Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis

Σχετικά έγγραφα
Bonn-Gatchina analysis of photoproduction data

Three coupled amplitudes for the πη, K K and πη channels without data

Hadronic Tau Decays at BaBar

EE512: Error Control Coding

L. F avart. CLAS12 Workshop Genova th of Feb CLAS12 workshop Feb L.Favart p.1/28

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

K + Λ photoproduction in a dynamical coupled-channel approach

Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

Approximation of distance between locations on earth given by latitude and longitude

Second Order RLC Filters

The Θ + Photoproduction in a Regge Model

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

LIGHT UNFLAVORED MESONS (S = C = B = 0)

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Matrices and Determinants

Derivation of Optical-Bloch Equations

4.6 Autoregressive Moving Average Model ARMA(1,1)

derivation of the Laplacian from rectangular to spherical coordinates

( y) Partial Differential Equations

Section 8.3 Trigonometric Equations

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Solar Neutrinos: Fluxes

Homework 3 Solutions

ST5224: Advanced Statistical Theory II

Statistical Inference I Locally most powerful tests

Finite Field Problems: Solutions

2 Composition. Invertible Mappings

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Second Order Partial Differential Equations

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Light Hadrons and New Enhancements in J/ψ Decays at BESII

D Alembert s Solution to the Wave Equation

Space-Time Symmetries

Forced Pendulum Numerical approach

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Strain gauge and rosettes

Math 6 SL Probability Distributions Practice Test Mark Scheme

Reminders: linear functions

Large β 0 corrections to the energy levels and wave function at N 3 LO

Example Sheet 3 Solutions

[1] P Q. Fig. 3.1

Fractional Colorings and Zykov Products of graphs

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä664

1 String with massive end-points

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Μεταπτυχιακή διατριβή. Ανδρέας Παπαευσταθίου

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Homework 8 Model Solution Section

The Simply Typed Lambda Calculus

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Concrete Mathematics Exercises from 30 September 2016

ˆŒˆ ˆŸ ˆ Œ ƒ LEPTO/JETSET Ÿ ˆ ƒ

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

An Inventory of Continuous Distributions

Lecture 26: Circular domains

Numerical Analysis FMN011

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

the total number of electrons passing through the lamp.

Monolithic Crystal Filters (M.C.F.)

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Orbital angular momentum and the spherical harmonics

PHOS π 0 analysis, for production, R AA, and Flow analysis, LHC11h

6.3 Forecasting ARMA processes

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Higher Derivative Gravity Theories

Other Test Constructions: Likelihood Ratio & Bayes Tests

Andreas Peters Regensburg Universtity

EE101: Resonance in RLC circuits

Unified dispersive approach to real and virtual photon-photon scattering into two pions

Durbin-Levinson recursive method

SPECIAL FUNCTIONS and POLYNOMIALS

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Capacitors - Capacitance, Charge and Potential Difference

EPS-HEP 2015 DOUBLE-SCATTERING MECHANISM. Antoni Szczurek 1,2 Mariola Kłusek-Gawenda 1

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

C.S. 430 Assignment 6, Sample Solutions

Solutions to Exercise Sheet 5

Inverse trigonometric functions & General Solution of Trigonometric Equations

Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible.

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Assalamu `alaikum wr. wb.

PARTIAL NOTES for 6.1 Trigonometric Identities

Every set of first-order formulas is equivalent to an independent set

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

Instruction Execution Times

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

6.003: Signals and Systems. Modulation

NN scattering formulations without partial-wave decomposition

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Transcript:

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis Petersburg Nuclear Physics Institute A. Sarantsev HISKP (Bonn), PNPI (Russia) NSTAR 7- May, JLAB, USA

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR Bonn-Gatchina partial wave analysis group: A. Anisovich, E. Klempt, V. Nikonov, A. Srantsev, U. Thoma http://pwa.hiskp.uni-bonn.de/

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 3 Search for baryon states. Analysis of single meson and double meson photoproduction reactions. γp πn, ηn, KΛ, KΣ, ππn, πηn, CB-ELSA, CLAS, GRAAL, LEPS.. Analysis of single meson and double meson pion-induced reactions. πn πn, ηn, KΛ, KΣ, ππn. Search for meson states. Analysis of the p p annihilation at rest and ππ interaction data.. Analysis of the p p annihilation in flight into two and tree meson final state. 3. Analysis of the J/Ψ decays (BES III collaboration). Analysis of N N interaction. Analysis of single and double meson production NN πnn and ππnn. Analysis of hyperon production NN KΛp

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 4 Energy dependent approach In many cases an unambiguous partial wave decomposition at fixed energies is impossible. Then the energy and angular parts should be analyzed together: A(s, t) = ββ n A ββ n (s)q (β)+ µ...µ n F µ...µ n ν...ν n Q (β ) ν...ν n. C. Zemach, Phys. Rev. 4, B97 (96); 4, B9 (96).. S.U.Chung, Phys. Rev. D 7, 43 (998). 3. A.V. Anisovich et al. J. Phys. G 8 () V. V. Anisovich, M. A. Matveev, V. A. Nikonov, J. Nyiri and A. V. Sarantsev, Hackensack, USA: World Scientific (8) 8 p. Correlations between angular part and energy part are under control.. Unitarity and analyticity can be introduced from the beginning. 3. Parameters are be fixed from combined fit of many reactions.

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR πn vertices N + µ...µ n = X (n) µ...µ n N µ...µ n = iγ ν γ X (n+) νµ...µ n () Q (+)µ α...α n Q (+)µ α...α n Q (3+)µ α...α n γn vertices = γ µ iγ X α (n)...α n, Q ( )µ α...α n = γ ν iγ X µνα (n+)...α n, Q ( )µ α...α n = γ ν iγ X να (n+)...α n gµα n, Q (3 )µ α...α n = γ ξ γ µ O (n+) ξα...α n, = X (n+) µα...α n, = X (n ) α...α n g α µ. Fermion propagator for J = N + F µ...µ L ν...ν L (p) = (m+ ˆp)O µ...µ L L + ( α...α L g L+ α β L L+ σ ) L α β g αi β i O β...β L ν...ν L i= σ αi α j = (γ α i γ αj γ αj γ αi )

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 6 Combined analysis of pion- and photo-production data: For pion induced reactions: A i = K j (I iρk) ji and K ij = α g α i gα j M α s + f ij(s) f ij = f () ij + f () ij s s s ij. where f ij is nonresonant transition part. For the photoproduction: A k = P j (I iρk) jk The vector of the initial interaction has the form: P j = α Λ α g α j M α s + F j(s) Here F j is nonresonant production of the final state j.

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 7 Reggezied exchanges: γ(k ) π(q ) γ(k ) p(q ) ρ(k t ) N(k u ) p(k ) p(q ) p(k ) π(q ) The amplitude for t-channel exchange: A = g (t)g (t)r(ξ, ν, t) = g (t)g (t) + ξexp( iπα(t)) sin(πα(t)) ν ν α(t) ν = (s u). Here α(t) is Reggion trajectory, and ξ is its signature: R(+, ν, t) = e i π α(t) sin( π α(t))γ α(t) ν ν α(t), R(, ν, t) = ie i π α(t) cos( π α(t))γ α(t) + ν ν α(t).

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 8 N/D based analysis of the data In the case of resonance contributions only we have factorization and Bethe-Salpeter equation can be easily solved: π η K J m J K m δ JK π η K A jm = A jk α B km α (s) M m s + δ jm M j s B km α (s) = 4m α Â = ˆκ(I ˆBˆκ) κ ij = δ ij M i s B ij = α ds π g (k) α Bα km (s) (s )ρ α (s )g (m) α (s ) s s i There is no factorization for non-resonant contributions: for every non-resonant transition to introduce a vertices and propagator (e.g. R = ). Bα km (s) = Bα km (Ms ) + (s Ms ) 4m α ds π g (k) α (s )ρ α (s )g α (m) (s ) (s s i)(s Ms )

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 9 Data Base Pion induced reactions (χ analysis). Observable N data χ N data Observable N data χ N data N / S (πn πn). SAID (.) / S 3 (πn πn).3 SAID (.) N / + P (πn πn).49 SAID (.) / + P 3 (πn πn) 4 3.8 SAID (.) N 3/ + P 3 (πn πn).33 SAID (.) 3/ + P 33 (πn πn).79 SAID (.) N 3/ D 3 (πn πn) 8. SAID (.) 3/ D 33 (πn πn) 8.47 SAID (.) N / D (πn πn) 4.37 SAID (.4) N 7/ G 7 (πn πn).4 SAID (.4) N / + F (πn πn) 88.7 SAID (.) / + F 3 (πn πn) 6.4 SAID (.) N 7/ + F 7 (πn πn) 8.98 SAID (.) 7/ + F 37 (πn πn) 7.7 SAID (.) N 9/ G 9 (πn πn) 74.8 SAID (.) N 9/ + H 9 (πn πn) 86.6 SAID (.) dσ/dω(π p nη) 7.8 Richards et al. dσ/dω(π p nη) 84.73 CBALL dσ/dω(π p KΛ) 98.67 RAL P (π p KΛ) 3.67 RAL+ANL β(π p KΛ) 7.4 RAL dσ/dω(π + p K + Σ) 69. RAL P (π + p K + Σ) 37.43 RAL β(π + p K + Σ) 7.8 RAL dσ/dω(π p K Σ ) 9.88 RAL P (π p K Σ ) 9.3 RAL

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR Data Base π and η photoproduction reactions (χ analysis). χ Observable N χ data Observable N N data data N data dσ/dω(γp pπ ) 6.6 CB-ELSA dσ/dω(γp pπ ) 86.8 GRAAL dσ/dω(γp pπ ) 9.7 CLAS dσ/dω(γp pπ ) 69. TAPS@MAMI Σ(γp pπ ) 4.7 CB-ELSA Σ(γp pπ ) 49.48 SAID db E(γp pπ ) 4.4 A-GDH P(γp pπ ) 67.98 SAID db T(γp pπ ) 389 3. SAID db H(γp pπ ) 7.7 SAID db G(γp pπ ) 7.7 SAID db O x (γp pπ ) 7.4 SAID db O z (γp pπ ) 7.7 SAID db dσ/dω(γp nπ + ) 484.4 CLAS dσ/dω(γp nπ + ) 83.3 SAID db dσ/dω(γp nπ + ) 48. A-GDH Σ(γp nπ + ) 899.9 SAID db E(γp nπ + 3. A-GDH P(γp nπ + ). SAID db T(γp nπ + ) 66.87 SAID db H(γp pπ + ) 7 4. SAID db G(γp pπ + ) 86.67 SAID db dσ/dω(γp pη) 68.3 CB-ELSA dσ/dω(γp pη).6 TAPS Σ(γp pη).9 GRAAL 98 Σ(γp pη).43 GRAAL 7 T (γp pη).39 Phoenics

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR Data Base Kaon photoproduction (χ analysis). Observable N data χ N data Observable N data χ N data dσ/dω(γp ΛK + ) 3.78 CLAS9 dσ/dω(γp Σ K + ) 8.98 CLAS P(γp ΛK + ) 7.7 CLAS9 P(γp Σ K + ) 9.3 CLAS C x (γp ΛK + ) 6.44 CLAS C x (γp Σ K + ) 94.36 CLAS C z (γp ΛK + ) 6.3 CLAS C z (γp Σ K + ) 94.6 CLAS Σ(γp ΛK + ) 66 3.3 GRAAL Σ(γp Σ K + ) 4.8 GRAAL Σ(γp ΛK + ) 4.34 LEP Σ(γp Σ K + ) 4.3 LEP T(γp ΛK + ) 66.3 GRAAL 9 dσ/dω(γp Σ + K ) 48 3.4 CLAS O x (γp ΛK + ) 66.7 GRAAL 9 dσ/dω(γp Σ + K ) 7.67 CB-ELSA O z (γp ΛK + ) 66.66 GRAAL 9 P(γp Σ + K ) 4.7 CB-ELSA P(γp ΛK + ) 84.6 GRAAL Σ(γp Σ + K ).39 CB-ELSA

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR Data Base Multi-meson final states (maximum likelihood analysis). dσ/dω(π p nπ π ) CBALL dσ/dω(γp pπ π ) CB-ELSA (.4 GeV) E(γp pπ π ) 6.9 MAMI dσ/dω(γp pπ η) CB-ELSA (3. GeV) Σ(γp pπ η) 8.37 GRAAL dσ/dω(γp pπ π ) CB-ELSA (3. GeV) Σ(γp pπ π ) 8.96 GRAAL dσ/dω(γp pπ η) CB-ELSA (3. GeV) Σ(γp pπ η) 8.37 GRAAL I c (γp pπ η) CB-ELSA (3. GeV) I s (γp pπ η) CB-ELSA (3. GeV)

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 3 The fit of the the π p KΛ reaction.8.7.6 σ tot, mb / / / / + / 3/ + Full experiment for πn KΛ: differential cross section, analyzing power, rotation parameter. A clear evidence for resonances which are hardly seen (or not seen) in the elastic reactions: N(7)P, N(9)P 3,..4.3.. 7 8 9 M(πp), MeV The total cross section for the reaction π p K Λ and contributions from leading partial waves.

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 4.......... dσ/dω, mb/sr 63 66 67 676 678 68 684 686 687 689 693 698 7 77 743 78 79 8 847 879 99 938 966 999 7 9 4 9 83 8 π p KΛ (dσ/dω, P, β) P - 633 66 683-694 74 78-79 8 847-879 99 938-966 999 7 -.. - 9 4 -.. -.. cos θ cm β, rad. -. - W=8 W=94 W=3. -. - W=6 W=7 W=9 -.. -... -. - W=6 -.. cos θ cm -.. -.. -.. cos θ cm

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR The γp KΛ reaction (CLAS 9) σ tot, µb σ tot, µb 3. / / / / + / 3/ + / / + 3. / / / / + / 3/ + / / +.... 6 8 4 M(γp), MeV 6 8 4 M(γp), MeV

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 6 dσ/dω, µb/sr The fit of the γp KΛ differential cross section. 6 63 64 6 66 (CLAS 9). 67 68 69 7 7 7 73 74 7 76.. 3 4 6 7 8 9. 77 78 79 8 8. 3 4 6 7. 8 83 84 8 86. 8 9. 87 88 89 9 9. 3 4 6 7. 9 93 94 96 97. 8 9 3 3 3.. 98 99. 33 -.. 34 -.. 3 -.. 36 -.. 37 -.. cos θ cm

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 7 - P - - - - - - - 64 The fit of the γp KΛ recoil asymmetry 6 66 67 68 69 7 7 7 73 74 7 76 77 78 79 8 8 8 83 84 8 86 87 88 89 9 9 9 93 94 9 96 97 98 99 3 (CLAS 9) - - - - - - - 4 6 7 8 9 3 4 6 7 8 9 3 4 6 7 8 9 3 3 3 33 34 -.. 3 -.. 36 -.. 37 -.. 38 -.. cos θ cm

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 8 The fit of the the π + p K + Σ + reaction.6. σ tot, mb Fit 3/ 3/ + 3/ 7/ + 3/ /.. dσ/dω, mb/sr 8 84 87 89 96 939 P 8-89 96 939 84 87.4 97 98 9-97 98 9.3... 3 9 74-3 9 74. 6 8 47-6 8 47 8 9 M(πp), MeV. 8 -.. -.. - 8 -.. -... -.. cos θ cm - -.. cos θ cm

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 9 The fit of the the π p K Σ reaction... σ tot, mb dσ/dω, mb/sr.4 879. 99 938.4 966 999 7..4 9 4 9 P 694-7 78 793 86 848-879 99 938-966 999 7....4 83 8. 9-9 4 9-83 8 9 8 9 3 M(πp), MeV.4 36. -.. -.. - 36 -.. -.. -.. cos θ cm -.. cos θ cm

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR π p nπ π (Crystal Ball) total cross section σ tot, mb.4..8...9 Fit of the data P -partial wave D 3 -partial wave S -partial wave.6.3.3.3.4.4. M(πp), GeV/c

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR π p nπ π (Crystal Ball) Differential cross sections for 47 and 66 MeV/c data. M347 M ( π p) 47 M47 M ( π π) 47 M36 M ( π p) 6 M6 M ( π π) 6 8 4 7 8 8 6 6 4 6 8 4 6 8 4 3 4 6 4.......3.3.4.4......3.3.4..3.3.4.4...6 8 6 Z47 cos Θ(π) 47 4 8 6 Z347 cos Θ(p) 47 7 6 4 3 Z6 cos Θ(π) 6 9 8 7 6 4 Z36 cos Θ(p) 6 4 4 3 - -.. - -.. - -.. - -.. 4 cos Z347 Θ(π p) 47 8 6 4 8 6 4 - -.. cos Z47 Θ(ππ) 47 9 8 7 6 4 - -.. cos Z36 Θ(π p) 6 9 8 7 6 4 3 - -.. 8 7 6 4 3 cos Z6 Θ(ππ) 6 - -..

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR γp pπ π (Crystal Barrel) Differential cross sections. M3M(3)-.6 M ( π p) 8 6 4 8 6 4.<M<.6 MM(3)-.6 M ( π π) 4 8 6 4.<M<.6 M3M(3)-.7 M ( π p) 8 6 4 8 6 4.6<M<.7 MM(3)-.7 M ( π π) 6 4 8 6 4.6<M<.7 M3M(3)-.8 M ( π p) 8 7 6 4 3.7<M<.8 MM(3)-.8 M ( π π) 7 6 4 3.7<M<.8...3.4..3.4..6.7...3.4..6.3.4..6.7.8...3.4..6.7.3.4..6.7.8.9 ZM(3)-.6 cos Θ(π) 4 8.<M<.6 Z3M(3)-.6 cos Θ(p) 6 4 8 6.<M<.6 ZM(3)-.7 cos Θ(π) 8 6 4.6<M<.7 Z3M(3)-.7 cos Θ(p) 4 8 6 4 8.6<M<.7 ZM(3)-.8 cos Θ(π) 9 8 7 6 4.7<M<.8 Z3M(3)-.8 cos Θ(p) 8 6 4.7<M<.8 6 4 8 6 6 4 3 - -.. - -.. 4 - -.. - -.. - -.. - -.. Z3M(3)-.6 cos Θ(π p).<m<.6 6 4 8 6 4 - -.. ZM(3)-.6 cos Θ(ππ).<M<.6 8 6 4 8 6 4 - -.. Z3M(3)-.7 cos Θ(π p).6<m<.7 8 6 4 8 6 4 - -.. ZM(3)-.7 cos Θ(ππ).6<M<.7 8 6 4 8 6 - -.. Z3M(3)-.8 cos Θ(π p).7<m<.8 8 7 6 4 3 - -.. ZM(3)-.8 cos Θ(ππ).7<M<.8 9 8 7 6 4 3 - -..

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 3 γp pπ π (Crystal Barrel) Dalitz plots W=.,.6,.7,.8 GeV. Dp(3 vs 3)M(3)-. Dp(3 vs 3)M(3)-. Dp(3 vs 3)M(3)-.6 Dp(3 vs 3)M(3)-.6.8 3 3.8 4.4. 8 6 4.4. 8 6 4.6.4..6.4. 3.8.6.4. 8 6 4.8.6.4. 8 6 4..4.6.8..4.6.8..4.6.8..4..4.6.8..4 Dp(3 vs 3)M(3)-.7 Dp(3 vs 3)M(3)-.7 Dp(3 vs 3)M(3)-.8 Dp(3 vs 3)M(3)-.8.8.6.4..8.6.4. 8 6 4 8 6 4.8.6.4..8.6.4. 6 4 8 6 4 3.8.6.4..8.6.4. 9 8 7 6 4 3 3.8.6.4..8.6.4. 8 6 4..4.6.8..4.6.8..4.6.8..4.6.8..4.6.8..4.6.8 3..4.6.8..4.6.8 3

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 4 γp pπ η (CB-ELSA)with linear polarized photon dσ dω = ( ) dσ { + δ l [I s sin(φ) + I c cos(φ)]}, () dω Σ = π I c dφ

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR I c and I s for γp pπ η (CB-ELSA) s Ip. W = 76 ± 64 MeV W = 834 ± 64 MeV W = 946 ± 48 MeV c Ip. W = 76 ± 64 MeV W = 834 ± 64 MeV W = 946 ± 48 MeV -. -. s Iπ. c Iπ. -. -. s Iη. c Iη. -. φ* [ ] -. φ* [ ] 3 3 3 3 3 3

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 6 Pole position of baryon states (Re and -Im) in the mass region 9-3 MeV State Solution Solution Arndt Hoehler Cutcosky + 88±3 (Manley) N(87) Re 86± 8 + -Im +3 36±4 3±44 (Manley) N(89) Re 89±8 88± -Im 8± 9±3 N(88) 3 Re 86± 88± -Im 8±6 8±6 N(3) 3 Re 3±4 8± ±7 -Im 34±4 6±4 ±6 + N(9) 3 Re 9±4 9± -Im 7± 3±6 + N() Re 8 9 87 88± -Im 3 9 9± N() + N(7) Re ± -Im ±4 Re 6±8 ±6 -Im 37± 36±8 N(99) 7 + -Im 7± 6± 6 6±6 Re 97± 9± 93 9±3 N(9) 7 Re 6± 7 4 ± -Im 3± 48 4±6

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 7 S : pole position and Breit-Wigner parameters State Solution Solution Arndt Hoehler Cutcosky N(89) Re 89±8 -Im 8± BW M 9± 88± parameters Γ 77± 9±3 Re T.4. -. 7 6 4 3 Total a) 8 9 4 3 γp K + Σ, K Σ + b) 8 9 Im T.8.6.4...4.6.8. -...4.6.8. M(πN), GeV γp K + Λ c) 8 9 6 4 3 γp K + Λ (O x, O z, T) d) 8 9 M, MeV

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 8 D 3 : pole positions State Solution Solution Arndt Hoehler Cutcosky N(88) 3 Re 86± 88± -Im 8±6 8±6 N(3) 3 Re 3±4 8± ±7 -Im 34±4 6±4 ±6 Re T.4. -. -.4..4.6.8. - γp π + n a) 8 8 6 4 γp K + Σ, K Σ + b) 8 8 6 4 γp K + Λ c) 8 M, MeV Im T.6.4...4.6.8. M(πN), GeV 9 8 7 6 4 3 γp π p d) 8 6 4 4 γp π + n e) 8 7 6 4 3 4 γp K + Λ f) 4 M, MeV

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 9 D : pole position and Breit-Wigner parameters State Solution Solution Arndt Hoehler Cutcosky N(7) Re 6±8 ±6 -Im 37± 36±8 BW M 7± 8±3 8±8 parameters Γ 36± 3± 4± Re T Im T.3.. -. -...4.6.8..4.6..4.3.. -...4.6.8..4.6 M(πN), GeV 6 4 3 4 8 6 4 Total a) 9 3 γp π + n c) 9 3 8 6 4 7 6 4 3 γp π p, K + Λ b) 9 3 γp ηp d) 9 3 M, MeV

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 3 Re T.. G 7 : pole position and Breit-Wigner parameters State Solution Solution Arndt Hoehler Cutcosky N(9) 7 Re 6± 7 4 ± -Im 3± 48 4±6 BW M 8±.4±.4 4± ±7 parameters Γ 9±4 484±3 39±3 ± -. 4 Total a) 4 γp b) 4 3 πp c) Im T -..4.3...4.6.8..4 8 6 4 8 6 4 - M, MeV -..4.6.8..4 M(πN), GeV

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 3 P : pole position and Breit-Wigner parameters State Solution Solution Manley + N(87) Re 86± 8 + 88±3 -Im +3 36±4 3±44 BW M 864± 863± parameters Γ ± 3±3 BG- BG- Re T Im T.4.3.. -. -...4.6.8..6 Re T Im T.4.3.. -. -...4.6.8..6.4.4....4.6.8. M(πN), GeV..4.6.8. M(πN), GeV

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 3 P 3 : pole position and Breit-Wigner parameters State Solution Solution Arndt Hoehler Cutcosky + N(9) 3 Re 9± 89± -Im 3±6 7 +8 N(9) 3 + Re - 97± -Im - ±6 BG- BG- Re T. Re T. -. -. Im T -...4.6.8..3.. -...4.6.8. M(πN), GeV Im T -...4.6.8..3.. -...4.6.8. M(πN), GeV

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 33 Pole position of F : two and three pole solution State Solution Solution Arndt Hoehler Cutcosky + N() Re 8 9 8 9 87 88± -Im 3 3 9 9± N() + Re 9 + 4 + 8 -Im 6± 4± Re T.4 Re T.4.. -. -. -.4.4.6.8..4 -.4.4.6.8..4 Im T.6 Im T.6.4.4...4.6.8..4 M(πN), GeV.4.6.8..4 M(πN), GeV

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 34 Pole position of F 7 and helicity couplings (absolute value ( 3 GeV )/phase (degrees) State Solution A( )/A( 3 ) Solution A( )/A( 3 ) + N(99) 7 Re 98± /4 o ±3 76/ o -Im 8±3 8/3 o 3±6 78 / 4 o Re T... Σ 9 9 93 94 Im T -. -... -..6.8..4.6 -. - 96 97 99. -. - 3 6. -. - 8 9. -. -..6.8..4.6 M(πN), GeV - -.. -.. -.. -.. cos θ

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 3 Holographic QCD (AdS/QCD) L, S, N κ gd Resonance Pred.,, N(94) input:.94, 3, (3).7,, N(44).4,, N(3) N().3 4, 3, N(6) N(7) N(67).64,, (6) (7) L, S, N =, 3,: (6).64,, N(7) N(68) L, S, N =,,: N(7).7,, N(89) N(88).8 4, (9) (94) (93).9, 3, 3, (9) (9) (9) (9).9, 3, N(87) N(9) N(88) N(98).9,,3 N(????).3 3,, N(7) N(8) L, S, N =,,: N(????) N(????). 4 3, 3, N() N() L, S, N =,,: (3) (). 4,, N().7 4, 3, (39) (3) (4) L, N =3,: (4).43 (3),, N(6).7 4

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 36 Parity doublets of N and resonances at high mass region Parity doublets must not interact by pion emission and could have a small coupling to πn. J= J= 3 J= J= 7 J= 9 N / +(88) * N / (89) * / +(9) **** / (9) a ** N 3/ +(9) ** N 3/ (87) ** 3/ +(94) a *** 3/ (99) a * N / +(88) ** N / (7) / +(94) **** / (93) a *** N 7/ +(98) ** N 7/ (7) **** 7/ +(9) **** 7/ () * N 9/ +() **** N 9/ () **** 9/ +(3) ** 9/ (4) a ** J= J= 7 J= 9 N / +() ** N / (7) / +(94) **** / (93) a *** N 7/ +() ** N 7/ (6) **** 7/ +(9) **** 7/ () * N 9/ +() **** N 9/ () **** 9/ +(3) ** 9/ (4) a **

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 37 Summary The analysis of (almost) all available data for production of baryons in the pion and photo induced reaction is completed. We have observed a set of new states in the region 8- MeV, however, this number is much less than that predicted by the classical quark model. The low spin states in this mass region fit very well the AdS/QCD prediction as well as with the idea about chiral restoration at high energies. There are two solutions for the N 7 + lowest state which should be distinguished from analysis of beam asymmetry data on photoproduction of hyperon-kaon final states. The situation for N( + ) can be resolved with reanalysis of πn elastic data and an analysis of new data on double pion photoproduction (with charged pions). The search for the chiral partner of 7/ +(9) state is the main subject in our current analysis of double pion and π η photoproduction data.

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 38 MAMI data on γp ηp. A narrow state at 7 MeV? E. F. McNicoll et al., Phys. Rev. C 8 () 38 [arxiv:7.777 [nucl-ex]].4 dσ/dω, µb/sr 8 6 4 σ tot, µb / / + 3/ +..4..4 667 67 67 68 684 688 69 696 8 6..4 7 74 77 7 4..4 7 79 73 76 6 6 7 7 8 8 M(γp), MeV. 73 -.. 734 -.. 737 -.. 74 -.. cos θ cm

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 39 Fits with narrow states or ωp photoproduction Resonance Mass Γ tot BrηN A p / BrηN A p 3/ χ tot /N dat χ sel /N dat χ Σ /N dat MeV MeV 3 GeV / 3 GeV / no res. - - - -.3..46 P (+) 79 4 3. -.7.93. P ( ) 694 3.9 -..9. P 3 78 7.6 4.7..93.47 S 68 3.8 -...47 S (ωp) - - - -..93.4 3.8 3.6 σ tot, µb no res P (+) P ( ) 3.8 3.6 σ tot, µb S (ωp) S P 3.8.6.4 Σ 43 o 6 o 3.4 3.4..6 8 o 6 o 3. 3..4. 3 3 4 o 6 6 7.8.8..6 66 68 7 7 74 M(γp), MeV.6 66 68 7 7 74 M(γp), MeV -. 6 6 7 M(γp), MeV

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 4 Solutions S (ωp) and P (+).4 dσ/dω, µb/sr 3.8 3.6 σ tot, µb S (ωp) P (+)..4 667 67 67 68. 3.4.4 684 688 69 696 3. 3..4 7 74 77 7.8..4 7 79 73 76.6 66 68 7 7 74 M(γp), MeV. 73 -.. 734 -.. 737 -.. 74 -.. cos θ cm

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 4 Prediction for polarization observables.3.. -. -. -.3 -.4.... -. T 43 o 6 7 6 o 6 7. -. -..3..... 6 o 6 7 6 7... -. -. 4 o S (ωp) 8 o 6 7 P ( ) P (+) P 3 M(γp), MeV -. F 43 o -. -.3 -.4 6 7 6 o..4.3.. 6 7. -. -..6...4.4.3.3. 6 o 6 7.4.3.. -. 4 o S (ωp) 6 7 8 o 6 7 P ( ) P (+) P 3 M(γp), MeV

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 4 Summary New high precision data on γp ηp show a narrow structure in the mass region 6-7 MeV. The structure can be explained either with a narrow state (in the S, P or P 3 partial wave) or as an effect from photoproduction of ωp channel in the S partial wave. The beam asymmetry data [] favor the solution P ( ) with mass 694 MeV and width 3 MeV. High statistical data on beam asymmetry and beam-target polarization observables will determine which partial wave is responsible for the narrow structure. Such data can also help to distinguish between P (+) and P ( ) solutions.

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 43 γp π p 3 49 68 γp π p 3 - - - - 86 34 3 34-37 - 374-39 - 48 - - - - 4 44 47 473.... - 489 - - - 36 4 6 8 4 M(γp), MeV.... - - - -

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 44 66 γp π p 8 96 83 86 γp π p 88 9.... - 6-6 - 639-63 - 934-99 - 98-6.... - 667-68 - 69-79 - 9 - - 7-97.... - - - - - - - - 73 736 7 763 4 63 8-776 - 79-83 - 86-6 - 8-48 - 69 - - - - - - - -

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 4 γp π p, 3/-/ 9 4 7 - - - - - 84 99 33 38 34-36 - 8 376-8 39-43 - 46-43 -8-443 -8-46 - - 468 - - 48 - - 494 - - 6 - - 9 - - 3 - - - - - - - - - -

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 46 γp π p, Σ 9 3 7 34 349 γp π p, Σ 39 366 38 - - - - - - - - - - 8 3 36 - - - - - - - - - - 383 4 43 46 46 - - - - - - - - - - 4 47 6 - - - - - - - - - - 46 433 449 4 49 - - - - - - - - - - 7 77 8 84 9 - - - - - - - - - - 46 47 48 484 49 - - - - - - - - - - 99 33 36 33 33 - - - - - - - - - - 497 3 9 3 6 - - - - - - - - - - - - - - - - - - - -

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 47 9 γp π p, Σ 8 3 37 6 67 γp π p, Σ 6 66 63 - - - - - - - - - - 4 43 46 49 - - - - - - - - - - 63 638 646 649 6 - - - - - - - - - - 8 6 67 73 76 - - - - - - - - - - 6 68 66 663 674 - - - - - - - - - - 79 8 88 9 94 - - - - - - - - - - 677 68 683 688 69 - - - - - - - - - - 6 63 66 69 6 - - - - - - - - - - 694 697 7 7 78 - - - - - - - - - - - - - - - - - - - -

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 48 76 74 γp π p, Σ 77 73 73 863 873 γp π p, Σ 883 88 898 - - - - - - - - - - 738 74 748 7 77 - - - - - - - - - - 9 9 947 96 97 - - - - - - - - - - 79 77 78 786 788 - - - - - - - - - - 994 999 8 4 4 - - - - - - - - - - 79 8 87 87 8 - - - - - - - - - - 64 8 9 7 3 - - - - - - - - - - 83 843 84 848 88 - - - - - - - - - - 87 96 8 - - - - - - - - - - - - - - - - - - - -

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 49 7 γp π p, P 4 47 6 43 46 γp π p, P 43 443 449 - - - - - - - - - - 77 9 33 38 33 - - - - - - - - - - 4 46 46 46 468 - - - - - - - - - - 34 349 36 36 366 - - - - - - - - - - 47 47 48 494 497 - - - - - - - - - - 373 376 383 39 393 - - - - - - - - - - 6 9 3 6 - - - - - - - - - - 43 46 4 46 4 - - - - - - - - - - 9 8 3 - - - - - - - - - - - - - - - - - - - -

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 43 46 γp π p, P 43 443 449 37 43 γp π p, P 46 49 - - - - - - - - - - 4 46 46 46 468 - - - - - - - - - - 8 6 64 67 - - - - - - - - - - 47 47 48 494 497 - - - - - - - - - - 73 79 8 8 88 - - - - - - - - - - 6 9 3 6 - - - - - - - - - - 9 94 6 63 69 - - - - - - - - - - 9 8 3 - - - - - - - - - - 6 67 6 63 66 - - - - - - - - - - - - - - - - - - - -

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 63 63 γp π p, P 638 64 646 73 73 γp π p, P 738 74 743 - - - - - - - - - - 649 6 6 66 663 - - - - - - - - - - 746 7 77 79 764 - - - - - - - - - - 67 674 677 68 683 - - - - - - - - - - 77 77 77 778 783 - - - - - - - - - - 688 69 694 699 7 - - - - - - - - - - 79 794 796 8 89 - - - - - - - - - - 7 7 76 79 77 - - - - - - - - - - 8 83 83 84 848 - - - - - - - - - - - - - - - - - - - -

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 8 86 γp π p, P 873 89 898 - - - - - - - - - - 9 947 97 973 978 - - - - - - - - - - 98 987 989 8 64 - - - - - - - - - - 97 4 9 - - - - - - - - - - 7 3 96 334 34 - - - - - - - - - -

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 3 γp π p, T 7 36 369 376 γp π p, T 383 39 4 - - - - - - - - - - 4 47 6 7 77 - - - - - - - - - - 43 46 4 43 46 - - - - - - - - - - 8 9 9 36 33 - - - - - - - - - - 43 436 443 449 46 - - - - - - - - - - 37 3 38 33 338 - - - - - - - - - - 47 47 48 484 - - - - - - - - - - 34 34 349 3 366 - - - - - - - - - - 6 3 3 37 - - - - - - - - - - - - - - - - - - - -

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 4 43 46 γp π p, T 8 7 8 848 γp π p, T 873 898 9 - - - - - - - - - - 73 79 8 97 6 - - - - - - - - - - 97 8 64 9 3 - - - - - - - - - - 63 69 67 69 63 - - - - - - - - - - 96 - - - - - - - - - - 643 6 68 66 666 - - - - - - - - - - - - 688 76 743 77 796 - - - - - - - - - -

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 3 8 γp π p, G 873 9 97 8 873 γp π p, H 9 97 8 - - - - - - - - - - 8 64 9 3 96 - - - - - - - - - - 64 9 3 96 38 - - - - - - - - - - 38 - - - - - - - - - - - -

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 6 33 63 γp π p, Ox 63 66 688 - - 76 - - 743 - - - - - - - - - - 33 63 γp π p, Oz 63 66 688 - - 76 - - 743 - - - - - - - - - -

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 7 γp π + n γp π + n 4 9 37 433 446 49 47 484 - - - - - 4 6 78 94 9 - - - - 497 9 34 - - - - - - - - - - 4 7 84 - - - - - 99 33 34 338 3 - - - - - 366 38 393 46 4 - - - - -

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 8 γp π + n γp π + n..... - - - - - - - - - -.... - - - - - - - - -..... - - - - -..... - - - - -..... - - - - -

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 9 4 γp π + n, 3/-/ 9 37 433 446 γp π + n, 3/-/ 49 47 484 - - - - - - - - - - 4 4 4 6 4 78 4 94 4 9 - - - - - - - - - - 497 9 34-3 -3-3 -3-3 - - - - - 3 3 4 3 3 7 3 84 - - - - - - - - - - - - - - - - - - 99 33 34 338 3 - - - - - - - - - - 366 38 393 46 4 - - - - - - - - - -

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 6 9 γp π + n, Σ 7 8 33 34 γp π + n, Σ 349 36 36 - - - - - - - - - - 3 4 47 9 - - - - - - - - - - 369 376 383 39 4 - - - - - - - - - - 6 7 77 8 84 - - - - - - - - - - 43 46 4 46 46 - - - - - - - - - - 9 9 33 36 3 - - - - - - - - - - 43 433 436 446 449 - - - - - - - - - - 33 37 3 38 33 - - - - - - - - - - 4 46 46 468 47 - - - - - - - - - - - - - - - - - - - -

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 6 47 48 γp π + n, Σ 49 3 63 66 γp π + n, Σ 688 76 743 - - - - - - - - - - 9 3 9 8 - - - - - - - - - - 77 796 8 848 873 - - - - - - - - - - 3 34 43 46 - - - - - - - - - - 898 9 9 947 97 - - - - - - - - - - 6 67 73 76 8 - - - - - - - - - - 994 8 4 64 86 - - - - - - - - - - 94 63 69 6 66 - - - - - - - - - - 9 3 3 96 9 - - - - - - - - - - - - - - - - - - - -

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 6 7 γp π + n, P 3 47 6 73 8 γp π + n, P 6 63 63 - - - - - - - - - - 7 77 88 9 33 - - - - - - - - - - 68 66 694 76 77 - - - - - - - - - - 34 349 36 383 43 - - - - - - - - - - 8 873 898 947 994 - - - - - - - - - - 4 46 43 439 449 - - - - - - - - - - 4 86 3 96 9 - - - - - - - - - - 468 48 484 3 43 - - - - - - - - - - - - - - - - - - - -

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 63 7 3 γp π + n, G 4 6 48 9 γp π + n, G 7 97 - - - - - - - - - - 3 43 73 63 63 - - - - - - - - - - - - - - - - - - 66 674 7 73 77 - - - - - - - - - - 783 89 83 86 88 - - - - - - - - - - 9 934 99 98 6 - - - - - - - - - -

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 64 7 4 γp π + n, H 6 43 46 86 88 γp π + n, H 9 934 99 - - - - - - - - - - 449 48 3 6 8 - - - - - - - - - - 98 6 9 - - - - - - - - - - 4 43 73 88 63 - - - - - - - - - - - - - - - - - - 63 63 66 674 7 - - - - - - - - - - 73 77 783 89 83 - - - - - - - - - -

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 6 γp π + n, T 3 7 37 3 γp π + n, T 38 33 338 - - - - - - - - - - 3 36 44 47 - - - - - - - - - - 34 349 39 36 366 - - - - - - - - - - 6 66 7 - - - - - - - - - - 369 373 376 38 383 - - - - - - - - - - 73 77 8 84 88 - - - - - - - - - - 386 39 393 43 46 - - - - - - - - - - 9 9 33 36 33 - - - - - - - - - - 4 43 46 43 436 - - - - - - - - - - - - - - - - - - - -

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 66 446 449 γp π + n, T 49 46 46 8 88 γp π + n, T 9 94 63 - - - - - - - - - - 468 48 484 488 49 - - - - - - - - - - 6 6 6 66 63 - - - - - - - - - - 3 6 3 6 - - - - - - - - - - 63 638 643 66 663 - - - - - - - - - - 8 34 37 4 43 - - - - - - - - - - 669 67 688 76 79 - - - - - - - - - - 6 64 67 73 - - - - - - - - - - 77 8 873 898 9 - - - - - - - - - - - - - - - - - - - -

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 67 7. γp ηp. 49. γp ηp 496.. 7.. 6 8 4 M(γp), MeV... - - -. 6.. 7... - - -. 3. 8. 33... - - -. 37. -

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 68 88 67 γp ηp 646 674. 97. γp ηp. 4. 63.... - - - -. 7. 73. 77. 783 - - - -. 8. 6. 8. 48.... - - - -. 89. 83. 86. 88 - - - -. 69. 9. 3. 33........ - - - -. 9. 934. 99. 98 - -. 3. 37 - -...... - - - -. 6. 9.. 7 - -.... - - - -

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 69 γp ηp, Σ.4 498.4 9.4 49.4 84.... - - - - 6 6 689 79.... - - - - 74 783 8 838.... - - - - 863 887 99 933.... - - - -

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 7

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 7 C x C z - 678 733 787-838 889 939-987 3 8 - - 6 69 96 338-377 46 44 -.. -.. -.. cos θ K

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 7 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 73 - - - - - - - - - - - - - - - - - - - - - -

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 74 3 γp K + Σ. 73. 76. γp K + Σ 74. 73. 767 - - - - -.. 78. 793. 86. 89. 83 - - - - - 84 88 87 883 896...... - - - - -. 98. 9. 933. 94. 97. - - - - -. 969. 98. 993. 4. 7 6 8 4 6 M(γp), MeV - - - - -

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 7 γp K + Σ γp K + Σ. 8. 4.. 63. 74. 3 33. 34. 3. 36. - - - - - - - - - -. 86. 97. 9.. 3. 37. 38. 39. 4. 4 - - - - - - - - - -. 4. 3. 64. 7. 8. 4. 43. 44. 4. 49 - - - - - - - - - -. 96. 7. 7. 8 39. 468. 478. 487. 496.. - - - - - - - - - -. 49. 6 7. 8 9. 4. 33... - - - - - - - -

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 76.7 γp K Σ +.4 796.6 898 γp K Σ +.6 994.6..4..4.. - - -.4.3 86. 74. 9.3..... - - -. 6 8 4 6 M(γp), MeV

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 77 γp K + Σ, P C x C z - - - - - - - - - - - 787 838 889 - - - - - - - - - - - 939 987 3-8 6 69 - - - - - - - - - - - 96 - - - - - - - - - - - 338 -.. 377 -.. 46 - - - - - - - -.. 44 cos θ K

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 78. 7. 78 γp K + Σ, Σ. 88.7. 947.7. γp K + Σ, Σ 994.7. 4 -. -. -.... - - - - - -.6.8.6.8.6.8. 833. 88. 883.7. 86.7. 3.7. 74 -. -. -.... - - - - - -.6.8.6.8.6.8. 96.7. 7.7. 9.7. 3 -.... - -.6.8.6.8.6.8

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 79 π p nπ π (Crystal Ball) total cross section σ tot, mb.4..8...9 Fit of the data P -partial wave D 3 -partial wave S -partial wave.6.3.3.3.4.4. M(πp), GeV/c

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 8 π p nπ π (Crystal Ball) Differential cross sections for 333,47 and MeV/c data. M3373 M ( π p) 333 9 8 7 6 4 3 8 6 4 M373 M ( π π) 333 4 8 6 4 M347 M ( π p) 47 8 6 4 8 6 4 M47 M ( π π) 47 4 3 3 M3 M ( π p) 4 3 M M ( π π)..4.6.8...4.6.8...4.6.8.3.3.34.36.38.4.......3.3.4.4......3..3.3.4.4. 4 4 3 Z373 cos Θ(π) 333 4 4 cos Z3373 Θ(p) 333 8 Z47 cos Θ(π) 47 4 8 cos Z347 Θ(p) 47 3 cos Z Θ(π) 4 3 3 cos Z3 Θ(p) 3 3 3 6 4 6 4 - -.. - -.. - -.. - -.. - -.. - -.. cos Z3373 Θ(π p) 333 9 8 cos Z373 Θ(ππ) 333 4 cos Z347 Θ(π p) 47 cos Z47 Θ(ππ) 47 cos Z3 Θ(π p) cos Z Θ(ππ) 8 6 7 6 4 3 4 4 3 3 8 6 4 8 6 4 9 8 7 6 4 4 3 4 8 6 4 - -.. - -.. - -.. - -.. - -.. 8 - -..

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 8 π p nπ π (Crystal Ball) Differential cross sections for 6, 69 and 733 MeV/c data. 4 4 3 M36 M ( π p) 6 4 3 3 M6 M ( π π) 6 4 M369 M ( π p) 69 4 3 3 M69 M ( π π) 69 4 M3748 M ( π p) 733 3 3 M748 M ( π π) 733 3 3 3......3.3.4..3.3.4.4...6......3.3.4..3.3.4.4...6......3.3.4.4..3.3.4.4...6.6 3 3 Z6 cos Θ(π) 6 4 3 3 cos Z36 Θ(p) 6 3 3 cos Z69 Θ(π) 69 4 3 3 cos Z369 Θ(p) 69 3 3 Z748 cos Θ(π) 733 3 3 cos Z3748 Θ(p) 733 - -.. - -.. - -.. - -.. - -.. - -.. 4 3 3 cos Z36 Θ(π p) 6 4 3 3 cos Z6 Θ(ππ) 6 4 3 3 cos Z369 Θ(π p) 69 4 4 3 3 cos Z69 Θ(ππ) 69 4 3 3 cos Z3748 Θ(π p) 733 cos Z748 Θ(ππ) 733 4 3 3 - -.. - -.. - -.. - -.. - -.. - -..

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 8 γp pπ π (CB-ELSA) Differential cross sections for W=4, and 6 MeV data. M3M(3)-.4 M ( π p) 8 6 4.3<M<.4 MM(3)-.4 M ( π π) 8 6 4.3<M<.4 M3M(3)-. M ( π p) 3 3.4<M<. MM(3)-. M ( π π) 8 6 4 8 6 4.4<M<. M3M(3)-.6 M ( π p) 8 6 4 8 6 4.<M<.6 MM(3)-.6 M ( π π) 4 8 6 4.<M<.6......3.3..3.3.4.4........3.3.4.4..3.3.4.4...6.6...3.4..3.4..6.7 ZM(3)-.4 cos Θ(π).3<M<.4 Z3M(3)-.4 cos Θ(p).3<M<.4 ZM(3)-. cos Θ(π).4<M<. Z3M(3)-. cos Θ(p).4<M<. ZM(3)-.6 cos Θ(π).<M<.6 Z3M(3)-.6 cos Θ(p).<M<.6 9 8 7 6 4 8 6 4 8 6 4 4 8 6 4 8 6 3 8 6 6 4 - -.. - -.. - -.. - -.. - -.. - -.. Z3M(3)-.4 cos Θ(π p) 9 8.3<M<.4 ZM(3)-.4 cos Θ(ππ) 9.3<M<.4 Z3M(3)-. cos Θ(π p) 8.4<M<. ZM(3)-. cos Θ(ππ) 3.4<M<. Z3M(3)-.6 cos Θ(π p) 6 4.<M<.6 ZM(3)-.6 cos Θ(ππ) 8 6.<M<.6 7 8 6 4 6 4 3 - -.. 7 6 4 3 - -.. 4 8 6 4 - -.. - -.. 8 6 4 - -.. 8 6 4 - -..

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 83 γp pπ π (CB-ELSA) Differential cross sections for W=7, 8 and 9 MeV data. M3M(3)-.7 M ( π p) 8 6 4 8 6 4.6<M<.7 MM(3)-.7 M ( π π) 6 4 8 6 4.6<M<.7 M3M(3)-.8 M ( π p) 8 7 6 4 3.7<M<.8 MM(3)-.8 M ( π π) 7 6 4 3.7<M<.8 M3M(3)-.7 M ( π p) 8 6 4 8 6 4.8<M<.97 MM(3)-.7 M ( π π) 6 4 8 6 4.8<M<.97...3.4..6.3.4..6.7.8...3.4..6.7.3.4..6.7.8.9...3.4..6.7.3.4..6.7.8.9 ZM(3)-.7 cos Θ(π) 8 6 4.6<M<.7 Z3M(3)-.7 cos Θ(p) 4 8 6 4.6<M<.7 ZM(3)-.8 cos Θ(π) 9 8 7 6.7<M<.8 Z3M(3)-.8 cos Θ(p) 8 6.7<M<.8 ZM(3)-.7 cos Θ(π) 8 6 4.8<M<.97 Z3M(3)-.7 cos Θ(p) 4 8 6 4.8<M<.97 8 4 4 8 8 6 6 4 3 8 6 6 4 4 - -.. - -.. - -.. - -.. - -.. - -.. Z3M(3)-.7 cos Θ(π p) 8 6 4 8 6 4.6<M<.7 ZM(3)-.7 cos Θ(ππ) 8 6 4 8 6.6<M<.7 Z3M(3)-.8 cos Θ(π p) 8 7 6 4 3.7<M<.8 ZM(3)-.8 cos Θ(ππ) 9 8 7 6 4 3.7<M<.8 Z3M(3)-.7 cos Θ(π p) 8 6 4 8 6 4.8<M<.97 ZM(3)-.7 cos Θ(ππ) 8 6 4 8 6.8<M<.97 - -.. - -.. - -.. - -.. - -.. - -..

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 84 γp pπ π (MAMI) Differential cross sections S = 3/ and S = /. σ [µb] 8 6 4 σ tot (3/) σ tot (/) 8 6 4.3.4.4. M(πγ) [GeV]

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 8 M3 M M(3)-.8 (p η).7<m<.9 4 8 6 4 γp pηπ (CB-ELSA) Differential cross sections for W=7 and 8 MeV data. M3 M(3)-.8 (p π).7<m<.9 M M M(3)-.8 ( π η).7<m<.9 M3 M M(3)-. (p η).9<m<. M3 M(3)-. (p π).9<m<. M M M(3)-. ( π η).9<m<. 4 6 4 8 8 8 8 6 6 6 8 6 4 4 6 4 4 4.4...6.6.7.7.8......3.3.4.6.7.7.8.8.9.9..6.7.8.9...3.4..6.7.8.9.. Z M(3)-.8 cos Θ(π).7<M<.9 8 7 Z M(3)-.8 cos Θ(η).7<M<.9 9 8 8 7 Z3 M(3)-.8 cos Θ(p).7<M<.9 9 8 7 Z M(3)-. cos Θ(π).9<M<. 4 Z M(3)-. cos Θ(η).9<M<. 8 6 Z3 M(3)-. cos Θ(p).9<M<. 6 4 6 7 6 4 4 - -.. 6 6 - -.. 4 3 - -.. 8 6 4 - -.. 8 6 4 - -.. 8 6 4 - -.. Z3 cos M(3)-.8 Θ(η p).7<m<.9 9 Z3 cos M(3)-.8 Θ(pπ).7<M<.9 9 Z cos M(3)-.8 Θ(πη).7<M<.9 Z3 cos M(3)-. Θ(η p).9<m<. Z3 cos M(3)-. Θ(pπ).9<M<. 3 Z cos M(3)-. Θ(πη).9<M<. 8 7 6 8 7 8 9 4 6 6 8 8 8 4 4 6 7 6 6 3 4 4 - -.. - -.. - -.. 4 - -.. 4 - -.. - -..

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 86 M3 M M(3)-. (p η).<m<.3 7 6 4 3 γp pηπ (CB-ELSA) Differential cross sections for W=9 and MeV data. M3 M(3)-. (p π).<m<.3 M M M(3)-. ( π η).<m<.3 M3 M M(3)-.4 (p η).3<m<. M3 M(3)-.4 (p π).3<m<. 3 8 8 8 6 4 6 6 4 4 8 6 M M M(3)-.4 ( π η).3<m<. 3 3 4..6.7.8.9.....3.4..6.7.8.7.8.9...3.4..6.7.8.9...3.4..4.6.8.8..4.6 Z M(3)-. cos Θ(π).<M<.3 9 8 7 6 4 Z M(3)-. cos Θ(η).<M<.3 4 8 6 4 Z3 M(3)-. cos Θ(p).<M<.3 4 8 6 4 Z M(3)-.4 cos Θ(π).3<M<. 8 6 4 8 6 4 Z M(3)-.4 cos Θ(η).3<M<. 4 4 3 3 Z3 M(3)-.4 cos Θ(p).3<M<. 4 4 3 3 - -.. - -.. - -.. - -.. - -.. - -.. Z3 cos M(3)-. Θ(η p).<m<.3 Z3 cos M(3)-. Θ(pπ).<M<.3 Z cos M(3)-. Θ(πη).<M<.3 3 Z3 cos M(3)-.4 Θ(η p).3<m<. 8 Z3 cos M(3)-.4 Θ(pπ).3<M<. 3 Z cos M(3)-.4 Θ(πη).3<M<. 3 9 8 7 6 4 3 - -.. 9 8 7 6 4 3 - -.. 9 8 7 6 4 - -.. 6 4 8 6 4 - -.. 3 - -.. 3 - -..

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 87 γp pηπ (CB-ELSA) Beam asymmetry data.