DIGITAL DESIGN WITH AN INTRODUCTION TO THE VERILOG HDL Fifth Edition

Σχετικά έγγραφα
Homework 3 Solutions

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Matrices and Determinants

UNIVERSITY OF CALIFORNIA. EECS 150 Fall ) You are implementing an 4:1 Multiplexer that has the following specifications:

Section 7.6 Double and Half Angle Formulas

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Section 8.3 Trigonometric Equations

ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. Χειµερινό Εξάµηνο ΔΙΑΛΕΞΗ 3: Αλγοριθµική Ελαχιστοποίηση (Quine-McCluskey, tabular method)

CRASH COURSE IN PRECALCULUS

Inverse trigonometric functions & General Solution of Trigonometric Equations

2 Composition. Invertible Mappings

Finite Field Problems: Solutions

!! " &' ': " /.., c #$% & - & ' ()",..., * +,.. * ' + * - - * ()",...(.

Quadratic Expressions

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Supplementary Information 1.

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Example Sheet 3 Solutions

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

derivation of the Laplacian from rectangular to spherical coordinates

Derivation of Optical-Bloch Equations

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

The Simply Typed Lambda Calculus

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

( ) 2 and compare to M.

Concrete Mathematics Exercises from 30 September 2016

ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων

ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

C.S. 430 Assignment 6, Sample Solutions

ST5224: Advanced Statistical Theory II

Trigonometric Formula Sheet

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Math221: HW# 1 solutions

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Ψηφιακά Συστήματα. Ενότητα: Ψηφιακά Συστήματα. Δρ. Κοντογιάννης Σωτήρης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

An Inventory of Continuous Distributions

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

Trigonometry 1.TRIGONOMETRIC RATIOS

!"#$%& '!(#)& a<.21c67.<9 /06 :6>/ 54.6: 1. ]1;A76 _F -. /06 4D26.36 <> A.:4D6:6C C4/4 /06 D:43? C</ O=47?6C b*dp 12 :1?6:E /< D6 3:4221N6C 42 D:A6 O=

( y) Partial Differential Equations

Reminders: linear functions

Srednicki Chapter 55

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

4.6 Autoregressive Moving Average Model ARMA(1,1)

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Fractional Colorings and Zykov Products of graphs

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Homework 8 Model Solution Section

PARTIAL NOTES for 6.1 Trigonometric Identities

Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Commutative Monoids in Intuitionistic Fuzzy Sets

Second Order Partial Differential Equations

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

EE512: Error Control Coding

On a four-dimensional hyperbolic manifold with finite volume

Modbus basic setup notes for IO-Link AL1xxx Master Block

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

If we restrict the domain of y = sin x to [ π 2, π 2

Ο Αλγόριθμος FP-Growth

w o = R 1 p. (1) R = p =. = 1

ΗΜΥ-201: 201:Ψηφιακοί. Υπολογιστές Χειμερινό Εξάμηνο Βασικά Ψηφιακής Σχεδίασης

IIT JEE (2013) (Trigonomtery 1) Solutions

Approximation of distance between locations on earth given by latitude and longitude

Ανάλυση Συσχέτισης IΙ

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

5.2 ΑΠΛΟΠΟΙΗΣΗ ΜΕ ΤΗΝ ΜΕΘΟΔΟ ΚΑΤΑΤΑΞΗΣ ΣΕ ΠΙΝΑΚΑ

Εισαγωγή στη Γλώσσα VHDL

Tridiagonal matrices. Gérard MEURANT. October, 2008

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Solutions to Exercise Sheet 5

Areas and Lengths in Polar Coordinates

Problem Set 3: Solutions

Cyclic or elementary abelian Covers of K 4

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

A ΜΕΡΟΣ. 1 program Puppy_Dog; 2 3 begin 4 end. 5 6 { Result of execution 7 8 (There is no output from this program ) 9 10 }

Second Order RLC Filters

ABCDA EF A A D A ABCDA CA D ABCDA EF

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

(C) 2010 Pearson Education, Inc. All rights reserved.

Some new generalized topologies via hereditary classes. Key Words:hereditary generalized topological space, A κ(h,µ)-sets, κµ -topology.

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

ΑΚΑΔΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΘΕΜΑ : TEΣT ΑΞΙΟΛΟΓΗΣΗΣ ΓΝΩΣΕΩΝ ΣΤΑ ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ

Notes on the Open Economy

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Areas and Lengths in Polar Coordinates

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

3.4. Click here for solutions. Click here for answers. CURVE SKETCHING. y cos x sin x. x 1 x 2. x 2 x 3 4 y 1 x 2. x 5 2

Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση.


TMA4115 Matematikk 3

Transcript:

SOLUTIONS MANUAL DIGITAL DESIGN WITH AN INTRODUCTION TO THE VERILOG HDL ifth Edition M. MORRIS MANO Professor Emeritus California State Universit, Los Angeles MICHAEL D. CILETTI Professor Emeritus Universit of Colorado, Colorado Springs rev 2/4/22 Digital Design With An Introduction to the Verilog HDL Solution Manual. M. Mano. M.D. Ciletti, Copright 22,

2 CHAPTER. Base-: 6 7 8 9 2 2 22 23 24 25 26 27 28 29 3 3 32 Octal: 2 2 22 23 24 25 26 27 3 3 32 33 34 35 36 37 4 He: 2 3 4 5 6 7 8 9 A B C D E 2 Base-2 4 5 6 7 8 9 A B 2 2 22 23 24 25 26 27 28.2 (a) 32,768 (b) 67,8,864 (c) 6,87,947,674.3 (43) 5 = 4 * 5 3 + 3 * 5 2 + * 5 = 58 (98) 2 = * 2 2 + 9 * 2 + 8 * 2 = 26 (435) 8 = 4 * 8 2 + 3 * 8 + 5 * 8 = 285 (345) 6 = 3 * 6 2 + 4 * 6 + 5 * 6 = 37.4 6-bit binar: Decimal equivalent: 2 6 - = 65,535 Headecimal equivalent: 6.5 Let b = base (a) 4/2 = (b + 4)/2 = 5, so b = 6 (b) 54/4 = (5*b + 4)/4 = b + 3, so 5 * b = 52 4, and b = 8 (c) (2 *b + 4) + (b + 7) = 4b, so b =.6 ( 3)( 6) = 2 (6 + 3) + 6*3 = 2 - + 22 Therefore: 6 + 3 = b + m, so b = 8 Also, 6*3 = (8) = (22) 8.7 64CD 6 = 2 = = (6235 ) 8.8 (a) Results of repeated division b 2 (quotients are followed b remainders): 43 = 25(); 7(); 53(); 26(); 3(); 6() 3() () Answer: _ 2 = A 6 (b) Results of repeated division b 6: 43 = 26(5); () (aster) Answer: A = _.9 (a). 2 = 6 + 4 + 2 +.25 +.625 = 22.325 (b) 6.5 6 = 6 + 6 + 5*(.65) = 22.325 (c) 26.24 8 = 2 * 8 + 6 + 2/8 + 4/64 = 22.325 (d) DADA.B 6 = 4*6 3 + *6 2 + 4*6 + + /6 = 6,38.6875 Digital Design With An Introduction to the Verilog HDL Solution Manual. M. Mano. M.D. Ciletti, Copright 22,

3 (e). 2 = 8 + 2 +.5 +.25 +.625 =.825. (a). 2 =. 2 =.9 6 = + 9/6 =.563 (b). 2 =. 2 = 6.4 6 = 6 + 4/6 = 6.25 Reason:. 2 is the same as. 2 shifted to the left b two places.... The quotient is carried to two decimal places, giving. Checking: 2 / 2 = 59 / 5. 2 = 58.75.2 (a) and (b) 62 h and 958 h + = 6 = 55 2E h _ 2E h +34 h _ 34 h 62 h _ = 98 B 3 8 8 2 A 9 5 8 h = 2392.3 (a) Convert 27.35 to binar: Integer Remainder Coefficient Quotient 27/2 = 3 + ½ a = 3/2 6 + ½ a = 6/2 3 + a 2 = 3/2 + ½ a 3 = ½ + ½ a 4 = Digital Design With An Introduction to the Verilog HDL Solution Manual. M. Mano. M.D. Ciletti, Copright 22,

4 27 = 2 Integer raction Coefficient.35 2 = +.63 a - =.63 2 = +.26 a -2 =.26 2 = +.52 a -3 =.52 2 = +.4 a -4 =.35. 2 =.25 +.625 =.325 27.35. 2 (b) 2/3.6666666667 Integer raction Coefficient.6666_6666_67 2 = +.3333_3333_34 a - =.3333333334 2 = +.6666666668 a -2 =.6666666668 2 = +.3333333336 a -3 =.3333333336 2 = +.6666666672 a -4 =.6666666672 2 = +.3333333344 a -5 =.3333333344 2 = +.6666666688 a -6 =.6666666688 2 = +.3333333376 a -7 =.3333333376 2 = +.6666666752 a -8 =.6666666667. 2 =.5 +.25 +.33 +..78 =.664.2 =._ 2 =.AA 6 = /6 + /256 =.664 (Same as (b))..4 (a) _ (b) _ (c) _ s comp: _ s comp: _ s comp: _ 2s comp: _ 2s comp: _ 2s comp: _ (d) _ (e) _ (f) _ s comp: _ s comp: _ s comp: _ 2s comp: _ 2s comp: _ 2s comp: _ `.5 (a) 25,478,36 (b) 63,325,6 9s comp: 74,52,963 9s comp: 36,674,399 s comp: 74,52,964 s comp: 36,674,4 (c) 25,, (d) 9s comp: 74,999,999 9s comp: 99999999 s comp: 75,, s comp:.6 C3D C3D: 5s comp: 3C2 s comp: 6s comp: 3C2 2s comp: = 3C2.7 (a) 2,579 2,579 97,42 (9s comp) 97,42 (s comp) 4637 2,579 = 2,579 + 97,42 = 258 (b) 8 8 9899 (9s comp) 982 ( comp) 25 8 = 25 + 982 = 98325 (negative) Magnitude: 675 Result: 25 8 = 675 Digital Design With An Introduction to the Verilog HDL Solution Manual. M. Mano. M.D. Ciletti, Copright 22,

5 (c) 4,36 436 95638 (9s comp) 95639 (s comp) 243 436 = 243 + 95639 = 97682 (Negative) Magnitude: 238 Result: 243 652 = -238 (d) 745 745 99254 (9s comp) 99255 (s comp) 63-745 = 63 + 99255 = 886 (Positive) Result: 63 745 = 886.8 Note: Consider sign etension with 2s complement arithmetic. (a) _ (b) _ s comp: _ s comp: _ with sign etension 2s comp: _ 2s comp: _ Diff: _ (Positive) _ sign bit indicates that the result is negative Check:9-8 = + _ s complement _ 2s complement magnitude Result: -4 Check: 34-38 = -4 (c) _ (d) _ s comp: _ s comp: _ with sign etension 2s comp: _ 2s comp: _ Diff: _ (negative) _ sign bit indicates that the result is positive _ (s comp) Result: 9 _ (2s complement) Check: 4 2 = 9 (magnitude) -44 (result).9 +9286 9286; +8 8; -9286 9974; -8 99999 (a) (+9286) + (_8) = 9286 + 8 = 87 (b) (+9286) + (-8) = 9286 + 99999 = 8485 (c) (-9286) + (+8) = 9974 + 8 = 9955 (d) (-9286) + (-8) = 9974 + 99999 = 98993.2 +49 _ (Needs leading ero etension to indicate + value); +29 _ (Leading indicates + value) -49 _ + _ _ -29 _ (sign etension indicates negative value) (a) (+29) + (-49) = _ + _ = _ ( indicates negative value.) Magnitude = _ + _ = _ = 2; Result (+29) + (-49) = -2 (b) (-29) + (+49) = _ + _ = _ ( indicates positive value) (-29) + (+49) = +2 Digital Design With An Introduction to the Verilog HDL Solution Manual. M. Mano. M.D. Ciletti, Copright 22,

6 (c) Must increase word sie b (sign etension) to accomodate overflow of values: (-29) + (-49) = _ + _ = _ ( indicates negative result) Magnitude: _ = 78 Result: (-29) + (-49) = -78.2 +9742 9742 99257 (9's comp) 99258 (s) comp +64 64 999358 (9's comp) 999359 (s) comp (a) (+9742) + (+64) 383 (b) (+9742) + (-64) 9742 + 999359 = 92 Result: (+9742) + (-64) = 92 (c) -9742) + (+64) = 99258 + 64 = 99899 (negative) Magnitude: 9 Result: (-9742) + (64) = -9 (d) (-9742) + (-64) = 99258 + 999359 = 98967 (Negative) Magnitude: 383 Result: (-9742) + (-64) = -383.22 6,54 BCD: ASCII: ASCII:.23 ( 79) (+658) (,449).24 (a) (b) 6 3 Decimal 2 3 4 (or ) 5 6 7 (or ) 8 9 6 4 2 Decimal 2 3 4 5 6 (or ) 7 8 9.25 (a) 6,248 BCD: (b) Ecess-3: (c) 242: (d) 63: Digital Design With An Introduction to the Verilog HDL Solution Manual. M. Mano. M.D. Ciletti, Copright 22,

7.26 6,248 9s Comp: 3,75 242 code: s comp c: (242 code alternative #) 6,248 242 (242 code alternative #2) s comp c Match Digital Design With An Introduction to the Verilog HDL Solution Manual. M. Mano. M.D. Ciletti, Copright 22,

8.27 or a deck with 52 cards, we need 6 bits (2 5 = 32 < 52 < 64 = 2 6 ). Let the msb's select the suit (e.g., diamonds, hearts, clubs, spades are encoded respectivel as,,, and. The remaining four bits select the "number" of the card. Eample: (ace) through (9), plus through (jack, queen, king). This a jack of spades might be coded as _. (Note: onl 52 out of 64 patterns are used.).28 G (dot) (space) B o o l e.29 Steve Jobs.3 73 4 E5 76 E5 4A E 62 73 73: s 4: t E5: e 76: v E5: e 4A: j E: o 62: b 73: s.3 62 + 32 = 94 printing characters.32 bit 6 from the right.33 (a) 897 (b) 564 (c) 87 (d) 2,99.34 ASCII for decimal digits with even parit: (): (): (2): (3): (4): (5): (6): (7): (8): (9):.35 (a) a b c a f b g c f g.36 a b a f b g f g Digital Design With An Introduction to the Verilog HDL Solution Manual. M. Mano. M.D. Ciletti, Copright 22,

9 CHAPTER 2 2. (a) + + ( + + )' ' ' ' ' ' ' () ()' ' ' ' ' + ' + ' (b) (c) + ( + ) ( + ) ( + )( + ) ( + ) + (c) (d) + + ( + ) ( + ) ( + ) + () () 2.2 (a) + ' = ( + ') = (b) ( + )( + ') = + ' = ( +') + ( + ') = + ' + + ' = (c) + ' + ' = ( + ') + ' = + ' = (d) (A + B)'(A' + B')' = (A'B')(A B) = (A'B')(BA) = A'(B'B)A = (e) (a + b + c')(a'b' + c) = aa'b' + ac + ba'b' + bc + c'a'b' + c'c = ac + bc +a'b'c' (f) a'bc + abc' + abc + a'bc' = a'b(c + c') + ab(c + c') = a'b + ab = (a' + a)b = b 2.3 (a) ABC + A'B + ABC' = AB + A'B = B Digital Design With An Introduction to the Verilog HDL Solution Manual. M. Mano. M.D. Ciletti, Copright 22,

(b) ' + = (' + ) = ( + ')( + ) = ( + ) (c) ( + )'(' + ') = ''(' + ') = '' (d) + (w + w') = ( +w + w') = (w + ) (e) (BC' + A'D)(AB' + CD') = BC'AB' + BC'CD' + A'DAB' + A'DCD' = (f) (a' + c')(a + b' + c') = a'a + a'b' + a'c' + c'a + c'b' + c'c' = a'b' + a'c' + ac' + b'c' = c' + b'(a' + c') = c' + b'c' + a'b' = c' + a'b' 2.4 (a) A'C' + ABC + AC' = C' + ABC = (C + C')(C' + AB) = AB + C' (b) ('' + )' + + + w = ('')'' + + + w =[ ( + )' + ] + + w = = ( + ')( + + ) + + w = + w + + + = ( + w) + ( + ) + = + + (c) A'B(D' + C'D) + B(A + A'CD) = B(A'D' + A'C'D + A + A'CD) = B(A'D' + A + A'D(C + C') = B(A + A'(D' + D)) = B(A + A') = B (d) (A' + C)(A' + C')(A + B + C'D) = (A' + CC')(A + B + C'D) = A'(A + B + C'D) = AA' + A'B + A'C'D = A'(B + C'D) (e) ABC'D + A'BD + ABCD = AB(C + C')D + A'BD = ABD + A'BD = BD 2.5 (a) simplified (b) simplified (c) Digital Design With An Introduction to the Verilog HDL Solution Manual. M. Mano. M.D. Ciletti, Copright 22,

simplified (d) A B simplified (e) simplified (f) Digital Design With An Introduction to the Verilog HDL Solution Manual. M. Mano. M.D. Ciletti, Copright 22,

2 simplified 2.6 (a) A B C simplified (b) simplified (c) simplified Digital Design With An Introduction to the Verilog HDL Solution Manual. M. Mano. M.D. Ciletti, Copright 22,

3 (d) w simplified (e) A B C D simplified = (f) w simplified 2.7 (a) A B C D simplified Digital Design With An Introduction to the Verilog HDL Solution Manual. M. Mano. M.D. Ciletti, Copright 22,

4 (b) w simplified (c) A B C D (d) A B C D simplified simplified Digital Design With An Introduction to the Verilog HDL Solution Manual. M. Mano. M.D. Ciletti, Copright 22,

5 (e) A B C D simplified 2.8 ' = (w + )' = (w)'()' = (w' + ')(' + ') ' = w(w' + ')(' + ') + (w' + ')(' + ') = + ' = w + + (w + )' = A + A' = with A = w + 2.9 (a) ' = (' + ')' = (')'(')' = (' + )( + ') = + '' (b) ' = [(a + c) (a + b')(a' + b + c')]' = (a + c)' + (a + b')' + (a' + b + c')' =a'c' + a'b + ab'c (c) ' = [ + '(v'w + )]' = '['(v'w + )]' = '['v'w + ']' = '[('v'w)'(')'] = '[( + v + w') +( ' + ' + )] = ' + 'v + 'w' + '' + '' +' = '(v + w' + ' + ') 2. (a) + 2 = Σ m i + Σm 2i = Σ (m i + m 2i ) (b) 2 = Σ m i Σm j where m i m j = if i j and m i m j = if i = j 2. (a) (,, ) = Σ(, 4, 5, 6, 7) (b) (a, b, c) = Σ(, 2, 3, 7) = + ' + ' = bc + a'c' a b c 2.2 A = _ B = _ Digital Design With An Introduction to the Verilog HDL Solution Manual. M. Mano. M.D. Ciletti, Copright 22,

6 (a) A AND B = _ (b) A OR B = _ (c) A XOR B = _ (d) NOT A = _ (e) NOT B = _ 2.3 (a) u (u + ') Y = [(u + ')(' + )] (' + ) (b) u Y = (u or )' + (c) (u or )' u (u'+ ') Y = (u'+ ')( + ') (d) u ( + ') u( or ) Y = u( or ) + ' (e) u u ' Y = u + +u u (f) Digital Design With An Introduction to the Verilog HDL Solution Manual. M. Mano. M.D. Ciletti, Copright 22,

7 u Y = u + + '(u + ') (u + ') '(u + ') 2.4 (a) = + '' + ' (b) = + '' + ' = (' + ')' + ( + )' + ( + ')' (c) = + '' + ' (d) = [()' ('')' (')']' = + '' + ' = [()' ('')' (')']' Digital Design With An Introduction to the Verilog HDL Solution Manual. M. Mano. M.D. Ciletti, Copright 22,

8 (e) = + '' + ' = (' + ')' + ( + )' + ( + ')' 2.5 (a) T = A'B'C' + A'B'C + A'BC' = A'B'(C' + C) +A'C'(B' + B) = A'B' +A'C' = A'(B' + C') (b) T 2 =T ' = A'BC + AB'C' + AB'C + ABC' + ABC = BC(A' + A) + AB'(C' + C) + AB(C' + C) = BC + AB' + AB = BC + A(B' + B) = A + BC (3, 5, 6, 7) =Π (,, 2, 4) T = A'B'C' + A'B'C + A'BC' T 2 = A'BC + AB'C' + AB'C + ABC' + ABC A'B' A'C' T = A'B' A'C' = A'(B' + C') AC' T 2 =AC' + BC + AC = A+ BC AC BC 2.6 (a) (A, B, C) = A'B'C' + A'B'C + A'BC' + A'BC + AB'C' + AB'C + ABC' + ABC = A'(B'C' + B'C + BC' + BC) + A((B'C' + B'C + BC' + BC) = (A' + A)(B'C' + B'C + BC' + BC) = B'C' + B'C + BC' + BC = B'(C' + C) + B(C' + C) = B' + B = (b) (, 2, 3,..., n ) = Σm i has 2 n /2 minterms with and 2 n /2 minterms with ', which can be factored and removed as in (a). The remaining 2 n- product terms will have 2 n- /2 minterms with 2 and 2 n- /2 minterms with ' 2, which and be factored to remove 2 and ' 2. continue this process until the last term is left and n + ' n =. Alternativel, b induction, can be written as = n G + ' n G with G =. So = ( n + ' n )G =. Digital Design With An Introduction to the Verilog HDL Solution Manual. M. Mano. M.D. Ciletti, Copright 22,

9 2.7 (a) = (b + cd)(c + bd) bc + bd + cd + bcd = Σ(3, 5, 6, 7,, 4, 5) ' = Σ(,, 2, 4, 8, 9,, 2, 3) = Π(,, 2, 4, 8, 9,, 2, 3) a b c d (b) (cd + b'c + bd')(b + d) = bcd + bd' + cd + b'cd = cd + bd' = Σ (3, 4, 7,, 2,4, 5) = Π (,, 2, 5, 6, 8, 9,, 3) a b c d (c) (c' + d)(b + c') = bc' + c' + bd + c'd = (c' + bd) = Σ (,, 4, 5, 7, 8, 2, 3, 5) = Π (2, 3, 6, 9,,, 4) Digital Design With An Introduction to the Verilog HDL Solution Manual. M. Mano. M.D. Ciletti, Copright 22,

2 (d) bd' + acd' + ab'c + a'c' = Σ (,, 4, 5,,, 4) ' = Σ (2, 3, 6, 7, 8, 9, 2, 3, 5) = Π (2, 3, 6, 7, 8, 2, 3, 5) a b c d Digital Design With An Introduction to the Verilog HDL Solution Manual. M. Mano. M.D. Ciletti, Copright 22,

2 2.8 (a) w = ' + '' + w' + w' + w = Σ(, 5, 6, 7, 9,, 3, 4, 5 ) (b) ' ' ' w' w ' w 5 - Three-input AND gates 2 - Three-input OR gates Alternative: - ive-input OR gate 4 - Inverters (c) = ' + '' + w' + w' + w = ' + + w = ʹ + (w + ) (d) = ' + w + ) = Σ(, 5, 9, 3,,, 3, 5, 6, 7, 4, 5) = Σ(, 5, 6, 7, 9,,, 3, 4, 5) (e) ' w Inverter, 2 Two-input AND gates, 2 Two-input OR gates Digital Design With An Introduction to the Verilog HDL Solution Manual. M. Mano. M.D. Ciletti, Copright 22,

22 2.9 = B'D + A'D + BD ABCD -B'-D = = 3 = 9 = ABCD A'--D = = 3 = 5 = 7 ABCD -B-D = 5 = 7 = 3 = 5 = Σ(, 3, 5, 7, 9,,3, 5) = Π(, 2, 4, 6, 8,, 2, 4) 2.2 (a) (A, B, C, D) = Σ(2, 4, 7,, 2, 4) '(A, B, C, D) = Σ(,, 3, 5, 6, 8, 9,, 3, 5) (b) (,, ) = Π(3, 5, 7) ' = Σ(3, 5, 7) 2.2 (a) (,, ) = Σ(, 3, 5) = Π(, 2, 4, 6, 7) (b) (A, B, C, D) = Π(3, 5, 8, ) = Σ(,, 2, 4, 6, 7, 9,, 2, 3, 4, 5) 2.22 (a) (u + w)( + u'v) = u + uu'v + w + wu'v = u + w + wu'v = u + w = (u + w) = u + w (SOP form) = (u + w) (POS form) (b) ' + ( + ')( + ') = ' + ( + ' + ' + '') = ' + + ' + '' = ' + +' (SOP form) = (' + + ') (POS form) 2.23 (a) B'C +AB + ACD A B C D Digital Design With An Introduction to the Verilog HDL Solution Manual. M. Mano. M.D. Ciletti, Copright 22,

23 (b) (A + B)(C + D)(A' + B + D) A B C D (c) (AB + A'B')(CD' + C'D) A B C D (d) A + CD + (A + D')(C' + D) A B C D 2.24 = ' + ' and ( )' = ( + ')(' + ) Dual of ' + ' = (' + )( + ') = ( )' 2.25 (a) = ' = ' Not commutative ( ) = '' ( ) = (')' = ' + Not associative Digital Design With An Introduction to the Verilog HDL Solution Manual. M. Mano. M.D. Ciletti, Copright 22,

24 (b) ( ) = ' + ' = = ' + ' Commutative ( ) = (, 2, 4, 7) = ( ) Associative 2.26 Gate NAND (Positive logic) NOR (Negative logic) L L L H H L H H H H H L Gate NOR (Positive logic) NAND (Negative logic) L L L H H L H H H L L L 2.27 f = a'b'c' + a'bc' + a'bc + ab'c' + abc = a'c' + bc + a'bc' + ab'c' f 2 = a'b'c' + a'b'c + a'bc + ab'c' + abc = a'b' + bc + ab'c' a' b' a' a' b c' a' b c a' b c a b c f a' c' b c a' b c' a b' c' f a' b' c a' b c a b' c f 2 a' b' b c a b' c' f 2 Digital Design With An Introduction to the Verilog HDL Solution Manual. M. Mano. M.D. Ciletti, Copright 22,

25 2.28 (a) = a(bcd)'e = a(b' + c' + d')e = a(b' + c' + d')e = ab e + ac e + ad e = Σ( 7, 9, 2, 23, 25, 27, 29) a bcde a bcde (b) = a (c + d + e)= a'(c + d +e) + a(c'd'e') = a'c + a'd + a'e + ac'd'e' 2 = b'(c + d + e)f = b'cf + b'df + b'ef = a (c + d + e) = a'(c + d +e) + a(c'd'e') = a'c + a'd + a'e + ac'd'e' 2 = b'(c + d + e)f = b'cf + b'df + b'ef a'-c--- = 8 = 9 = = a'--d-- = 8 = 9 = = a'---e- = 2 = 3 = 6 = 7 a-c'd'e'- = 32 = 33 = 34 = 35 = 2 = 3 = 4 = 5 = 2 = 3 = 4 = 5 = = = 4 = 5 -b' c--f -b' -d-f -b' --ef = 24 = 25 = 26 = 27 = 28 = 29 = 3 = 3 = 2 = 2 = 22 = 23 = 28 = 29 = 3 = 3 = 8 = 9 = 22 = 23 = 26 = 27 = 3 = 3 = 9 = = 3 = 5 = 4 = 43 = 45 = 47 = 9 = = 3 = 5 = 4 = 43 = 45 = 47 = 3 = 7 = = 5 = 35 = 39 = 5 = 55 Digital Design With An Introduction to the Verilog HDL Solution Manual. M. Mano. M.D. Ciletti, Copright 22,

26 = Σ (2, 3, 6, 7, 8, 9,,, 2, 3, 4, 5, 8, 9, 22, 23, 24, 25, 26, 27, 28, 29, 3, 3, 32, 33, 34, 35 ) 2 = Σ (3, 7, 9, 3, 5, 35, 39, 4, 43, 45, 47, 5, 55) ab cdef 2 ab cdef 2 ab cdef 2 ab cdef 2 Digital Design With An Introduction to the Verilog HDL Solution Manual. M. Mano. M.D. Ciletti, Copright 22,