HWAHAK KONGHAK Vol. 41, No. 1, February, 2003, pp. 1-14 151-742 56-1 New Unconventional Nanolithographic Methods Pil Jin Yoo, Sanghoon Lee, Mikyung Park, Seok Joon Kwon, Hyewon Kang and Hong Hee Lee School of Chemical Engineering, Seoul National University, San 56-1, Shilim-dong, Kwanak-gu, Seoul 151-742, Korea,! "#$ %& ' ()%! *+, -$./01. ( 2! 34 56 789: ;<.=>?$@ AB.=>?$ C01. D E F G H6!89 'I89: J!< 'KL, MK 'NOL PQR 2! ST POU 1. V WP, D XT YZI@ [C \]! P^4 _< 89: ` ;<.=>?$, abcd.=>?$ AB B $ C01. 4 %& exr f89l 6gR 3hi jk9 l m n1. Abstract This review is on unconventional nanolithographies that can replace the conventional photolithography. All these techniques utilize a patterned mold and the patterning is realized by physical contact of the mold with the underlying polymer layer. They are cost-effective, applicable to small feature sizes that cannot be defined by photolithography, and to an extent applicable to non-planar surfaces. Imprint and soft lithographies are reviewed first, which is then followed by new lithographies of room-temperature imprint lithography, capillary force lithography and soft molding. These new techniques are also efficient and cost-effective in fabricating complex or three-dimensional patterns and structures. Keywords: Nano, Patterning, Lithography, Polymer, Imprint, Capillary, Molding 1. (nanolithography) 100 nm! " # $%. &' () *+,-./ &, 01 2 34 567 89 :;7 4 <=>? @A B %C!D 2E FG- H%. IJ E$ KLA MN O P 2, QAL RST, UV-WXY A 2 Z FG- H%. KL)1 [\],^4 _Y ()7` #a b 2E, c87 J de! f \1 () _ g.$ hf X_] ij.k b%. D 6l4 X_7 m! _Y X_ 2n op7 q9 # ]r, s% t'4 X_uvk w b%. ()7 ix yz uv7 b$ R _J * r{ op7 }~4 To whom correspondence should be addressed. E-mail: honghlee@plaza.snu.ac.kr [\J b%.,u, yz 34 ƒ ˆ (photolithography) Š 4Œ(projection printing) 7 de Žk b, QO 6\ 1 J # g 4Œ! 6 9 t 7 A %. c87 z š œ 100 nm 7 89/` 7 J ž Ÿ s% O 6\ 1 O E #.k b%. J, _. š \ y \J ž b,, J Ÿ Go O m ]œ ;1 -. %. Go m# k ª +«/, 2n7 100 nm ªY n %. ª 4 I AL (e-beam lithography), Xš (X-ray lithography) ±² (scanning probe lithography) Z G~w b%[1, 2]. 3 E d³\ µ (tip) R ¹. AL (radiation)j! &' / _ 01 µj º0=»k, J š¼ ½~! %., #! ¾ AY7 µj $v % :;7 G 1
2 o V À/7`, - m[á!` t'4 ƒ 7 #7 Â] ÃC%k w b%.? m#\ Go V ;J ÄÅ Ÿ! 1990ƪ Ç R ÈÉ \ _Ê. ma ~4 (nanoimprint lithography) [3, 4], XË (soft lithography)[5-7], ÌÍ{ (capillary force lithography)[8] XË Ë (soft molding)[9]\ E =. %. 1 O # \ Î E ÏË À/7` Ð4 m#ñ [\J ],/ ` Q= 7 ª/ # ]r Ë,Ò%. 7`? 94 J! _2, Ók, & 4 9Ô7 ` q9 ÕÖ _2 :;7 zw Z 27 ÕÖ Ø ;] $, Ó%. 3 ÙÚ7` D ÛË ],k b ma (unconventional lithography) Ü+sk 6? Ý# ]rë7 ª ` ÞßskL %. 2. 4 ƒ %à\ 3Q> á b%. (a) Ñ Ë kul(resist)j ¾7 âã! äå Ë Q>, (b) Ñ å æ7 (exposure)=» Q>, (c) 01çè #! Ñ å 2(development) Q>. ÛB, E 3Q>7 b$` Q> _2kL J % À/7` ] O Q>%.,U, ª/ ƒ é Ÿ ` QO Lêš(deep UV) #ë,, c8 100 nm ƒ 7 ì/` ÄQO Lêš(extreme UV) Xš í AL ˆ #k b%[10]. E ƒ Om m# ;1 7 ì Q ],k b,, ƒ î ª ï,w b% À/7` ð Ëb ƒ O ]i%. 7 ` ƒ 6\ Ñ å ¾\ Ý ÕÖ Ëa b 34 š¼ë FG=ñ%. \ 7` FG æ ò xl uo Ñ å ó7` 01 _J º=»-. k, ºH _ # 5J FG=ñ%.!` 7 ª Ñ å ÝË 2 \ Ç7 H u #.ôõ ö +bôõ7 Ã` KË í àë Ñ u w b%. Ÿ? \ ` ËH ÕÖ q, 9 # Ÿ ` J ¾7 A (transfer) =øv %. D ÕÖ A 7!D ],] bù, ËH Ñ å ÕÖ Ÿ7 % C &' š¼ úû< í ü 5J #! ½~! A = b%. Ñ å ý u ˆ þœ(ion implantation) ÿ o Z! š¼ (doping)w b%. ]O #. ½~ ÕÖ A 7` çè # ½ ½~ \ J # ½ ½~ #H%., ÕÖ ] ]. c8 ƒ 7` ª u ½ ½ ~ #.k b%[11]. t yz? % _J Ë Ÿ ` Ÿ? ƒ \ ÕÖ A ƒ ~ % Q> $ v %. ª/ #=7 ü GoË ï, Ÿ ` >J #! ƒ Å v %. Ã` R QŸ L ÛË @P- $ Ÿ ` ÕÖ \ 7` k Ë _/ ` ª Go = b$v %. 4 y z Go \ ü ƒ ð Ë\ Ë _%. 41 1 2003 2 3. ƒ # 7 m 9Ô 7 Ž ma ƒ %à\ 3Q> ƒ $i%. (a) ï ]r kul ¾7 âã Q>, (b) âã H / 01 é< ê { Ì Í{ Z &4 ]! º=» Q>, (c) ËH Õ Ö ¾7 A =» Q>. D ma ƒ ƒ m# Ø/` ƒ 34 î ï,% À/7` \ u7` Ë, Ò%. J ƒ Q0J ÎË/` ª/7 100 nm _2 ]r%.!7` 7 FH ª 4 ma 4 ~4 \ XË 7 ª ` Ü +skl %. 3-1. (Imprint Lithography) QQ #! ád` J { ] ž$, # ÕR CD *\ uv7 ` 0.$ # ˆ %. ƒ m# Ø/` ü ÕÖ ž b$`, c87 Y s op7` #. 4 R (), O.$ FAë%. &4 { #! ád` ÕÖ * :;7 ~ 4 H%. ~4 (Nano-imprint lithography, NIL) Princetonª Chou X_i7 ` éà FH, - nm ÕÖ J 6¾!"J #$% \ ÿ] Ë kul äå âãh ¾7 q9 9Ô=»k, &4 ]! ád 6¾!" ÕÖ ª kul äå 7 A = ø - nm ÕÖ Ë %[3, 4]. ª&4 AY ƒ ̽? ƒ # 'J Fig. 17 2ë%. Fig. 1. (a) Schematic procedure of nano-imprint lithography and (b) 70 nm pattern fabricated by nano-imprint lithography. Reproduced from ref. 3.
(- ` ËH kul ÕÖ %= ÝË ˆ ½~ ƒ (Reactive ion etching, RIE) Z # ` ¾7 A =ñ%. 4 ~4 ƒ #w :7 ª& 50-250 nm Ž) kul äå7 ª! ˆ J kul ïa ˆ ü4 µ7` 6¾ (mold)\ 9Ô=ñ%. J 6nm, ] ]r [12], 3 _ A> [\ * +,$R(Field effect transistor, FET)] *. ë%[13]. ~4 ƒ ˆ ÕR uv7 b$`, ma # ]rë s!,-. ˃4 ' / b%., Ÿ? m#, À/7` Ë7 0_k ~4 ƒ 11 ; E 4 q94 op7 #7 b $`, 11 ; 7 2û µ%. ~4 ƒ 7` #. kul äå Ž) ª& 50 nm-250 nm%. Ÿ? ˆ? { 7` 6¾!"] kul äå 3k E $] 4] 40 nm-200 nm 5Ÿ7 n :;%. Ã` ku L äå Ž)] 6¾!" ²Š 4s% 6 Ï7 6¾!" ] ¾\ 9Ô.$ 78 6¾!" #9 :$" ; ] FG%. ], G~w b ; ƒ {%. NIL ƒ 7 b$` q { kul? ¾ ;ÅÝ{(yield stress) 7` š.$v %. D 5Ÿ q { kul äå7 6 ¾!" ÕÖ A =»ù ¾7 7 xb, Ó Ÿ < 4 w b%. ª u NIL ƒ 7` #. q { 5 Ÿ 10 7-10 8 Pa B ü { #H%. Ã` q{ ¾ AY7 =- ], Ÿ ` ¾ >!b / @A -? ï, v %. ] 7 FG kulå ó 7 ` @GË 4 ï. 0= { u@ ;J å Ÿ iƒ 7` ƒ j v %.,å G~w b NIL ƒ cª ; Å ƒ $A% %. 4 4Œƒ G~ 3%/, 4Œ*p Å ` y $ v ù, NIL ƒ Ï, QŸ ƒ =% fb- ƒ ˆ J C $v :;7 %à Q>7` A7 ËH ÕÖ º.<,- H%. Ã` ÅD ÕÖ Ï QŸ Ń (step and repeat) # 0]r!, E 6¾!"J ÅD - * v ; ðk b%. D ; Ÿ =H F ˆ ~4 ƒ %.!` ØuL kulj #< # ò #! kul J GH ˆ7` ~4 ]r- < [14], kul kï Lï (free-volume) g7 Ë º #! w b%[15]. 3-2. (Soft Lithography) XË Harvard ª Whitesides i7 ` 1990ƪ Ç7 FH, Fig. 27`? XË n'!"(mold)j #! ÕÖ *! " I %. Fig. 27` Å Ë (replica molding, REM), 9Ô 4Œ (microcontact printing, µcp), ÌÍó Ë (micromolding in capillaries, MIMIC), J Ë (microtransfer molding, µtm), # Ë (solvent-assisted micromolding(samim) K 89O 9Ô Q ƒ & J k b%[5-7]. E 7` 6!", 4Œ¾ í # $ Z nl ƒ #MNOtPo(polydimethylsiloxane, PDMS)\ QËY kul nlj #%. D QË nlj # XË ƒ 7` 0]rëR ƒ Q0 K SVË _2ë, m?q ¾ Ÿ7` Õ Ö Ë Û &' # ÕÖ Ë7 # ]r!,!" 3 Fig. 2. Schematic procedures describing soft lithographic methods and near-field phase-shifting photolithography. Reproduced from ref. 6. ƒ 7` 0]r ()7 h# ]rë s! %. J _2H Q Q _ T` uu=$ V, A=$V(MEMS) K 1 uv Z7 W- Ý#.k b%. %à7` D XË 4 ÛË Ü+skL %. 3-2-1. Å Ë (Replica molding, REM) S Ü i Ë(molding) PDMS? QËY kulj Ë nl #/` Ý# 5Ÿ] ª. %. Fig. 2(a) 7 X by H Â& 6¾7 QËY kulj $ ` k Ï0=Z, 6¾\ /` ª QËY!"J Åw b%. (- H QËY!"!X ï&'7 ª f[ 6!" #./`, ÕÖ ÅJ Åw b%. QË nl4 PDMS Ï / 7\,] 21.6 dyne/cm G+` _ 6¾ ÕÖ R º ]$^ ý _- u. &Ë ]i%. QËY!"J #! ž b ÛË ]ºË #! µ K W ]r% %. t >4 g7 PDMS7 ËH ÕÖ J 50 nm 7` 30 nm g= b Lï [ º\ W ]r%[16]. Å Ë J Å \ 7 < º», Ó :;7 QŸ ÕÖ Åw : º `a ý \J ž b%. 3-2-2. 9Ô 4Œ (Microcontact printing, µcp) 9Ô 4Œ U \ bë(hydrophilic) UV / HWAHAK KONGHAK Vol. 41, No. 1, February, 2003
4 Ÿ7 Üc%C(alkanethiloates) >ÿ LdY(self-assembled monolayers, SAM) =» 34 ƒ 6 #%. Fig. 2(b) 7` 2H 9Ô 4Œ 6 Q \ w b%. ÅH PDMS!"J Üc%C eu #f7 S Ç7 J ¾7 9Ô=»k 4Œ 9Ô >/7 b %C(thiol) ul E UV ¾\! AJ. P F%. D 4Œ ]r ï, PDMS!"? ¾ = 9Ô(conformal contact) 4 LdY /\ 01 :;%[17]. Q L dy] /\! QuL(monolayer) Ë-./, IQ u Ë(hydrophobicity) gk bh 9Ô u ê SAM &' o. F [Á 5Q=»- H%. ƒ ËH Ñ å < ƒ 3 ù!, 9Ô 4Œ ÕÖ < u7 š¼ &' 4Œ :;7 6L im] $,, Ó ƒ O ] i%. jc ƒ _2 ]r, ª/ #7 b$` >] ýk, a/ kah /7` 9Ô 4Œ] ]r%. J #! š¼4 356 _ ÕR ]r [18], U ê7 _ o0 H o0å / Z %K /7 # ]r%., D Ï _2 ]r cª ] 1µm 7 0\ :;7, 500 nm s% ü Õ Ö J ž Ÿ ` U # v %. 4ŒH SAM ÕÖ š¼ ½ ½~ \ d ¾7 A =»<, š¼ úû ƒ ¾(template) #a b%. J ` 100 nm ÕÖ, ] ]r%. D k ÕÖ ž Ÿ ` ÛB ½~ \ 7 b$ (l m b UV xl ½~f Ë Z J - $ $v %. 3-2-3. # Ë (Solvent-assisted micromolding, SAMIM) # Ë (SAMIM) 4 4]ƒ (embossing)\ mn,, 4ƒ 7`éo ÿ #! ï& X0=» ªS7 #J #! ï& X0=ñ%. QQ n' 6¾ ªS7 QËY PDMSJ #! ÕÖ Ë% À/7` 5] b%[19]. ƒ %à\ %. Fig. 2(c)7`? k ul å ËH ¾ Ÿ7 kul\ #Ë p #J ò= ñ PDMS!"J 9Ô =ñ%. \ 7` PDMS!"7` Fo. # 4 kul] X0.k, : ž$, kul ïë #! 6 ÕÖ - H%. : # kul? #Ë p/` PDMS!"J º=»< 7=», Ó+v %. PDMS _4 ÛË 4 ó 7` &' o LïB :;7 # ò, qû #, J #! ÕÖ @A Å] ]r% Ûr ]i%. SAMIM ƒ % K kul 7 # ]r% O ],k b%. #. ª u 5#,4 #$%, #NONX s *, st,, #u0mv, wxy$ +z* Z 5Ÿ ( ) ï&7 # ]r%. Ã` %K ï&7 ª š¼ *# # Ëu./ SAMIM ƒ # ]r%. SAMIM %C O 356 ÕÖ Ë LïB% %. 4 ƒ Q>J <{v w ÅD 356 _ SAMIM #/ Q - ƒ Ë ]r%. Fig. 3 7` SAMIM #! IJ s!%. 7` / by 60 nm 7 50 nm üj ]i š _] ª/7 =- Ë8 Ü b%. (- ËH kul _ ½~ \ ` ¾7 A = b%. SAMIM ƒ Q ÕÖ ËH Ç PDMS!"? 9Ô k br u7 }! kul Ž~- ö% ;J E b%. }! kul/¾7 ª 2Q> ½ ½~ ƒ ` ; 41 1 2003 2 Fig. 3. AFM images of polymeric nanostructures fabricated using SAMIM in a thin(-0.4 mm thick) film of Microposit 1,805 spincoated on Si/SiO 2. Reproduced from ref. 6. J w b,, }! Ž)], - ŽR Ï7 Õ Ö A ] [\ $, $A- H%. Ã` }! Ž) ] 6/` ÕÖ Å] ]r ƒ ()7` ƒ j v %. 4. 4-1. (Room-temperature imprint lithography) ƒ 7` kulå X0=» Ÿ `, ~4 ƒ 7` _. ]ÿé ªS7 Y # YJ #! kul äå é %[14]. J #! 6¾\ 9û 4 ; ý ˆ7` 60 nm ÕÖ Ë ]r%. kul? # Í>7 b Y # kul äå7 ò.$ kul ïaˆ (glass transition temperature)j G $ )w -.k, 4 ˆ7` k ul äå ï ]r-.$ ~4 ƒ #w b-. F%. Ã` ˆ ~4 ƒ 7` kul äå ] 4 ƒ º *#%. t kul äå, ÛB ÿ] Ë kul ˆ, ul, ul u@,, 9Ô/7` Ý{ Z %K 47 ` (l %. t ƒ 7` kul J G ]O _- 98w b ~4 ƒ 7`? ƒ ˆ J kul ïaˆ ü! F%. ky kul ïaˆ 1.2^ ˆ 7` R ïë ],-. :;7, J #! ~4 ƒ 7 # ƒ%(pmma Ï 170 o C ).
Fig. 4. Schematic procedure of the room-temperature imprint lithography. Reproduced from ref. 14.!" 5 ˆ? Í 7` kul äå J G¹ b %C G~ / b F #J #! J G F%. #J # eu kul J G ª 4 ' $ âã G~w b%. ÄQ kul J G Ï, âã = #. kul #f 90-99 wt% # _ËH%. ª ËH kul äå kˆ7` ]ÿ-./ ª u #] <.$ kul ] ü µ äå ž b%. Ã` # K WB W Ÿ Ž ], 7` 6? J ]i kul äå Ëw b%. t 7` ˆ J º0=ø # ú W! kul äå 7 ò. # K ƒ 7 $ c0 = b%. Fig. 47 #J # ˆ ~4 ƒ (Room-temperature imprint Lithography, RT-NIL) ̽ J 2ë%. Ø kul äå ËH t ¾ *ˆ7O (Trichloroethylene, TCE) #] Š #? ) ˆ 7` ÿé%. TCEJ # ï, TCE ªS7 %C #J #w b, TCE ª ú ˆ ` %C #7 m ` Œ :;%. D \ 7` FG # Y ¹H kul äå /7 ò.k, $ ˆ7` ~ 4 ƒ #! 6¾!"J kul äå7 ŽC%. : ], { ª& 30-150 MPa 5-40u ð { ] %. ] ƒ / 6¾\ kul äå u%. \ 7` 6¾\ kul 9û 4 ÕÖ 7. Z ; $, Ó %. Ã` ª/ ÕÖ 7 ý ] ]rw +«, 6¾!" yu 7 ; ý Å4 # ] r%. # éj ` ž b kul äå [\ Ž ], çh%[20].,. Ë0(plasticization)7 ÃC ïaˆ t FG kul t [\k. eu7 Fig. 5. Plane-view SEM images of patterns imprinted into a PS film at room temperature with TCE vapor treatment: (a) 250 nm lines and spaces, (b) 200 nm dots. In each figure, the imprinted patterns(right) are exactly the mirror image of the patterns on the mold(left). Thus, the two micrographs coincide when folded along the centerline shown on each figure. Reproduced from ref. 14. HWAHAK KONGHAK Vol. 41, No. 1, February, 2003
6 ]4 t [\%. Ë0 [\? eu [\ K #J #! kul ïaˆ? J - t= b J ky kulj m * { ]ƒw b%., # é \ 7` # K U \ - Šx./ äå ], - t/`, $ kul äå <- w b :;7 c0h ƒ _ g.$v %. Fig. 57` 6¾ ÕÖ\ ˆ ~4 #! Ë ÕÖ AL 2Ï(Scanning electron microscopy, SEM) #! ( \J s!%[15]. 7` XY AL O ÕÖ _2 r{ > 4! 250 nm š ÕÖ 6¾!"] qš +Ò % _0_0 `ah µ _2.$ b%., D 0 4 7 0_k ˆ ~4 ƒ #/ 6¾!"? ÕÖ Ë8 4w b%. ˆ ~4 ƒ Ÿ %C kul kï Lï (freevolume)j # Ë º(plastic deformation) h# ƒ G ~w b%. kˆ7` ƒ 3 ~4 7` # 0]r QŸ Å ƒ (step-and-repeat) % ~4 ƒ 7 # ]r%.? kul Ë º #! ~4 ƒ jw Ï7 kul äå7 ], g Ý{(compressive stress) #%. 6L ±² 2Ï(atomic force microscopy, AFM) ( Q/ i uu \7 /, ~4 \ 7` GË. kul ÕÖ ó ƒ 10-50% má7 \ ÕÖ(overflow) FG=ñ% F Ü b%. Lï g +«kul äå Ë º ÕÖ Ë7 )w k bà s! F%. kul nl]  k /, äå µ7` äå Ž) ïë 4 FG kul š ÛË(persistence) 4 kul ó7 ƒ, } Lï ] n- H%.!` kul ó ƒ má f v %/, %à\ ½ 2 ]r%. f v = ( v s v vs ) v s (1)!` v s  kul m (specific volume), v vs ù ìf$, R >oh m %.!` f v 4  kul Ï 0.32-0.375 œ ]i%. (, ÿ ï k / kul ^ÿ ÛË(conformational grounds) :;7 ku L ó ƒ má Ÿ? 7, Î $A%. Ï ï ]r Lï f m %à\ 2w b%[21]. Young > 5Ÿ7` W%/, kul Ÿ7 ˺7 6¾ ÕÖ üs% º $- 8 Ü b%. t 7` 1µm Ž) o0å ËH t ¾ Ÿ7 AL #! ÕÖ Ëk, t \ ½~ š¼ë #$% (PS) kul #ë%. ½ ~ \ 7` š¼ë ÝË ˆ½~(RIE) ƒ 7 b$` ¾ 7 A. ÕÖ µj %. š¼h ½ ~ 7` PS 7 m SiO 2 ½~ V ] 6-10^ j ì :;7, J #/ Ÿ kul ÕÖ7 m ü È mj ÕÖ ž b%. L t \ Þßs/ %à\ %. Ø PS/Toluene kul #f SiO 2 /Si ¾7 âã7 ` yu K, &' <J Ÿ ¾ %. Ç7 0.5-10 wt% kul #f ¾ Ÿ7 $ âã Ç 150-200 o C iƒ f m = ( v so v cso ) v so!` v so? v cso ~ Wª ˆ 7` m µ? µ7` kul m J %. Ï f m ª u kul7` 0.125-0.14 œ %. Ã` g7 ]r ÕÖ 4 %à\ Í> Xž b%. 13 f v 13 h f m h!` h kul äå Ÿ Ž)J %. Ÿ ½7` QB g \ 7` Lï Ñ [\J #/ 100 nm Ž) kul ä å7 10-30 nm 4 ÕÖ Ëw bà Ü b%. ç L ï Ñ [\J Ÿ\ { ] ' Ï7 Ë º F G/` kul ï $,, ( :;7 ÕÖ 4 s% ú]= b- H%. `õ/ Si SiO 2 \ Â& 4 ;ÅÝ{(yield stress) 1Gpa 4ù! kul? ï& Ï7 œ 0.05 GPa7 0\k, Â& Young >] 150 GPa 4ù! kul Ï7 1GPa7 0\ :;%. Ã` ], Ý{ J kul \ Â& 41 1 2003 2 (2) (3) Fig. 6. SEM micrographs of a substrate with patterns formed by the step-and-repeat scheme: (a) two neighboring line(80 nm) and space(300 nm) patterns imprinted with the same mold(brighter regions on the top left/right sides); (b) the patterned right side of (a) magnified by ten times; (c) the images of (b), magnified again by five times. Reproduced from ref. 15.
!" 7 Fig. 7. SEM image for the crossing patterns generated by multiple imprinting: 300 nm 300 nm square islands generated from crossing line and space patterns of 80 nm linewidth and 300 nm spacing between lines. The wavy feature of the imprinted lines originates from the mold. Reproduced from ref. 15. y 7` ÿé%. \ 7` kul å # Ëu <./ ` @A- k0.$ âã 7 à 50-550 nm Ž) kul âãå Ë- H%. Ç7 PS/Si/SiO 2 ¾ ÕÖ b 6¾\ 9Ô=ñ µ ˆ7` $J #! 30-150 MPa { Žì- H%. Ç7 $J <k %= 6¾ ¾7 ` u Ç, SEM ËH ÕÖ uu%. : ¾ R u=ñ 6¾!"7 kul }!& X &' ö+b, Ó :;7, >V ` % ~4 *p QŸÅƒ 7 #w b%. ˆ ~4 ƒ ]O Ûr QŸÅƒ 7 ` ª/ Õ R ]r% %. ª/ # #Ë ƒ # LD ]O ï, A 4 ~4 ƒ kˆ ƒ :;7 ª/ #7 $ b %. `õ/ ËH ÕÖ %à ƒ 7` kˆ ƒ < -./` º.< :;%. D? ª ˆ ƒ # ˆ ~4 ~4 ƒ K / >J ÄÅë%. Fig. 67 ` 2 2 cm 2 / ¾7 0.5 0.5 cm 2 / 6¾ #! 8- QŸÅ ƒ # \ SEM i%[15]. 7` 80 nm Ž) š 300 nm œ ËH 6 ÕÖ ˆ ~4 ƒ Ë 49 2 ÕÖ s! k b%. Fig. 6(a)7` 7 $ ª- =H u ÕÖ Ë., Ó u, K «u ~47 ` ÕÖ ËH u X %. Fig. 6(b)? (c)7 ` ^Á 5 ª./` š ÕÖ 9- ~4. à Ü b%. ˆ ~4 ƒ 4 QŸ ƒ ] $ [ ÅD ÕÖ Ëw b%. Fig. 7 š ÕÖ 90 o ~ 5! 2z % ~4 =Z œl ÕÖ Ë \%. i7` š ÕÖ Ï> u7 % & Ë H F / bù, ƒ º +«6É 6¾ ÕÖ 9LË $, ù7` m H \%. % ~4 *p=7 A ƒ 7` FG kul Ë º Ç ƒ 7 (l m b,, kul &Ë ƒ W! c0] ] r%. ËH kul ÕÖ ¾ 7 A =» Ÿ ` Ž Q> ÝË ˆ½~(RIE) ƒ < %.,. ¾ / ¹ a :, kul ½~ \,. ¹H Ç7 ö+ Fig. 8. Cross-sectional SEM images for a line and space pattern(80 nm linewidth and 300 nm spacing): (a) master with which the pattern is transferred; (b) the pattern imprinted into polymer by the imprinting; (c) the pattern transferred onto the underlying SiO 2 /Si substrate by two-step reactive-ion etching. Reproduced from ref. 15. b kul ½~ Ø;(etch-mask) #! ¾ š¼ ½~ \ %. Fig. 87 2Q> ½~ ƒ ¾7 A H ÕÖ IJ Xó %. mj #- Ÿ ` Fig. 8(a)7` 6¾!"J, Fig. 8(b)7` ËH kul ÕÖ, Fig. 8(c)7` J #! ¾7 A =ñ ÕÖ \J s! k b%. 1Q> ½~ \ 7` CF 4 J #! #$ % kul ½~ë, SiO 2 /Si ¾ ¹H Ç 2Q> ½~ ƒ 7` CHF 3 /CF 4 J #! SiO 2 ¾ Ÿ7 ÕÖ A ë%. Fig. 8 SEM i7` s/ ½~ ƒ š ÕÖ `a º ý ¾7 @P- A = bà Ü b%. HWAHAK KONGHAK Vol. 41, No. 1, February, 2003
8 Fig. 9. Schematic diagram of capillary force lithography(cfl) when the film is relatively thick with respect to the mold s step height (a) and when it is thin (b). Reproduced from ref. 22. 4-2. (Capillary Force Lithography, CFL) `` ±Y ~4 ü ƒ {(-10 9 Pascal) < %. -%] NIL ƒ 7` ä åó7` &' ƒ ÛË ² :;7, 6¾!" ÕÖ K~ +Ò à~< ÕÖ üg 5] Ï7 $D[ kul ÕÖ ž $A%. D ; Ÿ ÌÍ{ (CFL) b%[8,22]. ~ 4 \ XË O F, kul å ËH ¾7 ÕÖ b XË PDMS!"J 9Ô=»k ˆ J kul ïaˆ C ³, 4!" ÕÖ ó 7` FG kul ÌÍ{ ïë kul äå 7 *#! ÕÖ LF Å.- %. Fig. 97` CFL ƒ & J Xó %. Fig. 9(a)éo kulå Ž)] Ž [ Ï, ÌÍ{7 `!" ó ÕÖ % µ i Ç7! kul] nh 9Ô/ +É u7 kul }! ö- H%. (, Fig. 9(b)7`éo kulå Ž)] 6 Ï7 ÕÖ ó J ÌŽ µ b þu- kul] ƒ., :;7 N«$ $(meniscus)] ö- H%.!` ÌÍ{ *#% F N«$ $] Ë. t R 4w b%. (- ` ËH ÕÖ ~4 ƒ ÕÖ Ë Ï? ï %., CFL XË n'!"] #.k ƒ { <, Ó% 7` ~4 \ %ì%. XË ª 4 Ûr XË PDMS!"J # % %. XË!"J # ÕÖ 6 7 ý (_ Å! #w b, ~4 ƒ \ k ƒ { _., Óh yz %äå ƒ \ uv7 41 1 2003 2 Fig. 10. Examples of polymer patterns when the initial film is relatively thick(1.5 µm) (a) and thin(180 nm) (b). The arrows in the inset indicate the interface between the polymer and the substrate. Note that the substrate surface can be exposed when the film is relatively thin with respect to the mold s step height. Reproduced from ref. 22. # ]r%. ƒ 7` #. PDMS!" ¹ Ü i d? ¾7 Â&7 m m ÿº»¼ ]i%. à `, - ü ˆ 7` ƒ jw Ï7 ÿº»¼ 5 7` FG Ý{ 4 kul\!" = 9Ô $ ½¾ b%. Ã` CFL7`!"? kul 9Ô 0 Ÿ `, 4 XË 7 m s% XË PDMS(6% Ï0)!"J # v, ƒ ˆ, - ü ˆ v %. 4 #$% kul(ïaˆ =101 o C) Ï 130 o C 7`, ˆs% ïaˆ ] G $% - X MÀ-$% ƒ Y kul(ïaˆ = 36 o C) Ï 100 o C 7` þu ïë ]' b%. PDMS!"J 9Ô=ñ µ 7` 30u ó, 24= ð? ˆ ÿ ] -./ Ì Í{ *#!!" ÕÖ Å] $i%. Fig. 10 SEM i Fig. 9 Ž Ï7 CFL ƒ # \%. Fig. 10(a)? kul Ž)] ŽR[ Ï7 ku L] ÕÖ ó J @A- µ ` }! kul ¾7 ö- H%., kul Ž)] 6k kul? ¾\ *#{ ç Fig. 10(b)? Ï7, kul] ÕÖ ó J @A- µ, ` ¾ / ¹H%. kul] ÕÖ ó J @A- µ, Ï7 ƒ Ÿ7 kul? PDMS!"] ` =- 9 Ô.,! ] Ç ÕÖ Ë7 4 (l - H%. à ` PDMS!"] Á l $,/ Ë. ÕÖ m ª GËH%. Ã` PDMS!"? ¾ = 9Ô ƒ %. ], ƒ ÿ ] = G~w b%. ÿé =, - Â$' Ï, ËH Õ
Ö ó kul 0ð,k LF4 n^ÿ \ $ ä(dewetting) 2 $¾ b :;%. Ã` kul È? Ž)7 Ã ƒ ˆ? ÿé = ¹ W v %. Q &',½ G~ 3%/,!" ÕÖ cª Q5] kulå Ž)s% k, ÕÖ7 49 kul ÕÖ ó ï xh%k G~/ ¾ ¹. \J Iw b%., t 4 sã :, PDMS!"? 9Ô u kul >V ` 9Ô/?Q0 =» ÛË ]i%. Ã` ÕÖ ó kul ïx ÕÖ\ B $i,) R &' ƒ ` $, F G~w b%. J kul Ž) 7 m ` B Q5J ]i ÕÖ Ë ]r ï w b%. ¾ ¹.,! J 4 Ÿ %à\ 9 4 #ë%. t /7 H ÄÅ7` š¼ _J úû=» ÂA Uf #! CFL ƒ j Ï,!"? 9Ôk br u kul] ÌŽ ÕÖ ó! ¾ ¹. :;7!"? 9Ôk br u7 _ ÕÖ Ë. F 4w b%. D 9Ô/ ¹ Ç7 $' ÕÖ ¾ A \ 7` 1Q> }! kul 7 ª ½ ~ ƒ G&w b :;7 ï# ÛË%. CFL ƒ %C ÛË 356 _J Q -7 LïB- *w b % %. ÌÍ{ *#w b _J ]i 63 ÕÖ b %/ µ Q57 - _ÆJ, Ó :;7, 4 ƒ 7` 0]r 356 CFL #! Q 1z ƒ ` _2 ]r%. ~4 ƒ SAMIM ƒ 7` FG ÕÖ Ì` u º ý :;7 Õ Ö n2ë ],k b%. Fig. 117` QŸ _J CFL # ` _2 \ J s! k b%. Fig. 11(a) 150 nm * _ Fig. 11(b) 100 nm š _%. AL ƒ > 4! 6¾ ÕÖ7 º n%., CFL # \7` D `a s% Ç0. à ÍÈw b%. D ï PDMS!" Å \ 7` É b%. Ï0., Ó!" 9 Fig. 11. Two structures are shown: (A) 150 nm dots, (b) 100 nm lines. Reproduced from ref. 22. µ PDMS ç 3,900 cp 4ù ] :;7!" ÕÖó PDMS] 6h- E$]] $, Õ Ö 4] \Â 4 Ï7 ª ÕÖ µj Å, - H%. ÕÖ ËH PDMS!" Ï ÕÖ ] R *+,-./ PDMS > ÛË7 ÕÖ ` ÎÊ< ËÌ. 2 FG%. Ã` ÕÖ Fig. 12. Examples of the pattern transfer to SiO 2 substrate by RIE in one step for 800 nm line-and-space pattern(5 min etching (a) and 15 min etching (b)) and 1 µm dot pattern (before etching (c) and after etching (d)). For the line-and-space pattern, a relatively thin film(60 nm) was used while a relatively thick film (170 nm) was used for the dot pattern. Reproduced from ref. 22. HWAHAK KONGHAK Vol. 41, No. 1, February, 2003
10 ] ÄQ *+, Ï, ÕÖ LY? È m(aspect ratio)] ÅH!" µ ÛË - H%. IJ E$ 800 nm š ÕÖ7` 1.4 È m, CFL ƒ ]r,, š 400 nm Ñ w Ï7 > È m] 1.0 Ñ - H%. Fig. 117`? š 100 nm, :$Í Ï > È m 7`? 0.25 Ñ H%. (, c8 X _ \7 Ãì/ š¼4 ÕÖ Ï0 7! PDMS ÕÖ > &Ë l=z 100 nm ÕÖ, Å] ]r ƒ.k b%[24]. ËH kul ÕÖ SiO 2 ¾7 A =ø t ƒ 7` # ]r%. Fig. 127` 800 nm š ÕÖ\ 1µm * ÕÖ 7 1Q> ½~ ƒ #! A =ñ \J s! k b%. šõö Ï à~ PDMS!"J #ë :;7 ª 6 60 nm kulå #ëk, * ÕÖ Ï!"] K~ :;7 ª ŽR[ 170 nm Ž) kulå #ë%. kul ½~ Ø;å ÛË Ÿ ½~ = 5u(Fig. 12(a))7` 15u(Fig. 12(b)) 7` W ë%. ], w t ½~H ¾ / _] ½~ = 7 4 Ïl XÎ% %. éà kul Õ Ö Ëa :, ÕÖ N«$ $ µ G ù7` 4%. RIE ƒ ½~ $' :7 ½~ = ú] 7 Ã` N «$ $ Ç u4 ]O G u Ø ½~./` ¾ ¹H%. Q D \ 7` ½~H ÕÖ / SiO 2 ¾\ V ½~. :;7, \ Fig. 12(b)? <b ka ]i / GËH%. Ã` ½~ š¼ë K ½~ Ç ÕÖ l Ÿ ` kul Ž)] Ž v %. * ÕÖ Ï, ÕÖ A 7` s!,y ½~ A(Fig. 12(c))\ ½ ~ Ç(Fig. 12(d))7`éo XÎ%. Ï, * œ B W :;7 }! kul Ž)] ½~ \ 7 (l, Ó%. \ ½~ \ 7` }! kul = V ½~. :;7 SiO 2 ¾ ç <m$,, º `a ý kul ÕÖ A = b%. R CFL ËH ÕÖ 1Q> ½~ ƒ ¾7 A = bà Ü b%.!` 1Q> ½~ƒ ªS7 4 2Q> ½~ ƒ #%/ s% k `a ý ÕÖ ž b%. CFL ƒ ]O Ûr ïë kul PDMS!"? 9 /` AY > Lï 7\,J G Ÿ ` LF ÎÊk, 4 Ë. N«$ $7 ÌÍ 2 $Î% %. ç kul? ¾ *# Â=w b *k, ïë kul @A ïyéo <%k ] / ÌÍ 2 ` w b kul ÕÖ ü ÕÖ š L k w :, %à\ 2w b%[25]. h max = 2γ polymer air cosθ ------------------------------------- ρgl!` h max ÌÍ cª ü, γ polymer/air kul/ƒ >/7` / O{k, θ kul/pdms >/7` 9Ô~%. ρ kul, G {J %. 9Ô~ Ÿ, ÕÖ Q/ ¹` SEM À \ 85 o 9Ô~ ž b %. ½ (4)7 /O{(30 dyne/cm)\ (0.96 g/cm 3 )œ ªxk 300 nm š k w Ï, cª ]r Ì Í ü 1.87 m] H%. t t 7` \s% Œ œ%. ÌÍ ü] l s% B Ñ ï kul? >/ 7 *# >/{\ kul Ï* -ky 41 1 2003 2 (4) < ÛË k / b%. 7 ª l4 98 Ÿ ` s% X_] < %. ÌÍ ü7 $ Iw b ƒ º ÕÖ ƒ ÌŽ µù Ð = IÀ F%. { (l ^ w Ï kul / O{\, ÌÍ J k ÌÍ V %à\ ½ 2w b%[26]. 2ηz 2 t = -------------------------------------- Rγ polymer air cosθ!` z µ ' ÌÍ ü, t µ, =, η ku L J X %. R ÕÖ š 4 L Wœ7 ] [ ÌÍ {Ï(hydraulic radius) %. 100 o C7` SBS ƒ Y Ï 400 nm \ 600 nm ü š ÕÖ #= ÕÖ ó J @A- µù7 30u. %. À O (RMS)7` À SBS ] ª& 10 6 (PaÑs) ëh, ½ (5)7` R ž$, l ÌÍ = 1,377Ÿ(ª& 23u) %. t œs% % * \, ÌÍ = I À ªY t œ\ Ïl s! k bà Ü b%. 4-3. (Soft Molding) XË Ë %à\ Q \ ` 6 ÕÖ %[9, 27]. Ø $ âã Z 6 å Ëk b kul #f7 ÕÖ b PDMS!"J ç ê{ ]/`(ç 1N/cm 2 ) 9Ô=ñ%. \ 7` PDMS!" 9Ô k b kul #fó # Ëu ò-.k!"j </ #] <H kul ÕÖ ž-. ƒ %. XËË SAMIM[19] ˃ [28] Z7` n 356 _ Ë Q ÄÅ %. SAMIM ƒ 7` # Ëu òh PDMS!"J kulå7 9Ô=Z X0H kul]! " ÕÖ ð µ E$y P /` ÕÖ Ë%., 35 6 µ ÕÖ " \ 7` SAMIM ƒ 7` 1 ], ; FG%.,.!"? 9Ô kul / Ò ï_éo <m$ i% %. } R #7 (l t4 356 27 b$` 0< %. ], ËH ÕÖ Ì` u ºH% %. IJ E$ q ~ µ ÕÖ Ï +Ó u Ô us% ŽR,- H %.!"7` ƒ. # K!"? 9Ô. u7` R <7 Ã` Õ5J sk, Ì` u7` # qû7 ÃC Ñ ] $ :;7 µ º. F %. D ; Ö- š_y(precursor)j #! _J * ˃ 7` - FG%. g7 º 2 t ƒ 7 #w : ÿé ƒ./ Ø Ž"D, - FG- H%. SAMIM ˃ 7` 356 _J *w : FG ;E kulå ó # u@? é7 ÍÙH ;%. ç $ âã Z # Ë. kulå #J @ µ7` ÛÊB ]4 ƒ <, Ó%/, kulå ó7 = #] u@.$ b F G~w b%. à ` D #J š¼ #! PDMS!"7 #] `` B ò.$ o, ¹. P ï %/, J #!!" ÕÖ Åw b%. J # XË Ë, XË Ë ]O Ûr #J š¼ #% \ #f µ kulå7 q9 PDMS!"J 9Ô=ñ% 7 b%. Fig. 13 XË Ë ƒ & %. Ø $ âã # Ëu <., Ó kulå Ë Ç7, d PDMS!"J kulå7 9 (5)
Fig. 13. Illustration of the soft molding method. In soft molding (a) an elastomeric mold is palced on a polymer film that is spin coated onto a substrate, which is then slightly pressed down to assure conformal contact. (b) After releasing the pressure, the whole structure is left undistributed for a period of time for solidification, during which time the solvent in the molded structure is absorbed into the mold. (c) The mold is then removed. Reproduced from ref. 9.!" 11 Ô=ñ%. 9Ô =7 ª& 1 N/cm 2 ç { ]/` ád $`!"? kulå =- 9Ô P v %. =- 9 Ô=ñ Ç { <k, ç 10!u = ð!" 9ÔµJ ï,=ñ%. \ 7` kulå7 n # Ëu _^ 57 PDMS!"7 òh Ç o, Š\, ¹.$` 5 k ulå Ï0.- H%. Ç7 PDMS!"J kulå\ u/!" ÕÖ Å.k XË Ëƒ - H%. t 7` #. kul K # nl # st(novolac),? < ÚÛNO7zì+z*(PGMEA)%. PGMEA = Ñ (photoresist) # #. F st\ PGMEA Ü #f Ñ Ëu <H Ñ å\ Ëu G~w b%. 20-30 wt% #f $ âã #! kv7` + = (ç 2Ÿ ó) za =ø /, 1.5-2.5 µm Ž) µ kulå ž b%.!7 356 _J ]i PDMS! "J 9Ô=»k ç { ] XË Ë j%. Fig. 147` XË Ë 7 ` _2H 356 _J SEM #! ( \J s! k b%. Fig. 14(a) PDMS!"J Å 6¾ ÕÖk, Fig. 14(b) ÅH PDMS!"J #! X Ë Ë # Ç *H 356 _ kul ÕÖ%. i m s+ Ü by, Q - Ë 6¾ 356 _] º g ; ý @P- ÅH%. XË Ë \ 7` PDMS!"? kul >/7` ] ý # $i%. éà7 kulå # ] PDMS7 m ü :; 7, kulå7`!" Á # ò] $,,!" > / 7` # ] $ô ü+,-./ o7 ``B # ò] $,/` ) PDMS!" R kulå Á # o $i%. ª Š = ð D # o Å./` ``B # Ëu 0.$ <. :; 7 g º ý ÕÖ Åw b- H%. XË Ëƒ $ Ÿ ` # ò? ¹ V J W w b$v %. ƒ 7` #.!" kul\ q9 *# u Ž)] R ª œ Fig. 14. SEM images of (a) the master used for soft molding and (b) the replica fabricated. Reproduced from ref. 9. HWAHAK KONGHAK Vol. 41, No. 1, February, 2003
12 Fig. 15. Experimental determination of (a) evaporation parameter k and (b) absorption parameter α. Reproduced from ref. 9. Fig. 16. Tilted SEM images of several three-dimensional structures fabricated by soft molding: (a) Circular cones, the enlarged part showing that the base diameter of the cone is approximately 1 µm. (b) Rounded triangular channels with a period of approximately 3 µm. (c) A three-level structure. Reproduced from ref. 9. ],h o7 [\J Â=%/, PDMS!" R # ] 0. V # 7 m'h %à\ ½ 2w b%. M ------- = km t M = M 0 e kt!` k m' M QŸ / # má%. D Í Í>J t 4 \J Fig. 15(a)7 Xó %. 7` Ü by 0 V ] = 7 ª 15 XÎ%. 41 1 2003 2 (6) Fig. 15(a)7` # Â- ¹H /\ Ñ H # Â- >o œ%. ª #] PDMS!"7 ò. V ƒ. # ] :;7? ÂÍ%k G~w b%. Ã` %à\ ½ 2 ]r%. M --------- a = α t!` α M a!" ó QŸ / n # %. Fig. 15(b)!"] #J ò V J t 4 \%. ½ (7)\ V? ÂÍk!" (7)
má #J ò! ] k bà Ü b%. XË Ë ]r Ÿ `!"] Ÿ7 #J ò V ] ¹ V 7 m Ýv %. Ã` ½ (6)\ (7) R α>km 0 ].$ v Ü b%. t XË Ë7` kulå #]!" ò.h @0H µ PDMS!"7` _ αœ7 m t ƒ 7` αœ Œ *%. Ã` ½ %à\ 2 s w b%. α ---------» 1 km 0 Fig. 157` α=0.204 mg/s, k=0.00278/s, M 0 =1.25 mg/cm 2, \J ½ (8)7 ªx/ α/(k M 0 ) œ 58.7 1s% Œ %. à ` Ÿ 4w b%. D \ %C ku L? #J # %. Fig. 167` XË Ë #! * %K 356 ÕÖ IJ s! k b%. Fig. 16(a) 1 µm 6Þ ÕÖ, Fig. 16(b) 3µm ß«š ÕÖ, Fig. 16(c) 3], ü] n % Q5 ÕÖ Ë \%. D \ 356 Õ Ö *ù XË Ë [Á ¹ s! k b%. 4. 3 ÙÚ7` ªYw b %K È ma ƒ 7 ª ` ÞßsÃ%. c87 Y op7` _. z š 100 nm 7 Îë,!X nl G& uv7` 100 nm _7 ª X_ ] hf- $,k b%.,u, D _ *7` J ƒ ƒ %. ü m# ; ] Ð à, 193 nm 157 nm QO 6 #! 70 nm ÕÖ k b, š Ñ 7 Ã. ; E A $ 1 9Ô s Ñ Ër l Z s@k b%., Š # & zw 2\ &' LY 3 &Ë Ø >7 Îk b%. D m#, ;J Ÿ ƒ m 9Ô Š ½ # ªS7 & 9Ô ` q9 =. %. q94 9Ô # :;7 æ # w :? zw kw 2 FG, Ó, a/ Z 0 ü /7 _2 ]r%. ª 4 I QQ #, { ] ád` q9 ~4 (NIL)\ QËY PDMS!"J 4Œ3 #! XË E b%. E ƒ Q/` %K &'\ /7 R QŸ ÕÖ w b% O ]i%., º.< ª/ #= (defect) G Z Q 4! ð H ƒ 7 m Ïá{ ], Ÿ ` s% Q s@\ ƒ F < µ%. 7 m# ƒ s@/` s% #- _J *w b =a b ƒ ˆ ~4 (RT-NIL), ÌÍ{ (CFL) K XË Ë (soft molding) %. RT-NIL ƒ ÿ ]! _2 ~4 ƒ \ Î # kul kï Lï J #! _2 h, `a ý nm, ÕÖ Å] ]r QŸ Å ƒ ª/ _2 K % *p ÅD _2 ]r% O,Ò%. CFL ƒ NIL ƒ \ XË ƒ O #! { ], Ók` 9!" 13 (8) ž b P s@ %. :7 QQ!" ªS7 QËY PDMSJ!" #, ÿ ]! kul ï FG=ñ Ç ÌÍ{ #! ÕÖ ó 7` LF _2. P %. CFL ƒ %C O ƒ W/ kulå7 _2w : ¾ ¹. P ï w b% %. 1Q> ½~ ƒ ÕÖ A ] ]r :;7 ƒ Q07 -!w b%. -%] 356 ÅD _ ÕÖ Q -7 Ë ]r% O ],k b%., _2. ÕÖ PDMS!" ÛË7 A ². E PDMS!"J s@! ÕÖ ¹ _2a b P F %. XË Ë 356 _J ù h#a b c %. kul #f äå7 PDMS!"J q9 9Ô=ñ µ # Ëu ``B < kul] Ë. P, XË ÕÖ º ; ÄÅ %. Ã` Q ƒ 7_ - 356 _J Ëw b$` 1, ïy$ í A=$V(MEMS) Z uv7 W- h#a b%. #, Ó ma µj k b Q>%. 5Ÿ Ý# ]rë O \ ) v w ð ; E +q ö+b Q>%.,,V4 X_? F \1 K _Y * uv7 b$ ` Øm#, k[á f[  ÿ$: b F ª%. 1. Hang, S. and Mirkin, C. A., A Nanoplotter with Both Parallel and Serial Writing Capabilities, Science, 288(5472), 1808-1811(2000). 2. Moreau, W. M., Semiconductor Lithography: Principles and Materials, Plenum, New York(1988). 3. Chou, S. Y., Krauss, P. R. and Renstrom, P. J., Imprint of sub-25nm vias and Trenches in Polymers, Appl. Phys. Lett., 67(21), 3114-3116 (1995). 4. Chou, S. Y., Krauss, P. R. and Renstrom, P. J., Imprint Lithography with 25-Nanometer Resolution, Science, 272(5258), 85-87(1996). 5. Xia, Y. N. and Whitesides, G. M., Soft Lithography, Annu. Rev. Mater. Sci., 28, 153-184(1998). 6. Xia, Y. N., Rogers, J. A., Paul, K. E. and Whitesides, G. M., Unconventional Methods for Fabricating and Patterning Nanostructures, Chem. Rev., 99(7), 1823-1848(1999). 7. Xia, Y. N. and Whitesides, G. M., Soft Lithography, Angew. Chem. Int. Ed., 37(5), 550-575(1998). 8. Suh, K. Y., Kim, Y. S. and Lee, H. H., Capillary Force Lithography, Adv. Mater., 13(18), 1386-1389(2001). 9. Kim, Y. S., Suh, K. Y. and Lee, H. H., Fabrication of Three-dimensional Microstructures by Soft Molding, Appl. Phys. Lett., 79(14), 2285-2287(2001). 10. Canning, J., Potentials and Challenges for Lithography beyond 193 nm Optics, J. Vac. Sci. Technol. B, 15(6), 2109-2111(1997). 11. Sze, S. M., Semiconductor Devices: Physics and Technology, John Wiley, New York(1985). 12. Chou, S. Y., Krauss, P. R., Zhang, W., Guo, L. and Zhang, L., Nanoimprint Lithography, J. Vac. Sci. Technol B, 15(6), 2897-2904(1997). 13. Guo, L. Krauss, P. R. and Chou, S. Y. Nanoscale Silicon Field Effect Transistors Fabricated Using Imprint Lithography, Appl. Phys. Lett., 71(13), 1881-1883(1997). HWAHAK KONGHAK Vol. 41, No. 1, February, 2003
14 14. Khang, D. Y. and Lee, H. H., Room-temperature Imprint Lithography by Solvent Vapor Treatment, Appl. Phys. Lett., 76(7), 870-872(2000). 15. Khang, D. Y., Yoon, H. and Lee, H. H., Room-temperature Imprint Lithography, Adv. Mater., 13(10), 749-752(2001). 16. Xia, Y. N., McClelland, J. J., Gupta, R., Qin, D., Zho, X. -M., Sohn, L. L., Celotta, R. J. and Whitesides, G. M., Replica Molding using Polymeric Materials: A Practical Step toward Nanomanufacturing, Adv. Mater., 9(2), 147-149(1997). 17. Larsen, N. B., Biebuyck, H., Delamarche, E. and Michel, B., Order in Microcontact Printed Self-assembled Monolayers, J. Am. Chem. Soc., 119(13), 3017-3026(1997). 18. Jackman, R. J., Wilbur, J. L. and Whitesides, G. M., Fabrication of Submicrometer Features on Curved Substrates by Microcontact Printing, Science, 269(5224), 664-666(1995). 19. Kim, E., Xia, Y. N., Zhao, X. M. and Whitesides, G. M., Solvent-assisted Microcontact Molding: A Convenient Method for Fabricating Threedimensional Structures on Surfaces of Polymers, Adv. Mater., 9(8), 651-654(1997). 20. van Krevelen, D. W., Properties of Polymers, 3rd ed., Elsevier, Amsterdam(1990). 21. Elias, H. -G., Macromolecules, vol. 1, Plenum press, New York(1984). 22. Suh, K. Y. and Lee, H. H., Capillary Force Lithography: Large-area Patterning, Self-organization, and Anisotropic Dewetting, Adv. Func. Mater., 12(6-7), 405-413(2002). 23. Suh, K. Y. and Lee, H. H., Anistropic Hole Formation in Thin Polymer Films Confined by Walls, J. Chem. Phys., 115(17), 8204-8208(2001). 24. Schmid, H. and Michel, B., Siloxane Polymers for High-resolution, High-accuracy Soft Lithography, Macromolecules, 33(8), 3042-3049 (2000). 25. Adamson, A. W. and Gast, A. P., Physical Chemistry of Surfaces, John Wiley, New York(1997). 26. Myers, D., Surfaces, Interfaces, and Colloids, VCH, New York(1991). 27. Kim, Y. S., Park, J. and Lee, H. H., Three-dimensional Pattern Transfer and Nanolithography: Modified Soft Molding, Appl. Phys. Lett., 81(6), 1011-1013(2002). 28. Marzolin, C., Smith, S. P., Prentiss, M. and Whitesides, G. M., Fabrication of Glass Microstructures by Micro-molding of Sol-gel Precursors, Adv. Mater., 10(8), 571(1998). 29. Duffy, D. C., McDonald, J. C., Schueller, O. J. A. and Whitesides, G. M., Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane), Anal. Chem., 70(11), 4974-4984(1998). 41 1 2003 2