2.903843 1.671057 H -1.746162 3.441612 3.413900 H -2.757380 1.607142 4.795722 H -2.054293-0.768274 4.396681 H -0.392592-1.303215 2.629352 H 1.291658-3.011803-3.092410 H 2.809077-3.468088-2.246551 H 1.195080-3.802481-1.486859 H 2.671058-0.589102-3.418313 H 3.094147 0.502978-2.051299 H 3.977141-1.043392-2.278050 H -0.707399 0.960996-4.103608 H 0.275210 2.456657-3.965311 H 1.064415 0.845054-3.893482 H -2.415501 2.124431-2.089589 H -1.721495 2.726430-0.550104 H -1.251802 3.499663-2.099275 Etot(ZPE) : -2435.196090 ua -S12-

Spectroscopic data for 2-4 11 B, 31 P and 103 Rh chemical shifts are expressed with a positive sign, in parts per million, relative to external BF 3.OEt 2, 85% H 3 PO 4 and Ξ = 3,186447 MHz. Otherwise stated, NMR was recorded at 293 K. 10 9 11 5 6 8 B 7 12 6 5 4 3 1 2 1 2 3 4 P P 2: 31 P{ 1 H} NMR (C 6 D 6 ) δ = 11.0; 13 C{ 1 H} NMR (C 6 D 6 ) δ = 160.4 (d, 1 J C-P = 43.0 Hz, C 2 ), 147.7 (s, C 7 ), 137.4 (s br, C 1 ), 137.3 (s, C 8 and C 12 ), 136.0 (pseudo-t, J C-P = 25.0 Hz, C 3 or 6 ), 131.0 (s, C 3 or 6 ), 129.2 (s, C 10 ), 128.7 (s, C 4 or 5 ), 127.6 (s, C 9 and C 11 ), 126.8 (s, C 4 or 5 ), 25.7 (pseudo-t, 1 J C-P = 4.0 Hz, CHCH 3 ), 20.3 (pseudo-t, 2 J C-P = 3.8 Hz, CHCH 3 ), 20.1 (pseudo-t, 2 J C-P = 6.6 Hz, CHCH 3 ); 1 H NMR (C 6 D 6 ) δ = 8.62 (d, 2H, 3 J H-H = 7.2 Hz, H 3 or 6 ), 7.79 (d, 2H, 3 J H-H = 5.6 Hz, H 8 and H 12 ), 7.56 (pseudo-t, 2H, 3 J H-H = 7.2 Hz, H 4 or 5 ), 7.43 (dd, 2H, 3 J H-H = 7.2 Hz, J H-P = 5.2 Hz, H 3 or 6 ), 7.32 (pseudo-t, 2H, 3 J H-H = 7.2 Hz, H 4 or 5 ), 7.25 (m, 3H, H 9, H 10 and H 11 ), 2.04 ( sept.d, 4H, 3 J H-H = 7.0 Hz, 2 J H-P = 14.0 Hz, CHCH 3 ), 1.06 (dd, 12H, 3 J H-H = 7.0 Hz, 3 J H-P = 13.8 Hz, CHCH 3 ), 0.87 (dd, 12H, 3 J H-H = 7.0 Hz, 3 J P-H = 13.8 Hz, CHCH 3 ); 11 B NMR (C 6 D 6 ) δ = 43.1; MS (EI, 70eV) m/z (%): 474 [M] + (5), 431 [M - i-pr] + (40), 388 [M - 2(i-Pr)] + (5), 357 [M - P(i-Pr) 2 ] + (10); mp: 95-97 C. -S13-

4 5 3 10 9 11 6 8 7 12 6 1 B 1 2 2 P Rh P 2 Cl 5 4 3 3: 31 P{ 1 H} NMR (CDCl 3, 293 K) δ = 88.8 (d, 1 J P-Rh = 187.0 Hz), 70.0 (br ν 1/2 650 Hz), 50.4 (d, 1 J P-Rh = 126.1 Hz); 11 B NMR (CDCl 3, 293 K) δ = 20,0; 31 P{ 1 H} NMR (CDCl 3, 213 K) δ = 50.0 (br, minor conformer), 74.7 (dd, 1 J P-Rh = 151.9 Hz, 2 J P-P = 24.3 Hz, P A ), 64.2 (dd, 1 J P-Rh = 160.0 Hz, 2 J P-P = 24.3 Hz, P B ), 100.0 (br, minor conformer); 13 C{ 1 H} NMR (CDCl 3, 213 K) δ = 168.4 (d, 2 J C-P = 41.5 Hz, C 1B ), 167.5 (d, 2 J C-P = 38.5 Hz, C 1A ), 156.0 (s br, C 7 ), 140.3 (d, 1 J C-P = 51.6 Hz, C 2A ), 138.8 (d, 1 J C-P = 49.1 Hz, C 2B ), 138.2 (s, C 8 or 12 ), 135.5 (s, C 8 or 12), 131.9 (s, C 3A or 6A ), 131.0 (d, J C-P = 20.0 Hz, C 3B or 6B ), 129.0 (s, C 3B or 6B ), 128.8 (s, C 4B or 5B), 128.5 (s, C 3A or 6A ), 127.5 (s, C 9 or 10 or 11 and C 4A or 5A ), 125.9 (s, C 9 or 10 or 11 ), 124.8 (s, C 9 or 10 or 11), 123.9 (s, C 5B or 4B ), 123.4 (s, C 5A or 4A ), 30.1 (d, 1 J C-P = 22.6 Hz, P A CHCH 3 ), 28.5 (s br, P A CHCH 3 ), 27.8 (d, 1 J C-P = 10.7 Hz, P A CHCH 3 ), 26.6 (s br, P B CHCH 3 ), 25.1 (d, 1 J C-P = 18.9 Hz, P B CHCH 3 ), 24.8 (s, P B CHCH 3 ), 22.0 (s, P B CHCH 3 ), 21.5 (d, 2 J C-P = 6.3 Hz, P A CHCH 3 ), 21.4 (s, P B CHCH 3 ), 21.0 (d, 2 J C-P = 5.0 Hz, P A CHCH 3 ), 19.9 (s, P A CHCH 3 ), 18.8 (s, P B CHCH 3 ); 1 H NMR (CDCl 3, 213 K) δ = 8.57 (d, 1H, 3 J H-H = 7.0 Hz, H 8 ), 7.55 (m, 1H, H 6A ), 7.53 (d, 1H, 3 J H-H = 7.0 Hz, H 3A ), 7.25 (m, 4H, H 9 or 10 or 11, H 3B, H 4A and H 4B ), 7.12 (pseudo-t, 1H, 3 J H-H = 7.0 Hz, H 9 or 10 or 11 ), 7.05 (pseudo-t, 1H, 3 J H-H = 7.5 Hz, H 5A ), 7.00 (m, 1H, H 5B ), 6.93 (pseudo-t, 1H, 3 J H-H = 7.0 Hz, H 9 or 10 or 11 ), 6.85 (m, 1H, H 6B ), 6.55 (d, 1H, 3 J H-H = 7.0 Hz, H 12 ), 2.67 (br, 1H, P B CHCH 3 ), 2.27 (br, 1H, P A CHCH 3 ), 2.09 (br, 1H, P A CHCH 3 ), 1.92 (dd, 3H, 3 J H-P = 17.1 Hz, 3 J H-H = 6.6 Hz, P A CHCH 3 ), 1.74 (dd, 3H, 3 J H-P = 18.8 Hz, 3 J H-H = 6.4 Hz, P A CHCH 3 ), 1.60 (dd, 6H, 3 J H-P = 11.7 Hz, 3 J H-H = 6.7 Hz, P B CHCH 3 ), 1.13 (dd, 3H, 3 J H-P = 15.1 Hz, 3 J H-H = 6.7 Hz, P A CHCH 3 ), 1.05 (m, 1H, P B CHCH 3 ), 0.86 (dd, 3H, 3 J H-P = 14.7 Hz, 3 J H-H = 6.5 Hz, P B CHCH 3 ), 0.30 (dd, 6H, 3 J H-P = 14.0 Hz, 3 J H-H = 5.4 Hz, P A CHCH 3 and P B CHCH 3 ); 103 Rh NMR (CDCl 3, 213 K) δ = -7365; 31 P{ 1 H} NMR (solid state, 293 K) δ = 76.9 (d, 1 J P-Rh = 166.6 Hz), 66.5 (d, 1 J P-Rh =162.8 Hz); MS (DCI/NH 3 ) m/z (%): 1242 [M + NH 4 ] + (0.5), 1189 [M - Cl] + (1), 630 [M/2 + NH 4 ] + (20), 595 [(M/2 + NH 4 ) - Cl] + (10), 577 [M/2 - Cl] + (100); mp: 205 C ; elemental analysis calcd (%) for C 30 H 41 BClP 2 Rh: C 58.80, H 6.74; found: C 58.99, H 7.11. -S14-

4 5 3 10 9 11 6 8 7 12 6 1 B 1 2 2 P Rh P Cl N 13 17 14 16 15 N 5 4 3 4: 31 P{ 1 H} NMR (CDCl 3 ) δ = 66.8 (dd, 1 J P-Rh = 169.8 Hz, 2 J P-P = 31.0 Hz), 65.3 (dd, 1 J P-Rh = 144.5 Hz, 2 J P-P = 31.0 Hz); 13 C{ 1 H} NMR (CDCl 3 ) δ = 169.1 (d, 2 J C-P = 35.9 Hz, C 1B ), 166.9 (d, 2 J C-P = 40.8 Hz, C 1A ), 154.6 (s br, C 7 ); 153.2 (s, C 15 ), 150.0 (s, C 17 ), 148.8 (s, C 13 ), 141.0 (s, C 8 ), 140.9 (d, 1 J C-P = 47.7 Hz, C 2B ), 139.9 (d, 1 J C-P = 48.2 Hz, C 2A ), 135.7 (s, C 12 ), 132.2 (d, 3 J C-P = 21.1 Hz, C 6A ), 131.2 (d, 3 J C-P = 20.7 Hz, C 6B ), 128.6 (s, C 3A and C 3B ), 128.5 (s, C 4A or 5A), 128.0 (s, C 9 ), 127.5 (d, J C-P = 2.3 Hz, C 4B or 5B ), 126.0 (s, C 11 ), 125.4 (s, C 10 ), 123.7 (d, J C-P = 6.2 Hz, C 4A or 5A ), 123.6 (d, J C-P = 6.5 Hz, C 4B or 5B ), 107.3 (s,c 16 ), 106.0 (s, C 14 ), 39.0 (s, N(CH 3 ) 2 ), 29.7 (d, 1 J C-P = 20.4 Hz, P A CHCH 3 ), 28.2 (d, 1 J C-P = 28.4 Hz, P B CHCH 3 ), 27.7 (d, 1 J C-P = 21.3 Hz, P A CHCH 3 ), 26.2 (d, 2 J C-P = 5.0 Hz, P A CHCH 3 ), 26.1 (s, P B CHCH 3 ), 25.1 (d, 1 J C-P = 18.6 Hz, P B CHCH 3 ), 21.7 (d, 2 J C-P = 6.2 Hz, P B CHCH 3 ), 21.5 (d, 2 J C-P = 6.8 Hz, P A CHCH 3 ), 21.3 (d, 2 J C-P = 4.9 Hz, P B CHCH 3 ), 21.1 (d, 2 J C-P = 7.3 Hz, P A CHCH 3 ), 18.8 (s, P B CHCH 3 ), 17.5 (s, P A CHCH 3 ); 1 H NMR (CDCl 3 ) δ = 8.42 (d, 1H, 3 J H-H = 6.8 Hz, H 13 ), 8.40 (d, 1H, 3 J H-H = 7.2 Hz, H 8 ), 7.61 (pseudo-t, 1H, 3 J H-H = 6.7, 3 J H-P = 6.7 Hz, H 3A ), 7.51 (dd, 1H, 3 J H-H = 7.0 Hz, 3 J H-P = 7.3 Hz, H 3B ), 7.41 (d, 1H, 3 J H-H = 7.3 Hz, H 6B ), 7.29 (pseudo-t, 1H, 3 J H- H = 7.2 Hz, H 9 ), 7.25 (pseudo-t, 1H, 3 J H-H = 7.2 Hz, H 10 ), 7.18 (pseudo-t, 1H, 3 J H-H = 7.3 Hz, H 4B or 5B ), 7.14 (pseudo-t, 1H, 3 J H-H = 7.2 Hz, H 11 ), 7.04 (m, 4H, H 4A, H 5A, H 6A and H 4B or 5B ), 6.97 (d, 1H, 3 J H-H = 7.2 Hz, H 12 ), 6.38 (dd, 1H, 3 J H-H = 6.8 Hz, 4 J H-H = 3.2 Hz, H 14 ), 5.94 (d, 1H, 3 J H-H = 5.3 Hz, 4 J H-H = 3.2 Hz, H 16 ), 5.22 (d, 1H, 3 J H-H = 5.3 Hz, H 17 ), 3.58 ( sept.d, 1H, 2 J H-P = 10.8 Hz, 3 J H-H = 7.3 Hz, P B CHCH 3 ), 2.91 (s, 6H, N(CH 3 ) 2 ), 2.45 (sept.d, 1H, 2 J H-P = 7.5 Hz, 3 J H-H = 7.5 Hz, P A CHCH 3 ), 2.21 (sept.d, 1H, 2 J H-P = 7.6 Hz, 3 J H-H = 7.6 Hz, P A CHCH 3 ), 1.94 (dd, 3H, 3 J H-P = 17.1 Hz, 3 J H-H = 7.5 Hz, P A CHCH 3 ), 1.91 (dd, 3H, 3 J H-P = 16.6 Hz, 3 J H-H = 7.3 Hz, P B CHCH 3 ), 1.77 (dd, 3H, 3 J H-P = 10.0 Hz, 3 J H-H = 7.5 Hz, P A CHCH 3 ), 1.74 (dd, 3H, 3 J H-P = 11.3 Hz, 3 J H-H = 7.3 Hz, P B CHCH 3 ), 1.28 (m, 1H, P B CHCH 3 ), 1.18 (dd, 3H, 3 J H-P = 12.9 Hz, 3 J H-H = 7.2 Hz, P B CHCH 3 ), 1.10 (dd, 3H, 3 J H-P = 12.1 Hz, 3 J H-H = 7.6 Hz, P A CHCH 3 ), 0.47 (dd, 6H, 3 J H-P = 13.1 Hz, 3 J H-H = 7.6 Hz, P A CHCH 3 and P B CHCH 3 ); 11 B NMR (CDCl 3 ) δ = 19.4; 103 Rh NMR (CDCl 3 ) δ = -7552.2; mp: 137 C. -S15-