TARGET IIT JEE CHEMISTRY, MATHEMATICS & PHYSICS

Σχετικά έγγραφα
SOLUTIONS & ANSWERS FOR KERALA ENGINEERING ENTRANCE EXAMINATION-2018 PAPER II VERSION B1

Matrices and Determinants

Section 8.3 Trigonometric Equations

CHEMISTRY 1. A. Paper-2 HINTS & SOLUTIONS C 3. D 4. C + + Sol: Mg N Mg N Mg ( OH) NH Cu ( NH ) 5. AD Sol: α hydrogen absent

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Inverse trigonometric functions & General Solution of Trigonometric Equations

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

Second Order Partial Differential Equations

2. Chemical Thermodynamics and Energetics - I

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Section 9.2 Polar Equations and Graphs

Homework 8 Model Solution Section

Solutions to Exercise Sheet 5

Rectangular Polar Parametric

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Trigonometric Formula Sheet

Section 7.6 Double and Half Angle Formulas

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

PARTIAL NOTES for 6.1 Trigonometric Identities

Areas and Lengths in Polar Coordinates

Section 8.2 Graphs of Polar Equations

( y) Partial Differential Equations

26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section

1 Adda247 No. 1 APP for Banking & SSC Preparation Website:store.adda247.com

( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)

CRASH COURSE IN PRECALCULUS

Finite Field Problems: Solutions

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

Chapter 7 Transformations of Stress and Strain

EE512: Error Control Coding

Answer sheet: Third Midterm for Math 2339

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

is like multiplying by the conversion factor of. Dividing by 2π gives you the

Parametrized Surfaces

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Strain gauge and rosettes

Homework 3 Solutions

Example Sheet 3 Solutions

IIT JEE (2013) (Trigonomtery 1) Solutions

Review Exercises for Chapter 7

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

C.S. 430 Assignment 6, Sample Solutions

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Approximation of distance between locations on earth given by latitude and longitude

10.0 C N = = = electrons C/electron C/electron. ( N m 2 /C 2 )( C) 2 (0.050 m) 2.

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

Differential equations

Distances in Sierpiński Triangle Graphs

CYLINDRICAL & SPHERICAL COORDINATES

Areas and Lengths in Polar Coordinates

Derivation of Optical-Bloch Equations

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Reminders: linear functions

MathCity.org Merging man and maths

Forced Pendulum Numerical approach

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

Quadratic Expressions

Differentiation exercise show differential equation

Homomorphism of Intuitionistic Fuzzy Groups

Tutorial Note - Week 09 - Solution

Numerical Analysis FMN011

Example 1: THE ELECTRIC DIPOLE

COMPLEX NUMBERS. 1. A number of the form.

6.4 Superposition of Linear Plane Progressive Waves

w o = R 1 p. (1) R = p =. = 1

Boundary-Layer Flow over a Flat Plate Approximate Method

D Alembert s Solution to the Wave Equation

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

[1] P Q. Fig. 3.1

AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

Second Order RLC Filters

Lecture 26: Circular domains

2 Composition. Invertible Mappings

Derivations of Useful Trigonometric Identities

derivation of the Laplacian from rectangular to spherical coordinates

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Math221: HW# 1 solutions

the total number of electrons passing through the lamp.

ST5224: Advanced Statistical Theory II

CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES,

Conductivity Logging for Thermal Spring Well

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is

TRIGONOMETRIC FUNCTIONS

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Srednicki Chapter 55

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Probability and Random Processes (Part II)

Transcript:

S -- I - TAGET IIT JEE CHEMISTY, MATHEMATICS & PHYSICS HINTS & SLUTIN CHEMISTY Single Choice Questions.[C].[C].[] (i) KCl(s) + H (l) KCl. H H. kj. (ii) KCl(s) + H (l) KCl. H H 8.8 kj. ur air is KCl. H KCl. H H (enthalpy o dilution)? Subtract (i) rom (ii), we get KCl. H + 8 H KCl, H H.68 kj. CH CH CH CH H will decolourise r water because it has CC bond. It will react with Na because it has H group. H group can be oidized by chromic acid. Since it has º alcoholic groups hence it will react slow with Lucas reagent CH CH CCH can not decolourise r water and can not react with Na because o the absence o CC bond and H group chormic acid can not oidize keto group. [CH CH CH CH H, r ty dks jaghu dj nsrk gs ;ksad blesa C C ca/k milfkr gsa ;g Na ds lkfk Ø;k djsk ;ksad blesa H lewg gsa H lewg Øksed Ey ls kwlhd`r gks ldrk gsa pwd blesa º,YdksgkWyd lewg milfkr gsa r% ;g Y;qdkl HkdeZd ds lkfk /kheh Ø;k djsk CH CH CCH, r ty dks jaghu ugha dj ldrk rfkk CC ca/k o H lewg dh uqilfkr ds dkj.k Na ds lkfk Ø;k ugha dj ldrk] Øksed Ey dhvksa lewg dks kwlhd`r ugha dj ldrka].[c] H (+) glycol,h H ( +) H Na H Multiple Choice Questions.[A,,C,] 6.[A,,] 7.[A,,C,] 8.[A,,C] In (A) CH C H underlined carbon cannot as nucleophile centre because the charge on it is not suiciently deeloped due to ollowing Θ Θ resonance CH C H CH CH () lacks in -hydrogen. It gie cannizzaro reaction. (C) also lacks -hydrogen. It gie cannizzaro reaction..[a,,] Column Matching. (A) P,S,T; () P,Q; (C) Q; () Q,. (A) S; () P; (C) Q ; () Numerical esponse W i t.[] E 6.77 6 6 or n 6. / n 6.[6].[] n-actor o I and n-actor o Na S 8 CAEE PINT, CP Tower, oad No., IPIA, Kota (aj.), Ph: 7- Page #

.[] XA + C.[6] a( ) Kc a a a a( ) V. V.a ( ).V Since, is independent o a Cl Cl,,,-Tetrachloropropane (mol. mass 8) CH C C H + Zn CH C CH + ZnCl Cl Cl Propyne (mol. mass ) CH C CH + [Ag(NH ) ] H CH C C Ag + NH + H White ppt. (Mol. mass 7) Mass o propyne obtained rom 7. g o,,, -tetrachloropropane 7..6g 8 Mass o precipitate obtained rom.6 g o propyne 7.6 6.g 6.[] CHCH r CH CH A C CH CCH C C CH C CH (Two oygen) r / CCl r HgS / H S NaNH Hr Na/ Aldol condensation 7.[] NH NH 8.[8] (W) / H (zonolysis) KH / glycol (Wol Kishner reduction) H H (X) Ca (H) C H CH 6 aeyer Villiger oidation (Z) (Y) MATHEMATICS Compound 'Z' has 8 carbons.. [] The shortest distance is along the normal to both cures. (y?kqùke nwjh nksuksa oøkas ds yecor~ gksh) The normal at point P( cos θ, sin θ) on the ellipse is cosθ y sin θ It passes through the centre C, o the circle with radius ; hence cosθ π hence we get θ and P, shortest distance CP. [C] a, a, a, a 6 π A π 6 hence det(a) π. [C] Equation o C is y which is a rectangular hyperbola (k;rh; rijoy;) with eccentricity equal to. Hence ocus is (, ) and (, ) CAEE PINT, CP Tower, oad No., IPIA, Kota (aj.), Ph: 7- Page #

Now or ellipse ae a. a t t 6y t p, q 6 and b a ( e ) ( ) Hence length o latus rectum (ukhkyec). [C] equired probability (Hkh"V izk;drk) 6. [,C,] In this problem sin is deined in a dierent manner. Let sin π π ( ) y, y, 6. [A,C] sin y sin(π y) π y sin π π as π y, y π sin g( ) π sin a + sin sin a ( + ) as [( 6) + ] sin a so or solution 6 & 6 a (k + ) π a (k + )π 7. [A,] o your sel. 8. [A,,C] A A adj (A) A λ I λ λ λ λ + λ Characteristic equation is A A + I A I A. [A,] 6y.y' t + y' t + t 6t 6 (y t) 6 ( 6) 6y 6t t p + q t 6 t + 6 t ± 6 Column Matching :. A Q; ; C P; (A) Let the equation o the circle is ( y + )( y +) + λy then λ Equation o the circle is + y + 7 y + Centre is 7, () a, ae e (C) b a + e' 8e' e e' (, ) equired area 8 π() 8 π π λ λ () î [( a ĵ ) î ]( î. î )( a ĵ ) ( î.( a ĵ )) î a ĵ ( î. a ) î a ĵ ( î. a ) î + a kˆ ( ĵ. a ) ĵ + a î ( kˆ. a ) kˆ a ( î + ĵ + kˆ ) a a ( î + ĵ + kˆ ) î + y ĵ + z kˆ y z. A S; Q; C ; T (A)( + ) ( +) ( + ) ( + ) C C C 8 6 6 () T n C / n ( ) / / CAEE PINT, CP Tower, oad No., IPIA, Kota (aj.), Ph: 7- Page #

n n. n C λ + C λ + 7 7 (C) Probability (number is multiple o ) 8 6 required probability p C 78 p () y z ( + y + z) Numerical esponse.[] oots o the equation are,,, β cos, γ π cos Σ π, Σcos centre is (π, ) equation o the circle is ( π) + (y ) r which π passes through sin tan, ( π,) + r r.[] Let the equation o the line is y t ( t ) ends o the chord (thok ds ljs) are (t, t) and ( t), ( t)) so h parabola is 8 y a, b 8, l al b t t +,.[] oth cures passes through (, ) hence c and + a + b t + y c and a + b Also + a a + a and b Hence a + b + c and a + b c.[7] (ab abc) ab (y c) abc ab ( y) abc ( 7) 7 hence lines are ( y) + λ P ma 7 7 + P ma 7.[8] Here a + b l a + b l Area (A) o rectangle (k;r) AC A C (AP + P) (Q + QC) (b sin θ + a cos θ) (a sin θ + b cos θ) a + b ab + sin θ A ma 6.[] p (a + b) p q 7 l 8 8 l 8 8 q q pq q p q p 7.[] Let the numbers be a d, a, a + d Then (a d), a, (a + d) are in G.P. a (a d) (a + d) d, ± 8.[] Let () a + b PHYSICS M. [] T π K T (π M ) K a K π M T K M T + K M T K. + K.. +.% e c is minimum. [] Conceptual CAEE PINT, CP Tower, oad No., IPIA, Kota (aj.), Ph: 7- Page #

. [C] V A upward. [C] A λn. [A, C, ] V downward V C upward A N N N ρg.6 N T / AT /.6 AT A T A T A T / / P F th P F th + mg ρ + ρg [P ρ(g + )] L Work done F d ρgl + ρ L 7. [, ] eq ; i eading o oltmeter V. 8. [, C] isplacement should be zero at, y and at, y L, L etc.. [A,, ] r m r mgsinθ r mgsinθ I there is no riction between plank and inclined plane then both will hae same acceleration hence no riction. Column matching. (A) (Q,, T) ; () (P, T) (C) (Q,, T) ; () (Q,, T). (A) (P, Q) ; () (P, ) (C) (P, ) ; () (P, S) Numerical esponse :. [] Fsinθ F θ θ C Fcosθ µ 6. [, C] y u cm I y, + 7 Equation will y 7 F sinθ m...() Fcosθ mω...() tanθ ω θ º ω CAEE PINT, CP Tower, oad No., IPIA, Kota (aj.), Ph: 7- Page #. [] / C / / / A eq Ω /

. [] C. [] F b ε mg Q Cε L C mg ρ l g ρ'g...() +Cε Cε. [] τ τ e t/τ ε τ t e τ τ ( e t/τ ) ε e ε e t / C L C e t/τ t T ln / C t L...()...() t ε e L L ln sec. + + ocal length o cone mirror ( ) m ocal length o concae lens ( ) m eectie lens ( eq ) M + l m, P m mg mg ρ l ' g ' P atm (P atm + ρgh) P atm P atm + ρgh P h atm ρg h λ 6. [] dn 7. [] λ λ N A N dt t ln() or N to be maimum dn dt KM KM 8. [8] F U r r Energy conseration at nearest and arthest point. KM KM MV min ( / ) ( / ) Soling V 8 CAEE PINT, CP Tower, oad No., IPIA, Kota (aj.), Ph: 7- Page # 6