Supporting Information for. A New Diketopiperazine, Cyclo-(4-S-Hydroxy-R-Proline-R-Isoleucine), from an Australian Specimen of the Sponge

Σχετικά έγγραφα
Supporting Information for. Update of spectroscopic data for 4-hydroxyldictyolactone and dictyol E isolated from a Halimeda stuposa - Dictyota

SUPPORTING INFORMATION

Supporting Information

Electronic Supplementary Information

Supporting Information. Route to benzo- and pyrido-fused 1,2,4-triazinyl radicals via N'-(het)aryl- N'-[2-nitro(het)aryl]hydrazides

Comparison of carbon-sulfur and carbon-amine bond in therapeutic drug: -S-aromatic heterocyclic podophyllum derivatives display antitumor activity

Eremophila spp. by Combined use of Dual High-Resolution PTP1B and α- Glucosidase Inhibition Profiling and HPLC-HRMS-SPE-NMR

Supporting Information. Research Center for Marine Drugs, Department of Pharmacy, State Key Laboratory

Supporting Information

A new ent-kaurane diterpene from Euphorbia stracheyi Boiss

Phenylpropanoids, Sesquiterpenoids and Flavonoids from Pimpinella tragium Vill. subsp. lithophila (Schischkin) Tutin

New Cytotoxic Constituents from the Red Sea Soft Coral Nephthea sp.

Synthesis, structural studies and stability of the model, cysteine containing DNA-protein cross-links

Nickel and Platinum PCP Pincer Complexes Incorporating an Acyclic Diaminoalkyl Central Moiety Connecting Imidazole or Pyrazole Rings

Table of Contents 1 Supplementary Data MCD

SUPPORTING INFORMATION

Supporting Information for: electron ligands: Complex formation, oxidation and

Carbohydrates in the gas phase: conformational preference of D-ribose and 2-deoxy-D-ribose

C H Activation of Cp* Ligand Coordinated to Ruthenium. Center: Synthesis and Reactivity of a Thiolate-Bridged

Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3

Lyotropic Liquid Crystals in Amino acid derived Protic Ionic Liquids: Physicochemical Properties and Behaviour as Amphiphile Self-Assembly Media

Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea

To whom correspondence should be addressed: Dr. Beat Schwaller, Unit of Anatomy,

Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes

Supporting Information

difluoroboranyls derived from amides carrying donor group Supporting Information

Electronic Supplementary Information

Discovery of multi-target receptor tyrosine kinase inhibitors as novel anti-angiogenesis agents

Supporting information

Supporting Information. Partial thioamide scan on the lipopeptaibiotic trichogin GA IV. Effects on

Solvent effects on structures and vibrations of zwitterionic dipeptides: L-diglycine and L-dialanine

Near-Silence of Isothiocyanate-Carbon in 13 C-NMR Spectra. A Case Study of Allyl Isothiocyanate

SUPPLEMENTARY MATERIAL

Supporting information. Influence of Aerosol Acidity on the Chemical Composition of Secondary Organic Aerosol from β caryophyllene

Electronic Supporting Information. 3-Aminothiophenecarboxylic acid (3-Atc)-induced folding in peptides

The effect of curcumin on the stability of Aβ. dimers

Supporting Information

Supporting Information. Palladium Complexes with Bulky Diphosphine. Synthesis of (Bio-) Adipic Acid from Pentenoic. Acid Mixtures.

SUPPORTING INFORMATION

Table S1. Summary of data collections and structure refinements for crystals 1Rb-1h, 1Rb-2h, and 1Rb-4h.

Supporting Information

Structure-Metabolism-Relationships in the microsomal clearance of. piperazin-1-ylpyridazines

National d Histoire Naturelle, 57 rue Cuvier (C.P. 54), Paris, France. Contents:

Supporting Information

Electronic Supplementary Information:

Chemical Constituents and Antioxidant Activity of Teucrium barbeyanum Aschers.

Cyclic Cystine-Bridged Peptides from the Marine. Sponge Clathria basilana Induce Apoptosis in. Tumor Cells and Depolarize the Bacterial

Supporting Information

Supporting Information

Supplementary Information

Elucidation of fine-scale genetic structure of sandfish (Holothuria scabra) populations in Papua New Guinea and northern Australia

Supporting Information

Synthesis, Crystal Structure and Supramolecular Understanding of 1,3,5-Tris(1-phenyl-1H-pyrazol-5- yl)benzenes

Supplementary Information

Patrycja Miszczyk, Dorota Wieczorek, Joanna Gałęzowska, Błażej Dziuk, Joanna Wietrzyk and Ewa Chmielewska. 1. Spectroscopic Data.

Supporting Information

Supporting Information

SUPPLEMENTARY DATA. Waste-to-useful: Biowaste-derived heterogeneous catalyst for a green and sustainable Henry reaction

Supporting Information. Introduction of a α,β-unsaturated carbonyl conjugated pyrene-lactose hybrid

chlorostibine Iou-Sheng Ke and François P. Gabbai Department of Chemistry, Texas A&M University, College Station, TX

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

Supplementary Information

Room Temperature Highly Diastereoselective Zn-Mediated. Allylation of Chiral N-tert-Butanesulfinyl Imines: Remarkable Reaction Condition Controlled

Malgorzata Korycka-Machala, Marcin Nowosielski, Aneta Kuron, Sebastian Rykowski, Agnieszka Olejniczak, Marcin Hoffmann and Jaroslaw Dziadek

Design and Fabrication of Water Heater with Electromagnetic Induction Heating

Cite as: Pol Antras, course materials for International Economics I, Spring MIT OpenCourseWare ( Massachusetts

High order interpolation function for surface contact problem

The Sponge-Derived Fijianolide Polyketide Class: Further Evaluation of Their Structural and Cytotoxicity Properties

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Supplementary Material for Synthesis of Compact Multidentate Ligands to Prepare Stable Hydrophilic Quantum Dot Fluorophores

Supporting Information To. Microhydration of caesium compounds: Journal of Molecular Modeling

ELECTRONIC SUPPLEMENTARY MATERIAL-RSC Adv.

Supporting Information. A catalyst-free multicomponent domino sequence for the. diastereoselective synthesis of (E)-3-[2-arylcarbonyl-3-

Ethyl Nitroacetate in Aza-Henry Addition on Trifluoromethyl Aldimines: A Solvent-Free Procedure To Obtain Chiral Trifluoromethyl α,β-diamino Esters

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Supporting Information for Substituent Effects on the Properties of Borafluorenes

Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction

SUPPLEMENTARY MATERIAL. In Situ Spectroelectrochemical Investigations of Ru II Complexes with Bispyrazolyl Methane Triarylamine Ligands

Heavier chalcogenone complexes of bismuth(iii)trihalides: Potential catalysts for acylative cleavage of cyclic ethers. Supporting Information

Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones

Supporting Information. for. Single-molecule magnet behavior in 2,2 -bipyrimidinebridged

Enhancing σ/π-type Copper(I) thiophene Interactions by Metal Doping (Metal = Li, Na, K, Ca, Sc)

Synthesis of Non-Symmetrically Sulphonated Phosphine Sulphonate Based Pd(II) Catalyst Salts for Olefin Polymerisation Reactions

Supporting Information

Supporting Information

A strategy for the identification of combinatorial bioactive compounds. contributing to the holistic effect of herbal medicines

Supplementary Information. Living Ring-Opening Polymerization of Lactones by N-Heterocyclic Olefin/Al(C 6 F 5 ) 3

Electronic Supplementary Information

Heterobimetallic Pd-Sn Catalysis: Michael Addition. Reaction with C-, N-, O-, S- Nucleophiles and In-situ. Diagnostics

Mandelamide-Zinc Catalyzed Alkyne Addition to Heteroaromatic Aldehydes

E-H (E = B, Si, C) Bond Activation by Tuning Structural and Electronic Properties of Phosphenium Cations

Supporting Information

Molecular evolutionary dynamics of respiratory syncytial virus group A in

Pyrrolo[2,3-d:5,4-d']bisthiazoles: Alternate Synthetic Routes and a Comparative Study to Analogous Fused-ring Bithiophenes

Supporting Information. Experimental section

Extremely Strong Halogen Bond. The Case of a Double-Charge-Assisted Halogen Bridge

An experimental and theoretical study of the gas phase kinetics of atomic chlorine reactions with CH 3 NH 2, (CH 3 ) 2 NH, and (CH 3 ) 3 N

Table S1 Selected bond lengths [Å] and angles [ ] for complexes 1 8. Complex 1. Complex 2. Complex 3. Complex 4. Complex 5.

E.E. Παρ. ΙΠ(Ι) 4197 Κ.Δ.Π. 394/2002 Αρ. 3630,

Selective mono reduction of bisphosphine

Transcript:

1 Supporting Information for A New Diketopiperazine, Cyclo-(4-S-Hydroxy-R-Proline-R-Isoleucine), from an Australian Specimen of the Sponge Stelletta Sp. Simon P. B. Ovenden, Jonathan L. Nielson, Catherine H. Liptrot, Richard H. Willis, Dianne M. Tapiolas, Anthony D. Wright and Cherie A. Motti, * Australian Institute of Marine Science, PMB no. 3, Townsville MC, Townsville, 4810, Australia Current address: Defence Science & Technology Organisation, 506 Lorimer St. Fishermans Bend, Victoria, 3207, Australia Current address: ACD Labs UK, Building A, Trinity Court, Wokingham Road, Bracknell, Berkshire, RG42 1PL, England Current address: James Cook University, Townsville, QLD 4811, Australia. Current address: University of Hawaii at Hilo, College of Pharmacy, 34 Rainbow Drive, Hilo, Hawaii 96720, USA. * To whom correspondence should be addressed: Tel.: +61 7 4753 4143. Fax.: +61 7 4772 5852. Email: c.motti@aims.gov.au. Defence Science & Technology Organisation, ACD Labs UK, James Cook University, Australian Institute of Marine Science, University of Hawaii at Hilo.

2 Table of Contents. Page No Figure S1. 1 H NMR spectrum (600 MHz) of cyclo-(4-s-hydroxy-r-proline-r-isoleucine) (1) in DMSO-d 6... 3 Figure S2. 13 C NMR spectrum (600 MHz) of cyclo-(4-s-hydroxy-r-proline-r-isoleucine) (1) in DMSO-d 6... 4 Figure S3. COSY spectrum (600 MHz) of cyclo-(4-s-hydroxy-r-proline-r-isoleucine) (1) in DMSO-d 6... 5 Figure S4. HSQC spectrum (600 MHz) of cyclo-(4-s-hydroxy-r-proline-r-isoleucine) (1) in DMSO-d 6... 6 Figure S5. HMBC spectrum (600 MHz) of cyclo-(4-s-hydroxy-r-proline-r-isoleucine) (1) in DMSO-d 6... 7 Figure S6. Molecular model of (1) with SRR configuration... 8 Figure S7. Molecular model of (1) with RRR configuration...... 8 Figure S8. Molecular model of (1) with RSS configuration... 9 Figure S9. Molecular model of (1) with SSS configuration.... 9 Figure S10. Molecular model of (1) with SSR configuration. 10 Figure S11. Molecular model of (1) with RSR configuration. 10 Figure S12. Molecular model of (1) with SRS configuration. 11 Figure S13. Molecular model of (1) with RRS configuration. 11 Table S1. Comparison of calculated dihedral angles from the eight possible stereoisomers of (1) with observed 1 H- 1 H couplings from the 1 H NMR of (1).. 12

1. 1H NMR of (1) in DMSO-d6 3 0.94 1.07 1.02 1.02 1.00 1.10 1.15 2.06 1.18 1.09 1.18 2.77 3.05 5.10 1.35 1.34 1.33 1.32 1.29 1.27 1.26 1.25 1.24 3.53 3.53 3.51 3.51 4.33 4.32 4.31 4.30 4.28 3.22 3.20 2.04 2.03 2.02 1.90 1.89 1.88 1.87 1.86 1.85 7.97 4.00 0.98 0.97 0.83 0.82 0.81 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 f1 (ppm) 3.5 3.0 2.5 2.0 1.5 1.0 0.5

2. 13C NMR of (1) in DMSO-D6 4 170.52 165.35 66.84 53.79 56.71 59.08 34.76 37.18 23.87 14.93 12.30 180 170 160 150 140 130 120 110 100 90 f1 (ppm) 80 70 60 50 40 30 20 10

5 3. COSY of (1) in DMSO-d6 0 1 2 3 4 f1 (ppm) 5 6 7 8 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 f2 (ppm) 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

6 4. HSQC of (1) in DMSO-d6 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 f1 (ppm) 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 f2 (ppm) 3.5 3.0 2.5 2.0 1.5 1.0

7 5. HMBC of (1) in DMSO-d6 10 20 30 40 50 60 70 80 90 100 110 f1 (ppm) 120 130 140 150 160 170 180 190 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 f2 (ppm) 3.5 3.0 2.5 2.0 1.5 1.0 0.5 200

8 Figure S6. Molecular model of (1) with SRR configuration Figure S7. Molecular model of (1) with RRR configuration C4(R), C6(R), C9(R) H-10 H a -3 H-9 C-9 (R) C-6 (R) H b -3 H-6 C-4 (R) H-4 8-NH H b -5 H a -5

9 Figure S8. Molecular model of (1) with RSS configuration Figure S9. Molecular model of (1) with SSS configuration C4(S), C6(S), C9(S) H b -3 H-9 H a -3 H-4 H-10 C-9 (S) C-6 (S) H-6 C-4 (S) 8-NH H b -5 H a -5

10 Figure S10. Molecular model of (1) with SSR configuration Figure S11. Molecular model of (1) with RSR configuration C4(S), C6(S), C9(R) H a -3 H-9 H b -3 H-10 C-9 (R) H-4 C-4 C-6 (S) (S) H-6 8-NH H b -5 H a -5

Figure S12. Molecular model of (1) with SRS configuration Figure S13. Molecular model of (1) with RRS configuration 11

12 Table S1. Comparison of calculated dihedral angles from the eight possible stereoisomers of 1 with observed 1 H- 1 H couplings from the 1 H NMR of 1. C-4,C-6,C-9 configuration 1 H- 1 H Correlation Calculated dihedral angle Φ Calculated J (Hz) a Relevant observed 1 H- 1 H couplings C-4,C-6,C-9 configuration 1 H- 1 H Correlation Calculated dihedral angle Φ Calculated J (Hz) a Relevant observed 1 H- 1 H couplings RRR H-9 8NH 98 0.74 b 8NH (br s), H-9 (br s) RSR H-9 8NH 27 6.88 b NA H-9 H-10 74 1.16 H-9 (br s) H-9 H-10-172 10.16 NA H-6 H5b 163 11.26 H-6 H5b (11.0 Hz) H-6 H5b -169 11.65 H-6 H5b (11.0 Hz) H-6 H5a 41 5.63 H-6 H5a (6.1 Hz) H-6 H5a -38 6.09 H-6 H5a (6.1 Hz) H-4 H5a -162 10.00 NA H-4 H5a -82 1.50 No observed coupling H-4 H5b -40 7.14 NA H-4 H5b 39 4.83 H-4 (4.6, 4.6 Hz), H-5b (4.6 Hz) H-4 H3a 151 8.37 NA H-4 H3a -26 6.09 H-4 (4.6, 4.6 Hz), H-3a (4.6 Hz) H-4 H3b 29 8.54 NA H-4 H3b 98 1.57 No observed coupling SRR H-9 8NH 91 0.42 b 8NH (br s), H-9 (br s) SSR H-9 8NH 33 6.09 b NA H-9 H-10 64 1.93 H-9 (br s) H-9 H-10-173 10.22 NA H-6 H5b 163 11.26 H-6 H5b (11.0 Hz) H-6 H5b -163 11.26 H-6 H5b (11.0 Hz) H-6 H5a 41 5.63 H-6 H5a (6.1 Hz) H-6 H5a -40 5.78 H-6 H5a (6.1 Hz) H-4 H5a 79 1.70 No observed coupling H-4 H5a 40 7.14 NA H-4 H5b -42 4.36 H-4 (4.6, 4.6 Hz), H-5b (4.6 Hz) H-4 H5b 162 10.00 NA H-4 H3a 29 5.65 H-4 (4.6, 4.6 Hz), H-3a (4.6 Hz) H-4 H3a -29 8.54 NA H-4 H3b -93 1.43 No observed coupling H-4 H3b -152 8.51 NA RSS H-9 8NH -99 0.80 b 8NH (br s), H-9 (br s) SRS H-9 8NH -34 5.95 b NA H-9 H-10 70 1.86 H-9 (br s) H-9 H-10 178 10.40 NA H-6 H5b -162 11.18 H-6 H5b (11.0 Hz) H-6 H5b 163 11.26 H-6 H5b (11.0 Hz) H-6 H5a -40 5.78 H-6 H5a (6.1 Hz) H-6 H5a 41 5.63 H-6 H5a (6.1 Hz) H-4 H5a -77 1.86 No observed coupling H-4 H5a 77 1.86 No observed coupling H-4 H5b -45 3.90 H-4 (4.6, 4.6 Hz), H-5b (4.6 Hz) H-4 H5b -44 4.05 H-4 (4.6, 4.6 Hz), H-5b (4.6 Hz) H-4 H3a -34 4.90 H-4 (4.6, 4.6 Hz), H-3a (4.6 Hz) H-4 H3a 33 5.05 H-4 (4.6, 4.6 Hz), H-3a (4.6 Hz) H-4 H3b 88 1.43 No observed coupling H-4 H3b -89 1.42 No observed coupling SSS H-9 8NH -99 0.80 b 8NH (br s), H-9 (br s) RRS H-9 8NH -34 5.95 b NA H-9 H-10 64 2.47 H-9 (br s) H-9 H-10 174 10.26 NA H-6 H5b -162 11.18 H-6 H5b (11.0 Hz) H-6 H5b 162 11.18 H-6 H5b (11.0 Hz) H-6 H5a -40 5.78 H-6 H5a (6.1 Hz) H-6 H5a 40 5.78 H-6 H5a (6.1 Hz) H-4 H5a 40 4.94 NA H-4 H5a -40 7.14 NA H-4 H5b 162 11.31 NA H-4 H5b -162 10.00 NA H-4 H3a -151 8.37 NA H-4 H3a 29 8.54 NA H-4 H3b -29 8.54 NA H-4 H3b 151 8.37 NA a Predicted couplings calculated using the Karplus equation for 3 J H,H according to C.A.G. Haasnoot, F.A.A.M. DeLeeuw and C. Altona; Tetrahedron 36 (1980) 2783-2792. b Predicted couplings calculated using the Karplus equation for 3 J HNCH according to V.F. Bystrov Prog. NMR Spectrosc. 10 (1976) 41-81.