Min-max Theory, Willmore conjecture, and Energy of links

Σχετικά έγγραφα
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Example Sheet 3 Solutions

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Uniform Convergence of Fourier Series Michael Taylor

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Every set of first-order formulas is equivalent to an independent set

Parametrized Surfaces

Fractional Colorings and Zykov Products of graphs

ST5224: Advanced Statistical Theory II

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

12. Radon-Nikodym Theorem

2 Composition. Invertible Mappings

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Approximation of distance between locations on earth given by latitude and longitude

EE512: Error Control Coding

Finite Field Problems: Solutions

The challenges of non-stable predicates

Reminders: linear functions

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Section 8.3 Trigonometric Equations

Inverse trigonometric functions & General Solution of Trigonometric Equations

Lecture 15 - Root System Axiomatics

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

A Note on Intuitionistic Fuzzy. Equivalence Relation

Statistical Inference I Locally most powerful tests

Local Approximation with Kernels

Bounding Nonsplitting Enumeration Degrees

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

On a four-dimensional hyperbolic manifold with finite volume

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Areas and Lengths in Polar Coordinates

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

Other Test Constructions: Likelihood Ratio & Bayes Tests

Solution Series 9. i=1 x i and i=1 x i.

SOME PROPERTIES OF FUZZY REAL NUMBERS

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

On the Galois Group of Linear Difference-Differential Equations

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Matrices and Determinants

Abstract Storage Devices

Section 9.2 Polar Equations and Graphs

F19MC2 Solutions 9 Complex Analysis

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

Problem Set 3: Solutions

Homework 8 Model Solution Section

Areas and Lengths in Polar Coordinates

Lecture 21: Properties and robustness of LSE

Spherical Coordinates

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

Chapter 3: Ordinal Numbers

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Homomorphism in Intuitionistic Fuzzy Automata

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Second Order Partial Differential Equations

The circle theorem and related theorems for Gauss-type quadrature rules

D Alembert s Solution to the Wave Equation

The Pohozaev identity for the fractional Laplacian

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Phase-Field Force Convergence

Lecture 13 - Root Space Decomposition II

New bounds for spherical two-distance sets and equiangular lines

4.6 Autoregressive Moving Average Model ARMA(1,1)

Congruence Classes of Invertible Matrices of Order 3 over F 2

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

( y) Partial Differential Equations

C.S. 430 Assignment 6, Sample Solutions

Cyclic or elementary abelian Covers of K 4

derivation of the Laplacian from rectangular to spherical coordinates

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Homomorphism of Intuitionistic Fuzzy Groups

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

Tridiagonal matrices. Gérard MEURANT. October, 2008

Oscillatory integrals

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

Homework 3 Solutions

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2

Math221: HW# 1 solutions

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

The ε-pseudospectrum of a Matrix

Higher Derivative Gravity Theories

Math 6 SL Probability Distributions Practice Test Mark Scheme

Solutions to Exercise Sheet 5

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

Transcript:

Min-max Theory, Willmore conjecture, and Energy of links André Neves (Joint with Fernando Marques)

Q: What is the best way of immersing a sphere in space? A: The one that minimizes the bending energy H 2 = Σ Σ ( ) 2 k1 + k 2. 2

Q: What is the best way of immersing a sphere in space? A: The one that minimizes the bending energy H 2 = Σ Σ ( ) 2 k1 + k 2. 2 bending energy is conformally invariant; every compact surface has Σ H 2 4π with equality only for round sphere.

What is the best way of immersing a torus in space?

What is the best way of immersing a torus in space?

What is the best way of immersing a torus in space? Conjecture (Willmore, 65) For every torus Σ immersed in R 3 Σ H 2 2π 2.

Consider stereographic projection π : S 3 {north pole} R 3. If Σ S 3 then (1 + H 2 ) = H 2. Σ π(σ) the Willmore energy of Σ S 3 is defined to be W(Σ) = (1 + H 2 ). Σ

Consider stereographic projection π : S 3 {north pole} R 3. If Σ S 3 then (1 + H 2 ) = H 2. Σ π(σ) the Willmore energy of Σ S 3 is defined to be W(Σ) = (1 + H 2 ). Willmore Conjecture - 65 Every torus Σ immersed in S 3 has W(Σ) 2π 2. Σ

Theorem (Marques-N., 12) For every embedded surface Σ S 3 with genus g 1 W(Σ) 2π 2 with equality if and only if Σ is conformal to S 1 ( 1 2 ) S 1 ( 1 2 ). Corollary A Willmore conjecture holds. Corollary B The only two minimal surfaces in S 3 with area 2π 2 are great spheres and Clifford torus.

Links in space γ 1 and γ 2 two linked curves in R 3.

Links in space γ 1 and γ 2 two linked curves in R 3. lk (γ 1, γ 2 ) is the linking number lk = 1 lk = 3

Links in space Möbius cross energy of a link (γ 1, γ 2 ) is γ 1 E(γ 1, γ 2 ) = (s) γ 2 (t) ds dt. γ 1 (s) γ 2 (t) 2 S 1 S 1 E(γ 1, γ 2 ) is conformally invariant and E(γ 1, γ 2 ) 4π lk (γ 1, γ 2 )

Links in space Q: What is the best way of immersing a non-trivial link (γ 1, γ 2 ) in R 3? A: The one that minimizes the Möbius energy.

Links in space Q: What is the best way of immersing a non-trivial link (γ 1, γ 2 ) in R 3? A: The one that minimizes the Möbius energy. Conjecture (Freedman-He-Wang, 94) If lk (γ 1, γ 2 ) = ±1, then E(γ 1, γ 2 ) 2π 2. If true, every non-trivial link has E(γ 1, γ 2 ) 2π 2.

Theorem (Agol-Marques-N., 12) If lk (γ 1, γ 2 ) = ±1, then E(γ 1, γ 2 ) 2π 2.

Theorem (Agol-Marques-N., 12) If lk (γ 1, γ 2 ) = ±1, then E(γ 1, γ 2 ) 2π 2. If equality then (γ 1, γ 2 ) is conformal to the standard Hopf link in S 3 β 1 (t) = (cos t, sin t, 0, 0) and β 2 (s) = (0, 0, cos s, sin s).

Partial results... (Willmore 71, Shioama-Takagi 70): Conjecture is true for tubes of constant radius around a space curve.

Partial results... (Willmore 71, Shioama-Takagi 70): Conjecture is true for tubes of constant radius around a space curve. (Langevin-Rosenberg 76): If Σ R 3 is a knotted torus then W(Σ) 8π.

Partial results... (Willmore 71, Shioama-Takagi 70): Conjecture is true for tubes of constant radius around a space curve. (Langevin-Rosenberg 76): If Σ R 3 is a knotted torus then W(Σ) 8π. (Chen, 83): Conjecture is true for flat tori in 3-sphere.

Partial results... (Willmore 71, Shioama-Takagi 70): Conjecture is true for tubes of constant radius around a space curve. (Langevin-Rosenberg 76): If Σ R 3 is a knotted torus then W(Σ) 8π. (Chen, 83): Conjecture is true for flat tori in 3-sphere. (Langer-Singer 84): Conjecture is true for tori of revolution.

Partial results... (Li-Yau 82): If Σ S 3 covers a point k times then W(Σ) 4πk. Thus Σ not embedded = W(Σ) 8π.

Partial results... (Li-Yau 82): If Σ S 3 covers a point k times then W(Σ) 4πk. Thus Σ not embedded = W(Σ) 8π. (Li-Yau 82): Conjecture is true for a set of conformal classes which contains the conformal class of the Clifford torus.

Partial results... (Li-Yau 82): If Σ S 3 covers a point k times then W(Σ) 4πk. Thus Σ not embedded = W(Σ) 8π. (Li-Yau 82): Conjecture is true for a set of conformal classes which contains the conformal class of the Clifford torus. (Montiel-Ros 86):Conjecture is true for a larger set of conformal classes than the set given by Li-Yau.

Partial results... (Benisom-Mutz 91) Conjecture is true for observed toroidal vesicles in some cells.

Partial results... (Simon 93): There is a torus which has least Willmore energy among all tori.

Partial results... (Simon 93): There is a torus which has least Willmore energy among all tori. (Ros 99, Topping 00): Conjecture is true for tori symmetric under the antipodal map.

Partial results... (Simon 93): There is a torus which has least Willmore energy among all tori. (Ros 99, Topping 00): Conjecture is true for tori symmetric under the antipodal map. (Ros 00): Conjecture is true for tori symmetric with respect to a point.

Min-max Theory Z 2 (S 3 ) = { integral 2-currents with no boundary in S 3 }. M : Z 2 (S 3 ) R, M(Σ) = mass of Σ.

Min-max Theory Z 2 (S 3 ) = { integral 2-currents with no boundary in S 3 }. M : Z 2 (S 3 ) R, M(Σ) = mass of Σ. φ : I n Z 2 (S 3 ) continuous in flat norm, where I n = k-cube.

Min-max Theory Z 2 (S 3 ) = { integral 2-currents with no boundary in S 3 }. M : Z 2 (S 3 ) R, M(Σ) = mass of Σ. φ : I n Z 2 (S 3 ) continuous in flat norm, where I n = k-cube. [φ] = {ψ homotopic to φ relative to the boundary (i.e. ψ I n = φ I n).}

Min-max Theory Z 2 (S 3 ) = { integral 2-currents with no boundary in S 3 }. M : Z 2 (S 3 ) R, M(Σ) = mass of Σ. φ : I n Z 2 (S 3 ) continuous in flat norm, where I n = k-cube. [φ] = {ψ homotopic to φ relative to the boundary (i.e. ψ I n = φ I n).} L([φ]) = inf ψ [φ] sup x I n M(ψ(x)).

Min-max Theory Theorem (Pitts, 81) Assume L([φ]) = (this means [φ] 0 π k (Z 2 (S 3 ), φ I k ).) inf sup M(ψ(x)) > sup M(φ(x)), ψ [φ] x I k x I k There is Σ S 3 smooth embedded minimal surface (with multiplicities) so that L([φ]) = M(Σ).

Min-max Theory Theorem (Pitts, 81) Assume L([φ]) = (this means [φ] 0 π k (Z 2 (S 3 ), φ I k ).) inf sup M(ψ(x)) > sup M(φ(x)), ψ [φ] x I k x I k There is Σ S 3 smooth embedded minimal surface (with multiplicities) so that Conjecture: index(σ) k. L([φ]) = M(Σ).

Min-max Theory Theorem (Pitts, 81) Assume L([φ]) = (this means [φ] 0 π k (Z 2 (S 3 ), φ I k ).) inf sup M(ψ(x)) > sup M(φ(x)), ψ [φ] x I k x I k There is Σ S 3 smooth embedded minimal surface (with multiplicities) so that L([φ]) = M(Σ). Conjecture: index(σ) k. Theorem (Almgren, 62) π k (Z 2 (S 3 ), 0) = 0 if k 1; π 1 (Z 2 (S 3 ), 0) = Z

Min-max Theory Theorem (Pitts, 81) Assume L([φ]) = (this means [φ] 0 π k (Z 2 (S 3 ), φ I k ).) inf sup M(ψ(x)) > sup M(φ(x)), ψ [φ] x I k x I k There is Σ S 3 smooth embedded minimal surface (with multiplicities) so that L([φ]) = M(Σ). Conjecture: index(σ) k. Theorem (Almgren, 62) π k (Z 2 (S 3 ), 0) = 0 if k 1; π 1 (Z 2 (S 3 ), 0) = Z and given Σ = A surface then φ 0 : [ π, π] Z 2 (S 3 ), φ 0 (t) = {x : dist(x, Σ) < t} has π 1 (Z 2 (S 3 ), 0) = Z[φ 0 ].

Min-max Theory Theorem (Urbano, 90) Σ S 3 compact embedded minimal surface with index(σ) 5. Then either Σ is a great sphere (index(σ) = 1 and area(σ) = 4π), or Σ is the Clifford torus (index(σ) = 5 and area(σ) = 2π 2 ).

Min-max Theory Theorem (Urbano, 90) Σ S 3 compact embedded minimal surface with index(σ) 5. Then either Σ is a great sphere (index(σ) = 1 and area(σ) = 4π), or Σ is the Clifford torus (index(σ) = 5 and area(σ) = 2π 2 ). L([φ 0 ]) = 4π where φ 0 = Almgren s sweepout. How to obtain φ with L([φ]) = 2π 2?

Min-max Theory T = {oriented great spheres} S 3 R = {oriented round spheres} S 3 [0, π]

Min-max Theory T = {oriented great spheres} S 3 R = {oriented round spheres} S 3 [0, π] Theorem (Marques-N.) Consider φ : I 5 Z 2 (S 3 ) continuous with

Min-max Theory T = {oriented great spheres} S 3 R = {oriented round spheres} S 3 [0, π] Theorem (Marques-N.) Consider φ : I 5 Z 2 (S 3 ) continuous with 1 φ(i 4 {0}) = φ(i 4 {1}) = 0;

Min-max Theory T = {oriented great spheres} S 3 R = {oriented round spheres} S 3 [0, π] Theorem (Marques-N.) Consider φ : I 5 Z 2 (S 3 ) continuous with 1 φ(i 4 {0}) = φ(i 4 {1}) = 0; 2 φ( I 4 I) R and for x I 4, φ(x, t) T t = 1/2;

Min-max Theory T = {oriented great spheres} S 3 R = {oriented round spheres} S 3 [0, π] Theorem (Marques-N.) Consider φ : I 5 Z 2 (S 3 ) continuous with 1 φ(i 4 {0}) = φ(i 4 {1}) = 0; 2 φ( I 4 I) R and for x I 4, φ(x, t) T t = 1/2; 3 the sweepout t φ(1/2, 1/2, 1/2, 1/2, 1/2, t) is non-trivial.

Min-max Theory T = {oriented great spheres} S 3 R = {oriented round spheres} S 3 [0, π] Theorem (Marques-N.) Consider φ : I 5 Z 2 (S 3 ) continuous with 1 φ(i 4 {0}) = φ(i 4 {1}) = 0; 2 φ( I 4 I) R and for x I 4, φ(x, t) T t = 1/2; 3 the sweepout t φ(1/2, 1/2, 1/2, 1/2, 1/2, t) is non-trivial. If φ : I 4 {1/2} S 3 T S 3 has non-zero degree then L([φ]) > 4π = max x I 5 M(φ(x)).

Min-max Theory Corollary For φ as in previous theorem, sup x I 5 M(φ(x)) 2π 2.

Min-max Theory Corollary For φ as in previous theorem, sup x I 5 M(φ(x)) 2π 2. Idea: (Previous Thm) = L([φ]) > sup x I 5 M(φ(x)) = 4π

Min-max Theory Corollary For φ as in previous theorem, sup x I 5 M(φ(x)) 2π 2. Idea: (Previous Thm) = L([φ]) > sup x I 5 M(φ(x)) = 4π (Pitts Thm) = Σ minimal: L([φ]) = M(Σ) > 4π and index(σ) 5

Min-max Theory Corollary For φ as in previous theorem, sup x I 5 M(φ(x)) 2π 2. Idea: (Previous Thm) = L([φ]) > sup x I 5 M(φ(x)) = 4π (Pitts Thm) = Σ minimal: L([φ]) = M(Σ) > 4π and index(σ) 5 (Urbano s Thm) = Σ = Clifford torus = sup x I 5 M(φ(x)) L([φ]) = 2π 2.

Sketch of proof of Theorem: Assume L([φ]) = 4π = sup x I k M (ψ(x)) for some ψ [φ].

Sketch of proof of Theorem: Assume L([φ]) = 4π = sup x I k M (ψ(x)) for some ψ [φ]. Set K = ψ 1 (T ), where K I 4 {1/2}.

Sketch of proof of Theorem: Assume L([φ]) = 4π = sup x I k M (ψ(x)) for some ψ [φ]. Set K = ψ 1 (T ), where K I 4 {1/2}. (A) [ K ] = [ I 4 {1/2}] in H 3 ( I 4 {1/2}, Z)

Sketch of proof of Theorem: Assume L([φ]) = 4π = sup x I k M (ψ(x)) for some ψ [φ]. Set K = ψ 1 (T ), where K I 4 {1/2}. (A) [ K ] = [ I 4 {1/2}] in H 3 ( I 4 {1/2}, Z) φ = ψ on K and ψ : K T S 3 = degree(φ I 4 {1/2}) = degree(ψ K ) = 0

Sketch of proof of Theorem: Assume L([φ]) = 4π = sup x I k M (ψ(x)) for some ψ [φ]. Set K = ψ 1 (T ), where K I 4 {1/2}. (A) [ K ] = [ I 4 {1/2}] in H 3 ( I 4 {1/2}, Z) φ = ψ on K and ψ : K T S 3 = degree(φ I 4 {1/2}) = degree(ψ K ) = 0 (B) [ K ] = 0 in H 3 ( I 4 {1/2}, Z)

Sketch of proof of Theorem: Assume L([φ]) = 4π = sup x I k M (ψ(x)) for some ψ [φ]. Set K = ψ 1 (T ), where K I 4 {1/2}. (A) [ K ] = [ I 4 {1/2}] in H 3 ( I 4 {1/2}, Z) φ = ψ on K and ψ : K T S 3 = degree(φ I 4 {1/2}) = degree(ψ K ) = 0 (B) [ K ] = 0 in H 3 ( I 4 {1/2}, Z) ψ c non-trivial sweepout with sup M(ψ c(t)) sup M(ψ(x)) = 4π t I x I k = ψ c(i) T = c(i) K.

Theorem (Marques-N.) If Σ S 3 has positive genus then W(Σ) 2π 2.

Theorem (Marques-N.) If Σ S 3 has positive genus then W(Σ) 2π 2. 1 Given v B 4 consider F v Conf (S 3 ), x 1 v 2 x v 2 (x v) v

Theorem (Marques-N.) If Σ S 3 has positive genus then W(Σ) 2π 2. 1 Given v B 4 consider F v Conf (S 3 ), x 1 v 2 x v 2 (x v) v 2 C : B 4 [ π, π] Z 2 (S 3 ), C(v, t) = {x : dist(x, F v (Σ)) < t}

Theorem (Marques-N.) If Σ S 3 has positive genus then W(Σ) 2π 2. 1 Given v B 4 consider F v Conf (S 3 ), x 1 v 2 x v 2 (x v) v 2 C : B 4 [ π, π] Z 2 (S 3 ), C(v, t) = {x : dist(x, F v (Σ)) < t} 3 (Ros, 99) M(C(v, t)) W(C(v, 0)) = W(F v (Σ)) = W(Σ)

Theorem (Marques-N.) If Σ S 3 has positive genus then W(Σ) 2π 2. 1 Given v B 4 consider F v Conf (S 3 ), x 1 v 2 x v 2 (x v) v 2 C : B 4 [ π, π] Z 2 (S 3 ), C(v, t) = {x : dist(x, F v (Σ)) < t} 3 (Ros, 99) M(C(v, t)) W(C(v, 0)) = W(F v (Σ)) = W(Σ) 4 C S 3 [ π,π] is not continuous v i B 4 p / Σ = F vi (Σ) { p} v i B 4 p Σ with slope θ = F vi (Σ) B π 2 θ ( cos θn(p) sin θp).

Theorem (Marques-N.) If Σ S 3 has positive genus then W(Σ) 2π 2. 1 Given v B 4 consider F v Conf (S 3 ), x 1 v 2 x v 2 (x v) v 2 C : B 4 [ π, π] Z 2 (S 3 ), C(v, t) = {x : dist(x, F v (Σ)) < t} 3 (Ros, 99) M(C(v, t)) W(C(v, 0)) = W(F v (Σ)) = W(Σ) 4 C S 3 [ π,π] is not continuous v i B 4 p / Σ = F vi (Σ) { p} v i B 4 p Σ with slope θ = F vi (Σ) B π 2 θ ( cos θn(p) sin θp). 5 Reparametrize C to obtain φ : B 4 [ π, π] Z 2 (S 3 ) continuous with φ(s 3 [ π, π]) R and φ(x, t) T t = 0; 6 degree(φ S3 {0}) = genus of Σ!

Theorem (Marques-N.) If Σ S 3 has positive genus then W(Σ) 2π 2. 1 Given v B 4 consider F v Conf (S 3 ), x 1 v 2 x v 2 (x v) v 2 C : B 4 [ π, π] Z 2 (S 3 ), C(v, t) = {x : dist(x, F v (Σ)) < t} 3 (Ros, 99) M(C(v, t)) W(C(v, 0)) = W(F v (Σ)) = W(Σ) 4 C S 3 [ π,π] is not continuous v i B 4 p / Σ = F vi (Σ) { p} v i B 4 p Σ with slope θ = F vi (Σ) B π 2 θ ( cos θn(p) sin θp). 5 Reparametrize C to obtain φ : B 4 [ π, π] Z 2 (S 3 ) continuous with φ(s 3 [ π, π]) R and φ(x, t) T t = 0; 6 degree(φ S3 {0}) = genus of Σ! 7 Corollary to our Min-max Thm can be applied and so 2π 2 sup (v,t) B 4 [ π,π] M(φ(x)) = sup M(C(v, t)) W(Σ) (v,t) B 4 [ π,π]

Min-max Theory Continuous I n = n-cube; Discrete I(n, k) vertices of 3 nk subdivisions of I n ;

Min-max Theory Continuous I n = n-cube; φ : I n Z 2 (S 3 ) continuous in the flat topology; Discrete I(n, k) vertices of 3 nk subdivisions of I n ; sequence S = {φ i } i N with φ i : I(n, k i ) Z 2 (S 3 ), where x, y adjacent vertices = M(φ i (x) φ i (y)) δ i 0;

Min-max Theory Continuous I n = n-cube; φ : I n Z 2 (S 3 ) continuous in the flat topology; sup{m(φ(x)) : x I n }; Discrete I(n, k) vertices of 3 nk subdivisions of I n ; sequence S = {φ i } i N with φ i : I(n, k i ) Z 2 (S 3 ), where x, y adjacent vertices = M(φ i (x) φ i (y)) δ i 0; L(S) = lim i sup{m(φ i (x)) : x I(n, k i )};

Min-max Theory Continuous I n = n-cube; φ : I n Z 2 (S 3 ) continuous in the flat topology; sup{m(φ(x)) : x I n }; define [φ] π n (Z 2 (S 3 ), φ I n); Discrete I(n, k) vertices of 3 nk subdivisions of I n ; sequence S = {φ i } i N with φ i : I(n, k i ) Z 2 (S 3 ), where x, y adjacent vertices = M(φ i (x) φ i (y)) δ i 0; L(S) = lim i sup{m(φ i (x)) : x I(n, k i )}; define Π = [S] π n # (Z 2 (S 3 ), φ I n) (need φ I n continuous in varifold norm);

Min-max Theory Continuous I n = n-cube; φ : I n Z 2 (S 3 ) continuous in the flat topology; sup{m(φ(x)) : x I n }; define [φ] π n (Z 2 (S 3 ), φ I n); L([φ]) = inf ψ [φ] sup{m(ψ(x)) : x I n }. Discrete I(n, k) vertices of 3 nk subdivisions of I n ; sequence S = {φ i } i N with φ i : I(n, k i ) Z 2 (S 3 ), where x, y adjacent vertices = M(φ i (x) φ i (y)) δ i 0; L(S) = lim i sup{m(φ i (x)) : x I(n, k i )}; define Π = [S] π n # (Z 2 (S 3 ), φ I n) (need φ I n continuous in varifold norm); L([S]) = inf S [S] L(S).

Min-Max Theory Pitts Theorem Consider [S] π # n (Z 2 (S 3 ), φ I n) with L([S]) > sup{m(φ(x)) : x I n }.

Min-Max Theory Pitts Theorem Consider [S] π # n (Z 2 (S 3 ), φ I n) with L([S]) > sup{m(φ(x)) : x I n }. There is Σ a smooth embedded minimal surface (with multiplicities) so that L([S]) = inf L(S) = M(Σ). S [S]

Min-Max Theory Pitts Theorem Consider [S] π # n (Z 2 (S 3 ), φ I n) with L([S]) > sup{m(φ(x)) : x I n }. There is Σ a smooth embedded minimal surface (with multiplicities) so that L([S]) = inf L(S) = M(Σ). S [S] Interpolation Theorem Given φ : I n Z 2 (S 3 ) continuous in the flat topology, there exists k i N and φ i : I(n, k i ) 0 Z 2 (S 3 ) so that: (a) S = [{φ i } i N ] π # n (Z 2 (S 3 ), φ I n),

Min-Max Theory Pitts Theorem Consider [S] π # n (Z 2 (S 3 ), φ I n) with L([S]) > sup{m(φ(x)) : x I n }. There is Σ a smooth embedded minimal surface (with multiplicities) so that L([S]) = inf L(S) = M(Σ). S [S] Interpolation Theorem Given φ : I n Z 2 (S 3 ) continuous in the flat topology, there exists k i N and φ i : I(n, k i ) 0 Z 2 (S 3 ) so that: (a) S = [{φ i } i N ] π # n (Z 2 (S 3 ), φ I n), (b) L({φ i }) sup{m(φ(x)) : x I n },

Min-Max Theory Pitts Theorem Consider [S] π # n (Z 2 (S 3 ), φ I n) with L([S]) > sup{m(φ(x)) : x I n }. There is Σ a smooth embedded minimal surface (with multiplicities) so that L([S]) = inf L(S) = M(Σ). S [S] Interpolation Theorem Given φ : I n Z 2 (S 3 ) continuous in the flat topology, there exists k i N and φ i : I(n, k i ) 0 Z 2 (S 3 ) so that: (a) S = [{φ i } i N ] π # n (Z 2 (S 3 ), φ I n), (b) L({φ i }) sup{m(φ(x)) : x I n }, (c) Moreover, L([S]) = L([φ]). lim sup{f(φ i(x) φ(x)) x I(n, k i ) 0 } = 0. i

Theorem (Agol-Marques-N.) If (γ 1, γ 2 ) link in S 3 has lk(γ 1, γ 2 ) = ±1, then E(γ 1, γ 2 ) 2π 2.

Theorem (Agol-Marques-N.) If (γ 1, γ 2 ) link in S 3 has lk(γ 1, γ 2 ) = ±1, then E(γ 1, γ 2 ) 2π 2. Given (σ 1, σ 2 ) R 4 consider G(σ 1, σ 2 ) : S 1 S 1 S 3 G(σ 1, σ 2 )(s, t) = (σ 1(s) σ 2 (t)) σ 1 (s) σ 2 (t).

Theorem (Agol-Marques-N.) If (γ 1, γ 2 ) link in S 3 has lk(γ 1, γ 2 ) = ±1, then E(γ 1, γ 2 ) 2π 2. Given (σ 1, σ 2 ) R 4 consider G(σ 1, σ 2 ) : S 1 S 1 S 3 area(g(σ 1, σ 2 )) E(γ 1, γ 2 ). G(σ 1, σ 2 )(s, t) = (σ 1(s) σ 2 (t)) σ 1 (s) σ 2 (t).

Theorem (Agol-Marques-N.) If (γ 1, γ 2 ) link in S 3 has lk(γ 1, γ 2 ) = ±1, then E(γ 1, γ 2 ) 2π 2. Given (σ 1, σ 2 ) R 4 consider G(σ 1, σ 2 ) : S 1 S 1 S 3 G(σ 1, σ 2 )(s, t) = (σ 1(s) σ 2 (t)) σ 1 (s) σ 2 (t). area(g(σ 1, σ 2 )) E(γ 1, γ 2 ). Given v B 4, F v (x) = Conf (R 4 ). F v (B 1 (0)) = B r(v) (c(v)). x v x v 2

Theorem (Agol-Marques-N.) If (γ 1, γ 2 ) link in S 3 has lk(γ 1, γ 2 ) = ±1, then E(γ 1, γ 2 ) 2π 2. Given (σ 1, σ 2 ) R 4 consider G(σ 1, σ 2 ) : S 1 S 1 S 3 G(σ 1, σ 2 )(s, t) = (σ 1(s) σ 2 (t)) σ 1 (s) σ 2 (t). area(g(σ 1, σ 2 )) E(γ 1, γ 2 ). Given v B 4, F v (x) = Conf (R 4 ). F v (B 1 (0)) = B r(v) (c(v)). x v x v 2 1 φ : B 4 [0, + ] Z 2 (S 3 ), φ(v, λ) = G(F v (γ 1 ), λ(f v (γ 2 ) c(v)) + c(v)).

Theorem (Agol-Marques-N.) If (γ 1, γ 2 ) link in S 3 has lk(γ 1, γ 2 ) = ±1, then E(γ 1, γ 2 ) 2π 2. Given (σ 1, σ 2 ) R 4 consider G(σ 1, σ 2 ) : S 1 S 1 S 3 G(σ 1, σ 2 )(s, t) = (σ 1(s) σ 2 (t)) σ 1 (s) σ 2 (t). area(g(σ 1, σ 2 )) E(γ 1, γ 2 ). Given v B 4, F v (x) = Conf (R 4 ). F v (B 1 (0)) = B r(v) (c(v)). x v x v 2 1 φ : B 4 [0, + ] Z 2 (S 3 ), φ(v, λ) = G(F v (γ 1 ), λ(f v (γ 2 ) c(v)) + c(v)). 2 area(φ(v, λ)) E(φ(v, 1)) = E(F v (γ 1 ), F v (γ 2 )) = E(γ 1, γ 2 ).

Theorem (Agol-Marques-N.) If (γ 1, γ 2 ) link in S 3 has lk(γ 1, γ 2 ) = ±1, then E(γ 1, γ 2 ) 2π 2. Given (σ 1, σ 2 ) R 4 consider G(σ 1, σ 2 ) : S 1 S 1 S 3 G(σ 1, σ 2 )(s, t) = (σ 1(s) σ 2 (t)) σ 1 (s) σ 2 (t). area(g(σ 1, σ 2 )) E(γ 1, γ 2 ). Given v B 4, F v (x) = Conf (R 4 ). F v (B 1 (0)) = B r(v) (c(v)). x v x v 2 1 φ : B 4 [0, + ] Z 2 (S 3 ), φ(v, λ) = G(F v (γ 1 ), λ(f v (γ 2 ) c(v)) + c(v)). 2 area(φ(v, λ)) E(φ(v, 1)) = E(F v (γ 1 ), F v (γ 2 )) = E(γ 1, γ 2 ). 3 Given v S 3, φ(v, 1) = lk(γ 1, γ 2 ) B π/2 ( v) = degree(φ S3 {1}) = lk(γ 1, γ 2 ) 0

Theorem (Agol-Marques-N.) If (γ 1, γ 2 ) link in S 3 has lk(γ 1, γ 2 ) = ±1, then E(γ 1, γ 2 ) 2π 2. Given (σ 1, σ 2 ) R 4 consider G(σ 1, σ 2 ) : S 1 S 1 S 3 G(σ 1, σ 2 )(s, t) = (σ 1(s) σ 2 (t)) σ 1 (s) σ 2 (t). area(g(σ 1, σ 2 )) E(γ 1, γ 2 ). Given v B 4, F v (x) = Conf (R 4 ). F v (B 1 (0)) = B r(v) (c(v)). x v x v 2 1 φ : B 4 [0, + ] Z 2 (S 3 ), φ(v, λ) = G(F v (γ 1 ), λ(f v (γ 2 ) c(v)) + c(v)). 2 area(φ(v, λ)) E(φ(v, 1)) = E(F v (γ 1 ), F v (γ 2 )) = E(γ 1, γ 2 ). 3 Given v S 3, φ(v, 1) = lk(γ 1, γ 2 ) B π/2 ( v) = degree(φ S3 {1}) = lk(γ 1, γ 2 ) 0 4 Can apply our Min-max Thm to conclude 2π 2 max (v,t) B 4 [0,+ ] area(φ(v, t)) E(γ 1, γ 2 ).