Pierre Curie ( )

Σχετικά έγγραφα
6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Three coupled amplitudes for the πη, K K and πη channels without data

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

Higher spin gauge theories and their CFT duals

Space-Time Symmetries

The Standard Model. Antonio Pich. IFIC, CSIC Univ. Valencia

D-term Dynamical SUSY Breaking

Higher Derivative Gravity Theories

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Neutrino emissivities in quark matter

Example Sheet 3 Solutions

Derivation of Optical-Bloch Equations

Martti M. Salomaa (Helsinki Univ. of Tech.)

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

4.- Littlest Higgs Model with T-parity. 5.- hhh at one loop in LHM with T-parity

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

UV fixed-point structure of the 3d Thirring model

PHASE TRANSITIONS IN QED THROUGH THE SCHWINGER DYSON FORMALISM

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

SPONTANEOUS GENERATION OF GEOMETRY IN 4D

Color Superconductivity: CFL and 2SC phases

D Alembert s Solution to the Wave Equation

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

6.4 Superposition of Linear Plane Progressive Waves

A manifestly scale-invariant regularization and quantum effective operators

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

AdS black disk model for small-x DIS

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Graded Refractive-Index

Reminders: linear functions

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Approximation of distance between locations on earth given by latitude and longitude

CRASH COURSE IN PRECALCULUS

Math 6 SL Probability Distributions Practice Test Mark Scheme

Dark matter from Dark Energy-Baryonic Matter Couplings

SPECIAL FUNCTIONS and POLYNOMIALS

Finite Field Problems: Solutions

EE512: Error Control Coding

Quantum Statistical Mechanics (equilibrium) solid state, magnetism black body radiation neutron stars molecules lasers, superuids, superconductors

Second Order Partial Differential Equations

C.S. 430 Assignment 6, Sample Solutions

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

The Simply Typed Lambda Calculus

Non-Gaussianity from Lifshitz Scalar

Inverse trigonometric functions & General Solution of Trigonometric Equations

Η ανακάλυψη του Μποζονίου Higgs στο CERN

1 String with massive end-points

Particle Physics: Introduction to the Standard Model

Srednicki Chapter 55

Symmetric Stress-Energy Tensor

Matrices and Determinants

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.

derivation of the Laplacian from rectangular to spherical coordinates

Every set of first-order formulas is equivalent to an independent set

Congruence Classes of Invertible Matrices of Order 3 over F 2

Review Exercises for Chapter 7

1 Poincare group and spinors

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Homework 3 Solutions

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

2 Composition. Invertible Mappings

Œ ˆ Œ Ÿ Œˆ Ÿ ˆŸŒˆ Œˆ Ÿ ˆ œ, Ä ÞŒ Å Š ˆ ˆ Œ Œ ˆˆ

4.4 Superposition of Linear Plane Progressive Waves

Parametrized Surfaces

( y) Partial Differential Equations

2.1

Constitutive Relations in Chiral Media

Sachdev-Ye-Kitaev Model as Liouville Quantum Mechanics

Dark Matter and Neutrino Masses from a Scale-Invariant Multi-Higgs Portal

Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Second Order RLC Filters

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

Uniform Convergence of Fourier Series Michael Taylor

Müller & Sohn GmbH Herrn Peter Müller Falkenstraße Hamburg Deutschland Müller & Sohn GmbH Herrn Peter Müller Falkenstraße Hamburg De

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

8.324 Relativistic Quantum Field Theory II

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Large β 0 corrections to the energy levels and wave function at N 3 LO

Geodesic paths for quantum many-body systems

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog

Capacitors - Capacitance, Charge and Potential Difference

General equilibrium second-order hydrodynamic coefficients for stress-energy tensor and axial current

Solar Neutrinos: Fluxes

A Determination Method of Diffusion-Parameter Values in the Ion-Exchange Optical Waveguides in Soda-Lime glass Made by Diluted AgNO 3 with NaNO 3

Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

LIGHT UNFLAVORED MESONS (S = C = B = 0)

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

[1] P Q. Fig. 3.1

What happens when two or more waves overlap in a certain region of space at the same time?

Transcript:

前史 対称性と物理法則 結晶の分類 保存則 (conservation laws) Noether の定理 (1918) 選択則 (selection rules) Pierre Curie (1859-1906)

Wiedemann Effect (G. H. Wiedemann 1822-1899) B, J t

P. Curie の理論 環境の対象性 =S env 現象の対象性 =S eff S env = S eff R z : B -> B J -> J t -> -t R x, R y : B -> -B J ->J t -> -t T: B -> -B J -> -J t -> -t

SSB: S L > S env = S eff 強磁性体 P. Weiss 1907 E. Ising 1925 W. Heisenberg 1928 Heisenberg 統一場理論 1959 H int = g J 5µ J 5 µ

SSBの一般的性質 Dynamical Degeneracy of the ground state symmetry Continuous symmetry continuous degeneracy Degrees of freedom N (thermodynamic limit) Superselection rule NG (Nambu-Goldstone) modes (restoration of lost symmetry) No. of NG modes = No. of broken symmetry operations (with exceptions) Spin wave 結晶の中の音波 (phonon)

Finite systems NG modes -> low lying states ( rotational band ) polyatomic molecules (Jahn-Teller 1937) strong coupling meson theory / Skyrme model (Wentzel 1940 / Skyrme 1961) BCS pairing in Nuclei

BCS mechanism Fermion Cooper pairing -> mass gap formation original dynamics (high energy) scale SSB (low energy) scale NG (π) and Higgs (σ) modes Mass relations (quasi-supersymmetry) π: fermion: σ ~ 0 : 1 : 2 (weak coupling) (σ は一般一般に多数多数あってあって質量質量が異なる. sum rule: e.g. m(σ 1 2 ) + m(σ 2 ) 2 = 4m(f 2 ) Effective theories Ginzburg-Landau-Gell-Mann-Levy model Nonlinear σ model

Examples Superconductivity(SC) s wave d wave (high T c ) Superfluid 3 He p wave j = 0 (B phase), j = 2 (A phase) P-P and N-N pairing in nuclei s wave Interacting boson model (IBM) QCD-hadron chiral dynamics Weinberg-Salam electroweak theory Flavor dymanics (Higgs mechanism) Color SC

3 He (l =1, σ= 1) -> j = 0,1,2 B phase, j = 0 A phase j =2 l σ, l x σ, l i σ k IBM J = 3/2 shell (e.g. Pt), u(4) ~ O(6)xU(1) -> 6 bosons 3/2 x 3/2 φ,φ, j = 0, 5 -> a (φ φ) - v 2 ) 2 - b(φ m φ n - φ n φ m ) 2

Majorana mass term (ψ k ψ -k + ψ k ψ -k )

Superselection rule: Ψ=Π(α +β i i a i a -i ) 0 F >, α 2 +β 2 =1 (Ψ F,, Ψ) =Πα i 2 -> 0 >, -> massless (NG) excitations ω~1/λ

BCS Hamiltonian H int = -(G 2 /M²)(ψ ψ ψ ψ ) H int = -G(ψ ψ φ + ψ ψ φ) + M² φ φ Majorana mass (gap) term (ψ k ψ -k + ψ k ψ -k ) Gap equation 1 = (G 2 /M²)F(Λ,Δ), F BCS ~ CΔ 2 ln(λ/δ), Yukawa coupling 1/f² ~ F/ m 2 ~ C ln(λ/m) H = -G(ψ ψ φ + ψ ψ φ) + M² φ φ

Self-energy δm = mcg 2 ln(λ/m) If δm = m m = mcg 2 ln(λ/m) either m = 0, or 1 = Cg 2 ln(λ/m) δm = = mcg 2 ln(λ/m)

Effective σ model L= L fv + φ φ + f (φ ψ k ψ -k + φ ψ k ψ -k ) - f 2 (φ φ v 2 ) 2, fv = Δ

Effective GL-GL (σ) model = φ φ φ = f 4 φ 4 φ φ

Name v =<σ>(ev) Δ(ev) f supercondictor ~10³ 10 ³ ev ~ 0.1 ³He ~10 3 10 6 ~ 0.05 QCD-chiral dynamics 100Mev 1Gev 10 nuclear pairing ~ 100Mev 1Mev ~ 10 ² standard model 250Gev 174Gev(t) 0.68

Color superconductivity in high density quark matter B. Barrois (1977); S. Frautchi (1978) D. Bailin and A. Love(1981) M. Alford, K. Rajagopal, and F. Wilczek (1998) E_F = μ----------------- Majorana mass term qq (vector and scalar) 0 quark mass term qq Chiral SSB -> NG bosons = mesons Effect of (current) quark masses ->μ -> 2nd SSB (meson condensation) -> new NG bosons

Nielsen anomaly: No. of zero modes (NG bosons) N_z N = No. of generators in the coset G/H, ω = ck γ N = Σ i γ i H. B. Nielsen and S. Chadha, Nuc. Phys. B105: 445 (1976) SSB by a chemical potential H = H 0 μn, i Ψ Ψ/ t = (H 0 μn)ψ L: / t -> / t iμ V. A. Miransky and I. A. Shovkovy, hep-ph/0108178; Phys. Rev. Lett. 88: 11601 (2002)

[Q i, Q j ] = iq 0 Q 0 = C [Z i, Z j ] = ic A U(2) model : Φ = (Φ (1), Φ (2) ), (K meson or Higgs ) L = ( ₀ + iμ)φ ( ₀ - iμ)φ - Φ Φ - m²φ Φ -λ(φ Φ)², H = Π Π + Φ Φ + m²φ Φ - μq₀ +λ(φ Φ)², Π = ₀ + iμ)φ, Π = ( ₀ - iμ)φ, Q₀ = - i(π Φ - Φ Π ) Φ(¹) = (x + iy)/ 2, Π(¹) = (p x + ip y )/ 2, Φ(²) = (u + iw)/ 2, Π(²) = (p u + ip w )/ 2.

H = 1/2[(p x +μy)² + (p y -μx)² + (p u +μw)² + (p w -μu)²] + (m²-μ²)(x² + y² + u² + w²)] +λ(x² + y² + u² + w²)²/4, p x +μy = 0, p y -μx = 0, p u +μw = 0, p w -μu = 0, m²x-μp y = m²y+μp x = m²u μp u = m²w+μp_u = -λ(x² + y² + u² + w²) -λr² or λr² =μ²- m² (>0), x -> v +x, p y -> μv + p y, H = (1/2)[(p x +μy)² + (p y -μx)²+ (p u + μw)² + (p w -μu)² + k²(x² + y² + u² + w²)](μ²- m²)x² -μ⁴/(4λ) + nonlinear terms = (p x ² + p y ² + p u ² + p w ²)/2 + (μ² + k²)(x² + y² + u² + w²)/2 + (μ²- m²)x² - p y - yp x + up w - wp u ) - μ⁴/(4λ) +

Q i Q i = Q i + Z i, Z₀ = Z₃ = v(p y +μx)+μv², Z₁ = v(p w +μu), Z₂ = v(p u -μw), [Z₁, Z₂] = 2iv²μ

The dispersion law Assumed: H_{col}l = A(p,q) + k²b(p,q), [A,B] 0 (unless A=0). (The kinetic energy causes excitations.) Then there are three possibilities: 1) A depends on both p and q: A = A(p,q), 2) A = A(p) (or equivalently A = A(q)), 3) A = 0. Case 1) At k = 0, H takes the form of a harmonic oscillator, so the frequency ω will go as const.+ O(k²) for small k. This is the massive (Higgs) mode. Case 2) A(p) (or A(q)) and B(p,q) together essentially form a harmonic oscillator, so ω k. This is the regular case of the NG mode with phononlike dispersion law. In the above example it holds for the charges Z₀ = Z₃ coming from the Φ(¹) component.

Case 3) This applies to charges Z₁ and Z₂ coming from Φ(²). If present, they would appear as conjugates and massive like the Case 1, which is a contradiction for zero modes. Hence A = 0, B = B(p,q), and ω k² trivially.

Examples: Ferromagnetism and antiferromagnetism S i = σ i /2, i = 1..3, O i = even σ i /2 - odd σ i /2, O₃ = C, S₃ =0. [S i,s j ] = [O i,o j ] = iɛ ijk S k, [S i,o j ] = iɛ ijk O k ω S k 2, ω O k

Breaking of Lorentz symmetry: D. Collady and V. A. Kostelecky (1998) (γ p m + gvγ₅γ z )ψ=0 The dispersion law (p+²-m²)(p ²-m²)= 4g²m²v², p ± z = p z ± gv, ω² = p²+m²+g²v²±2gv(p z ²+m²) 1/2 = p x ²+p y ²+((m²+k z ²) 1/2 ±gv)²

Dispersion law for a quasiparticle 25 20 15 10 5-4 -2 0-5 y x 2 5 4

Collective modes: broken gauge field L col = L μν V μ V ν, L μν = Ag μν k²+bk μ k ν +Cg μν k₃ + Dg 3μ g k²+eg 3ν 3μg 3ν k₃² + F(g 3μ k₃k ν +g 3ν k₃k μ ) + igɛ 3μνλ - M²g μν -ΔM²g 3μ g 3ν Induced Chern-Simons term: Gɛ 3μνλ μνλ k λ μνλ k λ S.M.Carrol, G.B.Fried, and R.Jackiw (90) Induced Schwinger term: [j₀(0),j_{i}(x)] = Cε 30ik k δ³(x), C gvλ

H = ap⁴ - bp² + V(x) dx/dt = 4ap³ - 2bp dp/dt = - dv/dx

f = ap⁴ - bp², a, b>0 14 12 10 8 6 4 2-4 -2 0 2 4 p

f = ap⁴ - bp² 10 8 6 4 2-4 -2 0-2 2 p 4-4 -6-8 -10

Plot of x(t), H = ap⁴ - bp² + gx, 1 0.8 0.6 0.4 0.2-4 -2 0 2 4 p

The Unruh problem (G. W. Unruh 1976, S. Hawking 1974) Ω = ωv = ω(1 + gz/c²), or H =H(1+μz) This form of the Hamiltonian is for an observer moving with uniform acceleration μ in the z direction. The term μzh may be regarded as a "chemical potential" for Lorentz boost iµ(z t + t z ), t being set to 0. In quantum field theory it leads to the wave equation in the Unruh coordinates, leading to a thermal medium of T = 2πgµ. The present anomay would also apply to a coaccelerating medium and observer.

Unruh problem t=ξsinh(aη),x=ξcosh(aη)=ξ (1+(t/ξ)²) dt/dη=aξcosh(aη)=ax,dx/dη=aξsinh(aη)=at ds²=-dξ²+a²ξ²dη² exp( iet+ikx+iωη)dtdη = exp[ imx₀sinh(η±θ)+iωη]dη = exp[ imx₀sinhη+iωη]dη = exp[ imx₀sinhη+iωη]dη =2exp(±ωπ/2)K_{±iω}(mx₀) = real, K_{ν}=K_{-ν}

(γ p m + gv μ γ μ γ₅)ψ = 0 I. If V is spacelike: V μ =(0,0,0,v), ω²`= p x ² + p y ² + ((p z ²+m²) 1/2 ±gv)² II. If V is timelike: V μ = (v,0,0,0), ω² = m² + ( p ±gv)² III. If V is lightlike: V μ = (v,0,0,v): ω² = [±gv + (m² + p x ² + p y ² + (p z + gv)²) ½ ]²

Unruh coordinates x =ξsinhη, t = ξ sinhη