Nuclear Data Sheets for A = 84 *

Σχετικά έγγραφα
Nuclear Data Sheets for A = 110 *

Nuclear Data Sheets for A = 102

Th, Ra, Rn, Po, Pb, Bi, & Tl K x-rays. Rn Kα1. Rn Kα2. 93( 227 Th)/Rn Kβ3. Ra Kα2. Po Kα2 /Bi K α1 79( 227 Th)/Po Kα1. Ra Kα1 /Bi K β1.

LIGHT UNFLAVORED MESONS (S = C = B = 0)

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

Derivation of Optical-Bloch Equations

Hadronic Tau Decays at BaBar

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Electronic Supplementary Information:

Approximation of distance between locations on earth given by latitude and longitude

5.7. TABLE OF PHYSICAL CHARACTERISTICS OF RADIONUCLIDES MENTIONED IN THE EUROPEAN PHARMACOPOEIA

DuPont Suva 95 Refrigerant

Assalamu `alaikum wr. wb.

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

Nuclear Physics 5. Name: Date: 8 (1)

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

DuPont Suva 95 Refrigerant

1 Decay Scheme. 2 Nuclear Data. 2.1 α Transitions

the total number of electrons passing through the lamp.

Finite Field Problems: Solutions

Section 8.3 Trigonometric Equations

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

An experimental and theoretical study of the gas phase kinetics of atomic chlorine reactions with CH 3 NH 2, (CH 3 ) 2 NH, and (CH 3 ) 3 N

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]

Quantitative chemical analyses of rocks with X-ray fluorescence analyzer: major and trace elements in ultrabasic rocks

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Other Test Constructions: Likelihood Ratio & Bayes Tests

ST5224: Advanced Statistical Theory II

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

Electronic structure and spectroscopy of HBr and HBr +

Matrices and Determinants

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

derivation of the Laplacian from rectangular to spherical coordinates

Inverse trigonometric functions & General Solution of Trigonometric Equations

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS

Monolithic Crystal Filters (M.C.F.)

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

5.4 The Poisson Distribution.

«ΑΓΡΟΤΟΥΡΙΣΜΟΣ ΚΑΙ ΤΟΠΙΚΗ ΑΝΑΠΤΥΞΗ: Ο ΡΟΛΟΣ ΤΩΝ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΣΤΗΝ ΠΡΟΩΘΗΣΗ ΤΩΝ ΓΥΝΑΙΚΕΙΩΝ ΣΥΝΕΤΑΙΡΙΣΜΩΝ»

Dr. D. Dinev, Department of Structural Mechanics, UACEG

Homework 3 Solutions

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

Supporting Information

EE512: Error Control Coding

Strain gauge and rosettes

Srednicki Chapter 55

Si + Al Mg Fe + Mn +Ni Ca rim Ca p.f.u

( ) 2 and compare to M.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

ΠΕΡΙΕΧΟΜΕΝΑ. Κεφάλαιο 1: Κεφάλαιο 2: Κεφάλαιο 3:

AME SAMPLE REPORT James R. Cole, Ph.D. Neuropsychology

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

The challenges of non-stable predicates

CE 530 Molecular Simulation

NUCLEAR WALLET CARDS

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

C.S. 430 Assignment 6, Sample Solutions

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

1) Formulation of the Problem as a Linear Programming Model

4.6 Autoregressive Moving Average Model ARMA(1,1)

Development of a Tiltmeter with a XY Magnetic Detector (Part +)

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

EPL 603 TOPICS IN SOFTWARE ENGINEERING. Lab 5: Component Adaptation Environment (COPE)

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΠΟΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΒΙΟΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΣΤΗΜΗΣ ΤΡΟΦΙΜΩΝ. Πτυχιακή εργασία

Math 6 SL Probability Distributions Practice Test Mark Scheme

The Simply Typed Lambda Calculus

Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Reminders: linear functions

1 Decay Scheme. 2 Nuclear Data. 2.1 β Transitions

Every set of first-order formulas is equivalent to an independent set

Solution Series 9. i=1 x i and i=1 x i.

Heterobimetallic Pd-Sn Catalysis: Michael Addition. Reaction with C-, N-, O-, S- Nucleophiles and In-situ. Diagnostics

UDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example:

Example Sheet 3 Solutions

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method

Fundamental Physical Constants Extensive Listing Relative std. Quantity Symbol Value Unit uncert. u r

ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΣΕΞΟΥΑΛΙΚΗΣ ΔΡΑΣΤΗΡΙΟΤΗΤΑΣ ΤΩΝ ΓΥΝΑΙΚΩΝ ΚΑΤΑ ΤΗ ΔΙΑΡΚΕΙΑ ΤΗΣ ΕΓΚΥΜΟΣΥΝΗΣ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ

Current Status of PF SAXS beamlines. 07/23/2014 Nobutaka Shimizu


Μηχανική Μάθηση Hypothesis Testing

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Math221: HW# 1 solutions

Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Congruence Classes of Invertible Matrices of Order 3 over F 2

Μεταπτυχιακή διατριβή. Ανδρέας Παπαευσταθίου

6.3 Forecasting ARMA processes

ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΣΜΖΜΑ ΖΛΔΚΣΡΟΛΟΓΩΝ ΜΖΥΑΝΗΚΩΝ ΚΑΗ ΣΔΥΝΟΛΟΓΗΑ ΤΠΟΛΟΓΗΣΩΝ ΣΟΜΔΑ ΤΣΖΜΑΣΩΝ ΖΛΔΚΣΡΗΚΖ ΔΝΔΡΓΔΗΑ

Second Order RLC Filters

Partial Trace and Partial Transpose

Transcript:

Nuclear Data Sheets 81, 331 (1997) Article No. DS970013 Nuclear Data Sheets for A = 8 * J. K. TULI National Nuclear Data Center Brookhaven National Laboratory Upton, NY 11973 5000, USA (Received May 22, 1996; Revised April 23, 1997) Abstract: The 1989 version of Nuclear Data Sheets for A=8 (89Mu06) has been revised. Detailed level and decay schemes, arguments for Jπ assignments, and experimental data are presented. Cutoff Date: All data received prior to April 22, 1997, have been considered. General Policies and Organization of Material: See the January issue of Nuclear Data Sheets. Acknowledgments: The evaluator would like to thank M. J. Martin for a detailed review of the evaluation, and colleagues at NNDC for their assistance during this work. * This research was supported by the Division of Nuclear Physics, Office of High Energy and Nuclear Physics, U.S. Department of Energy. 0090 3752/97 $25.00 Copyright 1997 by Academic Press. All rights of reproduction in any form reserved. 331

NUCLEAR DATA SHEETS Index for A = 8 Nuclide Data Type Page 8 Ga Adopted Levels 336 8 Ge Adopted Levels 336 8 As Adopted Levels 337 8 Ge β Decay 337 8 Se Adopted Levels, Gammas 338 8 As β Decay 339 85 As β n Decay 31 82 Se(t,p) 33 8 Br Adopted Levels, Gammas 3 8 Se β Decay 3 8 Kr Adopted Levels, Gammas 36 8 Br β Decay (31.80 min) 351 8 Br β Decay (6.0 min) 35 8 Rb ε Decay 355 82 Se(α,2nγ) 356 83 Kr(n,γ) E=thermal 360 8 Kr(p,p') 365 Coulomb Excitation 365 8 Rb Adopted Levels, Gammas 367 8 Rb IT Decay 369 81 Br(α,nγ) 370 85 Rb(p,d) 371 86 Sr(d,α) 372 8 Sr Adopted Levels, Gammas 373 8 Rb β Decay 377 8 Y β + Decay (0 min) 377 8 Y β + Decay (.6 s) 379 82 Kr( 3 He,n) 380 8 Sr(p,p'),(p,p'γ) 380 8 Sr(d,d') 381 8 Sr(α,α'),(α,α'γ) 382 Coulomb Excitation 383 85 Rb(p,2nγ) 383 86 Sr(p,t) 38 (HI,xnγ) 385 8 Y Adopted Levels, Gammas 389 8 Zr ε Decay 393 (HI,xnγ) 39 8 Zr Adopted Levels, Gammas 399 8 Nb β + Decay 02 (HI,xnγ) 03 8 Nb Adopted Levels, Gammas 08 28 Si( 58 Ni,npγ) 09 8 Mo 28 Si( 58 Ni,2nγ) 11 332

NUCLEAR DATA SHEETS Skeleton Scheme for A=8 (3/2 ) 0.0 2.028 s 85 33 As 52 23% 3 Q(β n)=370 00 S(n) 2980 SY S(p) 16190 SY 0.0 0.085 s 8 3 1 Ga 53 100% Q =1000 SY S(n) 560 SY S(p) 12370 SY 0+ 0.0 0.97 s 8 32 Ge 52 100% S(n) Q =7685 SY 270 SY S(p) 13360 220 (3 ) 0.0.5 s S(n) 8681 15 8 33 As 51 100% Q =9870 SY S(p) 9725 26 S(n) 6839 26 S(p) 10711 S(n) 10520.5 19 S(n) 879 6 S(p) 7057 3 0+ 0.0 3.10 min 8 3 Se 50 Q =1827 27 6 320 100% 2 0.0 31.80 min 8 35 Br 9 12+ 5373. 100% 8+ 3236.02 Q =655 25 6 63.62 2 0.0 32.77 d 8 37 Rb 7 96.2% 5 3.8% 5 Q =89 3 Q + =2680.9 23 0+ 0.0 8 3 6 Kr 8 33

NUCLEAR DATA SHEETS Skeleton Scheme for A=8 (continued) S(n) 16100 SY S(n) 10990 SY S(p) 100 SY 0+ 0.0 S(n) 13100 SY S(p) 2708 SY 100% 8 2 Mo 2 Q + =6073 SY 3+ 0.0 12 s S(n) 9900 100 S(p) 600 SY 100% 8 1 Nb 3 Q + =9600 SY S(n) 11918 9 S(p) 650 90 S(p) 8861 7 0+ 0.0 (5 ) y 1+ 0.0.6 s 8 0 Zr Q + =2666 SY 8 3 9 Y 5 100% Q + =680 90 Ground State and Isomeric Level Properties Nuclide Level Jπ T 1/2 Decay Modes 8 Ga 0.0 0.085 s 10 %β =100; %β n=70 15 8 Ge 0.0 0+ 0.97 s 11 %β =100; %β n=10.8 6 0+ 0.0 8 3 8 Sr 6 8 As 0.0 (3 ).5 s 2 %β =100; %β n=0.28 8 Se 0.0 0+ 3.10 min 10 %β =100 8 Br 0.0 2 31.80 min 8 %β =100 320 6 6.0 min 2 %β =100 8 Kr 0.0 0+ stable 3236.02 8+ 1.89 µs 5373. 12+ 3.7 ns 21 8 Rb 0.0 2 32.77 d 1 %β =3.8 5; %ε+%β + =96.2 5 63.62 6 20.26 min %IT=100 8 Sr 0.0 0+ stable 8 Y 0.0 1+.6 s 2 %ε+%β + =100 y (5 ) 39.5 min 8 %ε+%β + =100 8 Zr 0.0 0+ 8 Nb 0.0 3+ 12 s 3 %ε+%β + =100; %β + p=? 8 Mo 0.0 0+ %ε+%β + =100 85 As 0.0 (3/2 ) 2.028 s 12 %β n=23 3;... 335

8 31 Ga 8 53 NUCLEAR DATA SHEETS 31 Ga 53 Adopted Levels Q(β )=1000 SY; S(n)=2980 SY 95Au0. 91Kr15: fission product, mass separation. Measured β, γ, βγ. 8 Ga Levels E(level) T 1/2 Comments 0.0 0.085 s 10 %β =100; %β n=70 15. %β n: from 91Kr15. Other: 9 3 (91Om01). T 1/2 : from 91Kr15. 8 3 2 Ge 52 8 3 2 Ge 52 Adopted Levels Q(β )=7685 SY; S(n)=560 SY; S(p)=16190 SY 95Au0. 91Kr15: fission product, mass separation. Measured β, γ, βγ. 91Om01: 600 MeV p on 238 U, mass separation. Measured γ, n. 72De3: fast chemical separation of fission products. 8 Ge Levels E(level) Jπ T 1/2 Comments 0.0 0+ 0.97 s 11 %β =100; %β n=10.8 6 (93Ru01). %β n: 9.5 20 (91Kr15). Other: 9 3 (91Om01). T 1/2 : from 93Ru01. Others: 0.98 s 23 (91Kr15), 0.98 s 5 (91Om01), 1.2 s 3 (72De3). 336

8 33 As 8 51 NUCLEAR DATA SHEETS 33 As 51 Adopted Levels Q(β )=9870 SY; S(n)=270 SY; S(p)=12370 SY 95Au0. Q(β ): there is a serious discrepancy in the Q(β ) value. If the %β n is >0 then Q(β ) has to be >S(n)=8681 which is perhaps the reason for 95Au0 not adopting the measured value of 7200 200 from 9Gi07. However, 9Gi07 point out that their value agrees with that deduced by 90Ru05 from measurements of average β and γ energies. 90Ru05 had already noted the discrepancy between their value and the systematic value derived from the mass adjustment. Also the log ft value for the strong β to 2+, 15 level in 8 Se drops to 5.6, for Q(β )=7.2 MeV from 6. for Q(β )=9870. The value of 5.6 is rather small for what is probably a first forbidden transition. 9Gi07: measured β, γ, βγ. A 0.65 s 15 isomer based on observation of 08γ ( 8 Se) and 882γ ( 8 Br) in delayed separation of arsenic fraction was reported by 7KrZG (also quoted by 75Kr08) but the activity has not been seen by 91Ho10. 8 As Levels All measurements deal with fast chemically separated fission products. E(level) Jπ T 1/2 Comments 0.0 (3 ).5 s 2 %β =100; %β n=0.28 (93Ru01). Jπ: strong feeding of 2+, (+) levels, log ft=6., 6.5, respectively. Negative parity is suggested by the shell model. T 1/2 : from 91Om01 (also quoted in 91Ho10). Others: 5.8 s 5 (68De19) and 5.3 s (75Kr08),.02 s 3 (93Ru01). %β n: 0.08 in ENDF/B evaluation (8Ma39) deduced from %β n=0.13 6 (73Kr06) if the ENDF/B yield is used. Other: %β n=0.06 3 (76NiZZ). 8 Ge β Decay 91Om01 91Om01: 600 MeV p on 238 U, mass separation. Measured γ, n. γ( 8 As) Eγ Iγ x 100.0 8.7 20 x 22. 13 3 For absolute intensity per 100 decays, multiply by 1.0. x γ ray not placed in level scheme. 337

8 3 Se 50 1 NUCLEAR DATA SHEETS 8 3 Se 50 1 Adopted Levels, Gammas Q(β )=1827 27; S(n)=8681 15; S(p)=13360 220 95Au0. Theory: Shell model calculation: 88Xi01, 89Ji06, 92Si1. Octupole states in open shell linear response model: 8Ba28. Dipole and octupole states in broken pair approximation with effective interaction: 82Ak01. Quasiparticle and particle hole excitations: 83Lo02. B(E2) values in Hartree Fock model: 82Ah06. Hartree Fock and BCS calculations of nuclear density distribution: 73Da35, 73Be62. 88FiZV: determined prompt 15γ yield in 235 U, 238 U fission at E(n)=3.0 MeV. 8 Se Levels Cross Reference (XREF) Flags A 82 Se(t,p) B 8 As β Decay C 85 As β n Decay E(level) Jπ XREF T 1/2 Comments 0.0 0+ ABC 3.10 min 10 %β =100. T 1/2 : from 7KrZG. Others: 3.1 min 2 (75Hu02), 3.5 min 1 (70Ei02), 3.1 min 2 (68Re12), and 3.3 min 3 (60Sa05). 15. 2 9 (2+) ABC 1967 3 (0+) A 2097 11 (1 ) A 2121. 8 11 (+) BC 22 7 0+ A 261. 35 10 2+ B 265 0+ A 2699. 1 12 BC 2716 10 (0+) A 270 11 (0+) A 298. 62 13 2+ AB 302. 21 12 (2+) AB 3069. 6 22 B 3125. 86 15 B 3232. 26 15 B 3297. 31 11 BC 3370. 9 23 B 308. 56 15 B 338. 98 1 B 351. 29 11 ab Jπ: L(t,p)=2 for E(level)=35 6. 358. 1 ab Jπ: L(t,p)=2 for E(level)=35 6. 3698 6 A 3871. 8 15 B 393 8 2+ A 3985. 10 23 2+ AB 082. 01 23 B 106 17 0+ A 116. 21 17 B 226 2+ A 282. 12 B 307 7 (2+) A 5. 01 23 (+) AB 602 6 2+ A 670 9 (2+) A 723 6 A 813 5 (2+) A 903 7 (2+,0+) A 981 9 1 A 5139 6 2+ A 5161. 00 19 B 5185 6 2+ A 5222. 01 16 B 5258 6 + A 5295 9 2+ A Continued on next page (footnotes at end of table) 338

8 3 Se 50 2 NUCLEAR DATA SHEETS 8 3 Se 50 2 Adopted Levels, Gammas (continued) 8 Se Levels (continued) E(level) Jπ XREF E(level) Jπ XREF E(level) Jπ XREF 5373 9 A 537 9 (5 ) A 5507 9 2+ A 5596. 28 20 3 AB 5627 9 2+ A 5637. B 5661. 7 23 B 5725 1 A 5815 12 2+ A 5869. 22 2 B 5889. 9 (3,1 ) AB 5922 9 (+) A 6005 12 (+) A 6020. 15 19 B 629. 21 B 6329 21 2+ A 600. 3 + AB 651. B 660. 5 B Spins are deduced from L values observed in 82 Se(t,p) (88Mu02). Levels connected by γ's are from least squares fit to Eγ; others are from 82 Se(t,p). L(t,p) has possible admixture of L=0 indicating possibility for a doublet. γ( 8 Se) E(level) Eγ Iγ E(level) Eγ Iγ E(level) Eγ Iγ 15. 2 15. 55 10 100.0 2121.8 666.97 10 100.0 261. 35 1007. 12 10 1.9 17 261.35 15 100 5 2699.1 577.8 10 100 3 125.3 2 85 6 298.62 522.2 9.52 1530.19 10 100 5 302.21 325.03 10 5.3 16 1569.53 10 100 3 3069. 6 1615. 2 2 100.0 3125.86 26. 2 29 15 1671.5 15 100 8 3232. 26 1110. 77 10 100.0 3297. 31 1175. 9 2 10 9 183.13 10 100 3370. 9 129. 0 2 100.0 308. 56 1287. 06 10 100.0 338. 98 1317. 5 10 100 5 198.7 2 23.6 1 351. 29 1080. 15 10 15.8 7 2086.69 10 100 358.1 126.6 3 100.0 3871.8 573.9 21.39 1750.35 10 100 3985. 10 1863. 6 2 100.0 082. 01 1960. 5 2 100.0 116.21 57.9 76.92 2661.7 15 100 6 282. 71.23 10 100 9 985.20 10 61.3 21 2159.0 2 31.7 21 280.9 3 27.9 17 5. 01 2323. 5 2 100.0 5161. 00 3039. 6 15 100.0 5222. 01 1925. 5 2 73 6 2522.10 15 100 6 5596. 28 2299. 0 2 90 7 37.6 3 100 7 5637. 182.9 3 100.0 5661. 7 2962. 0 2 100.0 5869. 22 3169. 3 100 7 378.0 3 9 7 5889.9 35. 3 100.0 6020. 15 2722. 80 15 100.0 629. 280. 8 2 53 1 127.9 3 100 7 600.3 95.7 3 100.0 651. 5086.8 3 100.00 660.5 519.9 3 100.0 From 8 As β decay. Relative photon branching from each level deduced from β decay. 8 As β Decay 91Ho10 91Ho10: measured γ, γγ. Other: 75Kr08. 8 Se Levels E(level) Jπ E(level) Jπ E(level) Jπ 0.0 0+ 15. 5 9 (2+) 2121. 68 11 (+) 261. 33 10 2+ 2699. 52 12 298. 65 13 2+ 302. 27 12 (2+) 3069. 67 22 3125. 92 15 3232. 5 15 3297. 26 11 3370. 69 23 308. 75 15 339. 15 1 351. 21 11 2+ 358. 3 3872. 0 15 3985. 30 23 2+ 082. 20 23 116. 2 17 282. 20 11 5. 21 23 (+) 5161. 20 19 5222. 07 16 5596. 31 20 3 5637. 5 5661. 58 23 5869. 38 2 5890. 0 (3 ) 6020. 10 19 629. 60 25 600. 3 + 651. 660. 5 From least squares fit to Eγ. 339

8 3 Se 50 3 NUCLEAR DATA SHEETS 8 3 Se 50 3 8 As β Decay 91Ho10 (continued) β radiations Eβ E(level) Iβ Log ft Eβ E(level) Iβ Log ft (3266) 660. 5 0. 89 11 6.0 (3329) 651. 0. 69 9 6.1 (370) 600. 3 1. 35 15 5.9 (3620) 629. 60 0. 36 10 6.6 (3850) 6020. 10 1. 87 19 6.0 (3980) 5890. 0 0. 2 6 6.7 (001) 5869. 38 1. 12 12 6.3 (208) 5661. 58 0. 6 6.8 (233) 5637. 5 0. 1 6 6.8 (27) 5596. 31 1. 32 1 6.3 (68) 5222. 07 1. 8 15 6. (709) 5161. 20 2. 1 3 6.3 (525) 5. 21 0. 52 6 7.2 (5588) 282. 20. 7 5 6.3 (575) 116. 2 1. 3 1 6.9 (5788) 082. 20 0. 6 7. (5885) 3985. 30 0. 27 7.6 (5998) 3872. 0 2. 02 20 6.8 (6322) 358. 3 0. 65 8 7. (6329) 351. 21 5. 1 6 6.5 (631) 339. 15 2. 2 2 6.9 (661) 308. 75 1. 21 15 7.2 (699) 3370. 69 1. 8 7.0 (6573) 3297. 26 1. 2 5 7.2 (6638) 3232. 5 2. 1 22 7.0 (67) 3125. 92 0. 80 13 7. (6800) 3069. 67 0. 7 6 7.7 (686) 302. 27 1. 77 17 7.1 (6885) 298. 65 2. 05 21 7.1 (7170) 2699. 52 10. 1 10 6. (709) 261. 33 6. 6 7 6.7 (778) 2121. 68 11. 7 15 6.5 (816) 15. 5 25 3 6. (9870) 0. 0 5 7. For β intensity per 100 decays, multiply by 1.0. γ( 8 Se) Iγ normalization: from 91Om01, authors determined %Iγ(667γ)=3 3, %Iγ(155γ)=89 8 using calibrated β and γ detectors. Other: 0.9 11 (90Ru05). Eγ E(level) Iγ Eγ E(level) Iγ Eγ E(level) Iγ 325.03 10 302.27 0.10 3 26. 2 3125.92 0.2 1 522.2 298.65 0.2 573.9 3872.0 0. 57.9 116.2 0.7 577.8 10 2699.52 7. 2 666.97 10 2121.68 38 1 71.23 10 282.20 2. 2 985.20 10 282.20 1.7 5 1007.12 10 261.33 2.6 1 x 102. 9 2 0.29 3 1080.15 10 351.21 1.20 5 1110.77 10 3232.5 2. 1 1175.9 2 3297.26 0.60 5 125.3 2 2699.52 6.3 129.0 2 3370.69 2.0 3 1287.06 10 308.75 1.76 6 1317.5 10 339.15 2.2 1 126.6 3 358.3 0.73 5 15.55 10 15. 5 100 2 1530.19 10 298.65 2.1 1 1569.53 10 302.27 1.89 5 1615.2 2 3069.67 0.53 x 1618. 8 2 0.7 1671.5 15 3125.92 0.70 5 1750.35 10 3872.0 1.87 7 183.13 10 3297.26 6.1 2 1863.6 2 3985.30 0.30 3 1925.5 2 5222.07 0.70 5 x 1951. 6 2 0.65 x 1956. 2 2 0.57 1960.5 2 082.20 0.9 x 1973. 5 2 0.6 198.7 2 339.15 0.52 3 2086.69 10 351.21 7.6 3 2159.0 2 282.20 0.76 5 x 2237. 9 2 0.72 5 2299.0 2 5596.31 0.70 5 2323.5 2 5.21 0.58 x 218. 1 2 0.86 5 261.35 15 261.33 6.2 3 2522.10 15 5222.07 0.96 5 x 2535. 22 15 0.95 5 x 2596. 5 2 0.52 x 2612. 3 2 0.37 2661.7 15 116.2 0.91 5 2722.80 15 6020.10 2.1 1 280.8 2 629.60 0. 1 2962.0 2 5661.58 0.9 3039.6 15 5161.20 2. 2 x 315. 8 2 0.51 3 3169. 3 5869.38 0.65 37.6 3 5596.31 0.78 5 378.0 3 5869.38 0.61 x 069. 0 3 0.52 x 108. 9 0.9 127.9 3 629.60 0.76 5 182.9 3 5637.5 0.6 280.9 3 282.20 0.67 35. 3 5890.0 0.7 x 575. 7 3 0.62 x 637. 0 3 0.5 x 769. 5 3 0.3 x 795. 0 3 0.55 x 821. 1 3 0. x 888. 3 3 0.38 95.7 3 600.3 1.52 10 x 5020. 3 3 0.39 5086.8 3 651. 0.77 6 519.9 3 660.5 1.00 8 For absolute intensity per 100 decays, multiply by 0.89 8. From authors' decay scheme, not given in their table. Iγ=0.60 50 given by the authors is perhaps a typo. x γ ray not placed in level scheme. 30

8 3 Se 50 NUCLEAR DATA SHEETS 8 3 Se 50 8 As β Decay 91Ho10 (continued) Decay Scheme (3 ) 0.0 8 3 3 As 51.5 s Intensities: I(γ+ce) per 100 parent decays %β =100 Q (g.s.)=9870 SY Iβ Log ft 0.89 6.0 0.69 6.1 1.35 5.9 0.36 6.6 1.87 6.0 0.2 6.7 1.12 6.3 0. 6.8 0.1 6.8 1.32 6.3 1.8 6. 2.1 6.3 0.52 7.2.7 6.3 1.3 6.9 0. 7. 0.27 7.6 2.02 6.8 0.65 7. 5.1 6.5 2.2 6.9 1.21 7.2 1.8 7.0 1.2 7.2 2.1 7.0 0.80 7. 0.7 7.7 1.77 7.1 2.05 7.1 10.1 6. 6.6 6.7 11.7 6.5 25 6. 5 7. 519.9 0.89 5086.8 0.69 95.7 1.35 127.9 0.68 280.8 0.36 2722.80 1.87 35. 0.2 378.0 0.5 3169. 0.58 + 600.3 2962.0 0. 182.9 0.1 37.6 0.69 2299.0 0.62 (3 ) 5890.0 2522.10 0.85 1925.5 0.62 3039.6 2.1 3 5596.31 2323.5 0.52 280.9 0.60 2159.0 0.68 985.20 1.31 71.23 2.1 (+) 5.21 1863.6 0.27 1750.35 1.66 573.9 0.36 2661.7 0.81 57.9 0.62 1960.5 0. 126.6 0.65 2086.69 6.8 1080.15 1.07 198.7 0.6 1317.5 1.96 1287.06 1.57 129.0 1.8 183.13 5. 1175.9 0.53 2+ 3985.30 1110.77 2.1 1671.5 0.62 26. 0.18 1615.2 0.7 1569.53 1.68 325.03 0.09 1530.19 1.87 522.2 0.18 2+ 351.21 (2+) 302.27 2+ 298.65 2+ 261.33 (+) 2121.68 (2+) 15.5 0+ 0.0 125.3 5.6 577.8 6.6 261.35 5.5 1007.12 2.31 666.97 3 15.55 89 660.5 651. 629.60 6020.10 5869.38 5661.58 5637.5 5222.07 5161.20 282.20 116.2 082.20 3872.0 358.3 339.15 308.75 3370.69 3297.26 3232.5 3125.92 3069.67 2699.52 8 3 Se 50 85 As β n Decay 75Kr08,79Kr03 75Kr08: fast chemical separation of fission products. 3 He counters. Ge(Li) detectors. Neutron spectra measured by 79Kr03. 79Kr03: fast chemical separation of fission products. 3 He counters, FWHM=12 kev for thermal neutrons and E=20 kev at 1 MeV. Ge(Li) detectors. 8 Se Levels E(level) Jπ 0.0 0+ 155. 11 20 (2+) 2122. 2 3 (+) 2699. 7 3 3298. 8 3 Deduced from Eγ. 31

8 3 Se 50 5 NUCLEAR DATA SHEETS 8 3 Se 50 5 85 As β n Decay 75Kr08,79Kr03 (continued) Delayed neutrons Agreement of neutron intensities measured by 79Kr03 with neutron feedings deduced from Iγ (75Kr08) is poor. S(n)( 85 Se)=50 syst. Theory: 79Pr03. Branching: 85 As delayed n emission probability %β n=23 3. E(n) E( 8 Se) I(n) # E( 85 Se) E(n) E( 8 Se) I(n) # E( 85 Se) 56 1 155. 11 16 S(n)+1518 10 3 2699. 7 1 S(n)+280 25 6 3298. 8 5 S(n)+3553 271 2 2122. 2 15 S(n)+239 95 3 2122. 2 100 S(n)+2623 516 3 2122. 2 87 S(n)+2650 708 3 2122. 2 51 S(n)+280 (83. 3) 2699. 7 <5 S(n)+3553 925 155. 11 73 S(n)+239 115 7 155. 11 36 S(n)+2623 1187 8 155. 11 3 S(n)+2650 (1369) 155. 11 <5 S(n)+280 120 7 2122. 2 0 S(n)+3553 1506 11 0. 0 20 S(n)+1518 (2073) 155. 11 <1 S(n)+3553 (2366) 0. 0 <1 S(n)+239 (2592) 0. 0 <1 S(n)+2623 (2619) 0. 0 <1 S(n)+2650 (2807) 0. 0 <1 S(n)+280 (3509) 0. 0 <0. 1 S(n)+3551 Values quoted are in lab coordinates. Relative neutron intensities. I(n) deduced from Iγ are: 6.7 (g.s.), 8.3 1 (155 level), 5.9 11 (2122 level), 1.6 3 (2700 level), and 0.51 10 (3299 level). # For intensity per 100 decays, multiply by 1.00. γ( 8 Se) Iγ normalization: from comparison of 155γ activity with total delayed n activity. Branching: 85 As delayed n emission probability %β n=23 3. Eγ E(level) Iγ 577.5 2 2699.7 6.0 9 667.1 2 2122.2 2.2 35 12. 6 2 2699.7.0 7 155. 1 2 155. 11 100 183. 7 2 3298.8 3.1 Tentative placement by 75Kr08 was confirmed in later β decay study. For absolute intensity per 100 decays, multiply by 0.163 2. Decay Scheme (3/2 ) 0.0 8 3 5 3 As 52 2.028 s Intensities: Iγ per 100 parent decays %β n=23 3 Q(β n)(g.s.)=370 00 183.7 0.51 12.6 0.65 577.5 0.98 667.1 6.9 155.1 16.3 3298.8 2699.7 (+) 2122.2 (2+) 155.11 0+ 0.0 8 3 Se 50 32

8 3 Se 50 6 NUCLEAR DATA SHEETS 8 3 Se 50 6 82 Se(t,p) 88Mu02 8 Se Levels E=17 MeV. Enriched target. Magnetic spectrograph. FWHM=20 kev. θ=3.75 to 86.75. Other: E=15 MeV. Semi, FWHM=30 0 kev. (7Kn02). E(level) L ε 0 5 0 1.39 15 15 (2) 0.006 1967 3 (0) 0.03 2097 11 (1) 0.0 22 7 0 0.353 265 0 0.532 2716 10 (0) 0.031 270 11 (0) 0.027 298 6 2 0.25 3022 5 (2) 0.023 35 6 2 0.030 3698 6 393 8 2 0.009 3989 7 2 0.012 E(level) L ε 106 17 0 0.031 226 2 0.100 307 7 (2) 0.02 2 (+0) 0.10+0.08 602 6 2 0.027 670 9 (2) 0.021 723 6 813 5 (2) 0.013 903 7 (2+0) 0.015+0.010 981 9 1 0.39 5139 6 2 0.06 5185 6 2 0.00 5258 6 0.03 5295 9 2 0.109 E(level) L ε 5373 9 537 9 5+(0) 0.59+0.071 5507 9 2 0.05 5601 9 3 0.12 5627 9 2 0.031 5725 1 5815 12 2 0.02 5883 12 (3+1) 0.37+0.05 5922 9 (+0) 0.038+0.055 6005 12 (+0) 0. 095+0. 09 6329 21 2 0.080 6382 18 0.116 From DWBA. Enhancement factor defined by σ(exp)=230 ε σ(dwba). Uncertainty in absolute cross sections is 10%. Satisfactory fits can be obtained with L=+0 or L=1+3. 33

8 35 Br 9 1 NUCLEAR DATA SHEETS 8 35 Br 9 1 Adopted Levels, Gammas Q(β )=655 25; S(n)=6839 26; S(p)=9725 26 95Au0. All information from 8 Se β decay. 8 Br Levels E(level) Jπ T 1/2 Comments 0.0 2 31.80 min 8 %β =100; µ=1.9 7 (92Pr06). Jπ: spectrum shape for β decay to 0+ g.s. of 8 Kr is first forbidden unique. log f 1u t=9.5. Configuration=((π 1f 5/2 ) 3 (ν 1g 9/2 ) 1 ) (70Ha21). T 1/2 : from 57Jo21. Other measurement: 31.7 min 2 (60Sa05). µ: from γ(θ,h,t) (92Pr06). 320 100 6 6.0 min 2 %β =100. %β : no IT decay from this level has been observed. E(level): from Q(β ) difference (70Ha21). Jπ: log ft=5.1 to 5. Lifetime limits J to values 5. B(M3)(W.u.) 0.01 BR. The IT branching is unknown, but is probably <0.1. The resulting B(M3)(W.u.) is smaller than for any other M3 transition in this region, suggesting Jπ is not 5. Configuration=((π 1p 3/2 ) 1 (ν 1g 9/2 ) 1 ) (70Ha21). T 1/2 : from 60Sa05. 08.2 1+ <0.1 µs Jπ: log ft=.0 from 0+. T 1/2 : from 70Ei02. γ( 8 Br) E(level) Eγ Iγ 08.2 08.2 100 8 Se β Decay 75Hu02,70Ei02,68Re12 90TaZW: measured yield ratio in 238 U fission for the two 8 Br isomers. 8 Br Levels E(level) Jπ T 1/2 Comments 0.0 2 31.80 min 8 %β =100. T 1/2 : from 57Jo21. Other measurement: 31.7 min 2 (60Sa05). 320 100 6 6.0 min 2 %β =100. %β : no IT decay from this level has been observed. E(level): from Q(β ) difference (70Ha21). T 1/2 : from 60Sa05. 08.2 1+ <0.1 µs Jπ: log ft=.0 from 0+. T 1/2 : from 70Ei02. β radiations Eβ E(level) Iβ Log ft (120 30) 08.2 100.0 (1830 30) 0.0 <0.1 >8.5 1u For β intensity per 100 decays, multiply by 1. Existence of this branch is questionable. 3

8 35 Br 9 2 NUCLEAR DATA SHEETS 8 35 Br 9 2 8 Se β Decay 75Hu02,70Ei02,68Re12 (continued) γ( 8 Br) Others: 68EiZY, 60Sa05. Mass separation (70Ei02) and fast chemical separation. Coincidences measured by 70Ei02 and 68Re12. The feeding of the 320 kev level is determined to be 2%, in accordance with the high degree of forbiddeness (75Hu02). Iγ normalization: Iβ(g.s.)<0.10 from log f 1u t>8.5. Iγ normalization=0.977 if the 98.5γ deexcites to the g.s. Eγ E(level) Iγ 08.2 08.2 100 x 98.5 6 2. 8 Weighted average of 75Hu02 and 68Re12. The 98.5γ is observed only by 75Hu02. For absolute intensity per 100 decays, multiply by 1.0. x γ ray not placed in level scheme. 35

8 36 Kr 8 1 NUCLEAR DATA SHEETS 8 36 Kr 8 1 Adopted Levels, Gammas Q(β )= 2680.9 23; S(n)=10520.5 19; S(p)=10711 95Au0. Theory/calculations: 95La07 (relativistic mean field theory). 95De02,90Zo02,87Ha21,8Er02 (interacting boson model). 91Jo03 (description of 8+ states). 89Co02 (octupole bands). 88Er07 (calculated levels). 88Pe0 (microscopic boson expansion model). 87Ha21 (dynamic deformation model). 86Di06 (two hole cluster phonon coupling model). 82Br01 (monopole and quadrupole pairing vibration model). 81Bu06 (liquid drop plus Strutinsky shell corrections plus pairing). Reduced transition probabilities: 82Ah06 (projected Hartree Fock model) 95Zh26,92Er02 (systematics). Quadrupole moment: 87Ha21 (dynamic deformation model), 82Ah06 (projected Hartree Fock model). Isotope shift and nuclear charge radius: 95La07,92Sc19,92Ne09,92Li2, 89Tr0,8Lo06,80Ca23,75So06. First unique forbidden β decay matrix elements for 8 Br and 8 Rb decays: 86Ci02, 72Ej01. Other experiments: Measurements of isotope shift and nuclear charge radius: 95Ke0, 90Sc30, 90Ca26, 89Tr0, 81Ge06, 79Ge06, 77Ge05. 8 Kr Levels Cross Reference (XREF) Flags A Coulomb Excitation B 82 Se(α,2nγ) C 83 Kr(n,γ) E=thermal D 8 Br β Decay (31.80 min) E 8 Br β Decay (6.0 min) F 8 Kr(p,p') G 8 Rb ε Decay E(level) Jπ XREF T 1/2 Comments 0.0 # 0+ ABCDEFG stable <r 2 >( 86 Kr 8 Kr)=+0.02 12 fm 2 from isotope shift (95Ke0). Others: +0.033 22 (90Sc30, 79Ge06). 881. 615 # 3 2+ ABCDEFG.35 ps 18 Jπ: L(p,p')=2. T 1/2 : from B(E2)=0.122 5 measured in Coulomb excitation (82Ke01). Other: 3.2 ps 1 from recoil distance in (α,2nγ). 1837. 3 20 0+ B D F 25 ps 10 Jπ: L(p,p')=0. 1897. 78 @ 10 2+ BCDEFG 0.30 ps +7 3 Jπ: E2 γ to 0+. 2095. 00 # 7 + BCD F 0.5 ps +5 7 Jπ: L(p,p')=. 235. 6 @ 7 + BCDEF 2 ps 3 Jπ: L(p,p')=. 87Ha21, from their (n,γ) study, propose that the 6.9γ and 163.8γ deexcite two levels at 23.3 kev and 235.6 kev. The 23.3 is assigned 3+ on the basis of systematics. These conclusions are not adopted by the evaluator since (1) the intensity ratios Iγ(6.9)/Iγ(163.8) are nearly the same in (n,γ), β decay (31.80 min), and β decay (6.0 min), and (2) log ft=7.0, log f 1u t=8.3 for β decay from (5,6 ) would limit J= to 7. 289. 2 (2+,3 ) D Jπ: probable γ to +. γ from 1. 2622. 98 17 2+ BCD F 0.28 ps 1 Jπ: uniquely determined by γγ(θ) in β decay. M1+E2 γ to 2+. 2700. 28 8 3 BCD F 1.7 ps +1 11 Jπ: L(p,p')=3. 2759. 28 13 2+ CD Jπ: log ft=7.5 from 2, γ to 0+, (M1+E2) γ to 2+, γγ(θ). 2770. 95 & 9 5 BC E 7.6 ps 21 Jπ: stretched E1 to +. 2775 20 2+ F Jπ: L(p,p')=2. 2861. 09 8 (2+,3,+) C Jπ: γ's to 2+ and +. 302. 11 7 (2+,3,+) BC F Jπ: γ's to 2+ and +. 3082. 38 8 3 CD Jπ: log ft=6.6, log f 1u t=7.6 from 2. J=1,2 excluded by γγ(θ) in β decay. 3172. 51 # 16 6+ BC 2.6 ps 7 Jπ: stretched E2 indicated by γ(θ) in (α,2nγ). 3183. 29 25 (2+,3,+) C Jπ: γ's to 2+ and +. 3219. 3 a 11 5 BC F 17 ps Jπ: from γ(θ), linear pol in (α,2nγ), 112γ is stretched E1, 8γ is M1 with J=0. 3236. 02 # 18 8+ B 1.89 µs µ= 1.968 16 (89Ra17). Jπ: E2 γ to 6+ in (α,2nγ). Configuration=(ν g 9/2 ) 2. T 1/2 : from time differential perturbed angular distribution observed in (α,2nγ). Continued on next page (footnotes at end of table) 36

8 36 Kr 8 2 NUCLEAR DATA SHEETS 8 36 Kr 8 2 Adopted Levels, Gammas (continued) 8 Kr Levels (continued) E(level) Jπ XREF T 1/2 Comments 3288. 67 12 5+ BC 0.31 ps 10 Jπ: stretched E1 transition from 6, linear polarization of M1+E2 93γ to +. 3312. 39 13 (3) C Jπ: J=3 preferred from γγ(θ) in (n,γ), but other J values are not definitely excluded. M1+E2 γ to 3. 3335? 20 F Possibly identical to 3312 level. 3365. 88 20 (1,2+) D Jπ: γ to 0+. 308. 16 11 (3,,5 ) C Jπ: γ's to 3 and 5. 326. 73 12 (2+,3,+) C Jπ: γ's to 2+ and +. 363. 0 5 C 375. 75 21 (1 ) D F Jπ: L(p,p')=(1). 3570 20 (3 ) F Jπ: L(p,p')=(3). 3587. 10 a 11 6 BC 5.5 ps 1 Jπ: deexcites by M1+E2 to 5, fed by M1+E2 from 7. 3638. 50 10 (5 ) BC F 0.69 ps +28 21 Jπ: L(p,p')=(5). γ's to 3 and 5. 3651. 7 & 21 7 B Jπ: 180γ from 3832, 7 level is J=0, M1+E2 from γ(θ), linear pol in (α,2nγ). 3705. 87 19 1( ),2,3( ) D Jπ: log ft=6.0, log f 1u t=6.5 from 2. γ's to (1 ) and 3. 3718. 21 22 (3 ) C F Jπ: L(p,p')=(3). 3777. 0 3 C F 3831. 58 a 13 7 B.9 ps 21 Jπ: stretched E2 to 5, E1 to 6+, excit. 3870. 1 5 1,2,3 D Jπ: log ft=6.9, log f 1u t=7.2 from 2. 3878. 8 3 (2+,3) D Jπ: log ft=6.6, log f 1u t=7.0 from 2. γ to +. 3927. 33 22 1 D F Jπ: log ft=.9 from 2. Strong γ to 0+. 3951. 21 @ 16 6+ B 0.9 ps 5 Jπ: cascades to + via stretched Q. 001. 82 11 ( ) BC F 0.35 ps 10 08. 3 5 (1,2+) D F Jπ: γ to 0+. 116. 8 5 1,2 D Jπ: log ft=5.2 from 2. Weak γ to 0+. 189. 2 5 ( 2+, 3 ) D F XREF: F(157). Jπ: log ft=6.0, log f 1u t=6.0 from 2. γ to +. 21. 3 13 C 238. 5 6 C 278. 3 5 C 350. 10 23 (5 ) B 0.28 ps +1 7 388. 17 a 19 8 B 6.7 ps 17 Jπ: M1+E2 γ to 7. 07. 8 (6 ) B 0.31 ps 1 55. 5 C 59. 8 5 C 676. 62 20 C F XREF: F(707). 718. 51 @ 17 8+ B 5.5 ps 21 Jπ: cascades to + via two Q γ's. 852. 16 & 22 9 B 0.8 ps Jπ: stretched E2 to 7, excit, 1616γ is stretched D. 898 20 F 928. 95 a 22 (9 ) B 0.55 ps 21 976 1 (9+) B 520. 0 # 3 10+ B 0.1 ps Jπ: stretched E2 cascade indicated by γ(θ) and linear polarization in (α,2nγ). 5358 20 F 5373. # 12+ B 3.7 ns 21 µ=+2.0 12 (89Ra17). Jπ: stretched E2 cascade indicated by γ(θ) and linear polarization in (α,2nγ). T 1/2 : from α,γ(t) in (α,2nγ). 58. 71 @ 19 10+ B 3.5 ps 1 Jπ: stretched E2 to 8+. 566 F 560. 66 a 2 (10 ) B 0.9 ps 21 5901. 6 & 3 11 B 1.9 ps 6 Jπ: stretched E2 to 9. 6067 1 B 672. 2 B 6572. 0 (12) B 0.2 ps 1 Jπ: E1 γ to 12+ consistent with J=0. 6590. 2 6 B 7015. 7 (13) B 0.17 ps 7 Jπ: stretched M1 to (12). 7653. 1 5 (1 ) B 0.28 ps 7 Jπ: cascades via stretched D. From least squares fit to adopted gammas if γ decay is observed. Other level energies are from (p,p'). From Doppler shift attenuation and recoil distance technique in (α,2nγ), unless indicated otherwise. Jπ for the levels seen in (α,2nγ) are based upon γ(θ), excit, multipolarity of transitions. Footnotes continued on next page 37

8 36 Kr 8 3 NUCLEAR DATA SHEETS 8 36 Kr 8 3 Adopted Levels, Gammas (continued) 8 Kr Levels (continued) # π=+ sequence 1. @ π=+ sequence 2. & π= J=2 sequence. a π= J=1 sequence. γ( 8 Kr) E(level) Eγ Iγ Mult. δ α Comments 881. 615 881. 610 3 100 [ E2 ] B(E2)(W.u.)=11.2 5. 1837.3 955.7 20 100 Eγ: 950.0 2 in (α,2nγ). 1897. 78 1016. 162 13 7.1 16 M1+E2 0.8 7 B(E2)(W.u.)=11 + 3. 1897.761 1 100. 0 E2 B(E2)(W.u.)=2.6 +9 6. 2095. 00 1213. 39 10 100 E2 B(E2)(W.u.)=22 3. 235.6 6.9 3 2.73 19 [ E2 ] B(E2)(W.u.)=1.61 23. 163.8 9 100.0 12 E2 B(E2)(W.u.)=0.156 20. 289.2 39.1 # 7 1607.6 2622. 98 171. 3 2 100 M1+E2 1.5 +5 10 Mult.: the large mixing ratio excludes E1+M2. 2622.7 18 3 2700.28 35.7 2.9 5 605.1 3 26.6 15 (E1+M2) +0.025 23 802.56 1 100.0 15 E1 1818.7.0 6 2759. 28 1877. 80 1 100 (M1+E2) 0.10 8 2758. 3 53 13 2770.95 25.30 11 100 E1 B(E1)(W.u.)=0.00057 1. Mult.: M2 admixture with δ<0 needed to explain large anisotropy for 2γ (92Pr06). 2861.09 765.7 25 12 8 963. 13 61.5 21 1979.3 11 100.0 21 302.11 96.5 5 77 3 2160.8 7 100.0 25 3082.38 382.0 2 52 7 736.5 3 100 12 D+Q 0.09 3 987.62 17 73 6 D+Q 0.09 1185.0 7 8. 17 2200.85 11 78 3 3172. 51 1077. 55 25 100 E2 B(E2)(W.u.)=6.9 18. Mult.: from γ(θ), linear polarization and α(k)exp in (α,2nγ). 3183. 29 1087. 8 3 76 10 2302.5 100 16 3219.3 8.11 11 1.6 13 M1 519.3 @ 5 9 3 112.5 2 100.0 15 E1 3236.02 63.5 1 100 E2.96 3288.67 93.36 1 100 M1+E2 0. 1 3312.39 51.50 12 71 3 612.0 3 100 6 M1+E2 +0.1 3 Mult.: the large mixing ratio excludes E1+M2. 967.0 5 20 7 3365. 88 28. 1 3 100 10 3365.8 3 6 308.16 56.98 12 100 637.13 18 77 7 708.2 21 67 6 326. 73 1331. 89 13 100 1 25.72 19 69 7 363.0 23.7 100 375.75 39.1 # 7 1578.1 100 19 2593.7 6 21 3587.10 298.5 1 11.7 13 E1 367.6 1 100 11 M1+E2 0.2 6 Continued on next page (footnotes at end of table) 38

8 36 Kr 8 NUCLEAR DATA SHEETS 8 36 Kr 8 Adopted Levels, Gammas (continued) γ( 8 Kr) (continued) E(level) Eγ Iγ Mult. δ α Comments 3587.10 816.6 2 10 3 3638.50 19. 5 100.0 17 938.12 13 71 3 1293.20 13 61 153.27 19 77.2 26 3651.7 881.0 3 100 E2 Eγ: from E(level) difference. 3705.87 230.20 20 27 339.8 6.3 15 97.5 7 31 7 1005.7 7 1 11 1082.6 12.6 22 1807.8 8 3.7 11 282.1 100 15 3718. 21 1623. 20 20 100 3777.0 1682.0 3 100 3831.58 180.1 2 31 5 M1+E2 0.12 8 0. 0282 20 2.5 1 52 5 M1+E2 0.07 3 0. 0125 1 612.1 2 100 1 E2 659.1 2 63 10 E1 3870.1 39.1 # 7 2988.7 7 3878.8 1119.1 100 18 1255.5 6 32 6 153.7 6 71 15 3927.33 561. 5 1.2 3 138.0 7 0.92 25 2029.6 5 31 6 305. 37 6 3927.5 100 10 3951.21 662.6 3 67 1605.7 3 7 20 1856.2 3 100 27 Q 001.82 919.79 19 72 5 1230.82 11 100 1656.15 18 90 1 08.3 3202.1 7 76 15 08.6 6 100 15 116.8 2218.5 12 3.3 16 3235.3 5 100 16 115.8 15 0.19 189.2 209.2 5 100 21.3 902.11 15 58 5 13.3 11 100 238.5 236.7 5 100 278.3 1507.3 5 100 350.10 763.0 2 100 388.17 556.6 2 100 12 M1+E2 0.17 801.1 3 6 1 E2 07.8 1636.8 100 55.5 1283.0 3 100 59.8 1823.8 5 100 676. 62 1905. 65 17 100 718.51 767.3 2 95 15 Q 886.9 2 100 15 E1 156.0 2 100 20 Q 852. 16 1200. 7 2 100 19 E2 1616.1 2 2 12 D 928.95 50.7 2 75 25 D+Q 0.18 5 1097.3 3 100 976 170 1 100 520.0 1968.0 2 100 E2 Continued on next page (footnotes at end of table) 39

8 36 Kr 8 5 NUCLEAR DATA SHEETS 8 36 Kr 8 5 Adopted Levels, Gammas (continued) γ( 8 Kr) (continued) E(level) Eγ Iγ Mult. α Comments 5373. 169. 3 100 E2 0. 135 B(E2)(W.u.)=3.7. Mult.: from γ(θ), linear polarization, and α(k)exp in (α,2nγ). 58.71 730.2 1 100 E2 560.66 711.6 2 82 27 1252.6 2 100 27 5901.6 109. 2 100 E2 6067 69 1 100 672.2 1268.1 3 100 6572.0 670. 2 6 17 1198.6 2 100 21 E1 6590.2 111.5 5 100 7015.7 3.7 2 100 M1 7653.1 637. 3 100 D Most precise value from β decay, β + decay, (n,γ), (α,2nγ), or weighted average of the most precise values. From γγ(θ) in (n,γ) and β decay (31.80 min), γ(θ), α(k)exp, linear polariztion measurements in (α,2nγ), unless indicated otherwise. From γγ(θ) observed in (n,γ) and β decay (31.80 min) or γ(θ) in (α,2nγ). # Multiply placed. @ Placement of transition in the level scheme is uncertain. (A) π=+ sequence 1 (B) π=+ sequence 2 (C) π= J=2 sequence (D) π= J=1 sequence 11 5901.6 12+ 5373. 10+ 520.0 10+ 58.71 (10 ) 560.66 8+ 718.51 9 852.16 (9 ) 928.95 8 388.17 8+ 3236.02 6+ 3172.51 6+ 3951.21 (D)7 5+ (A)6+ + 235.6 7 3651.7 (A)8+ 5 2770.95 (B)+ 7 3831.58 (C)7 6 3587.10 5+ 5 3219.3 (A)6+ (C)5 3 + 2095.00 (A)+ 2+ 1897.78 (A)+ 2+ 881.615 (A)2+ 0+ 0.0 (A)0+ 8 3 6 Kr 8 350

8 36 Kr 8 6 NUCLEAR DATA SHEETS 8 36 Kr 8 6 8 Br β Decay (31.80 min) 72Hi03,70Ha21 8 Kr Levels E(level) Jπ E(level) Jπ E(level) Jπ 0.0 0+ 881.61 9 2+ 1837. 3 20 0+ 1897. 63 1 2+ 209. 95 18 + 235. 23 22 + 289. 2 (2+,3 ) 2623. 02 25 2+ 2699. 93 17 3 2759. 1 3 2+ 3081. 99 20 3 3365. 86 21 (1,2+) 375. 65 23 (1 ) 3705. 80 21 1( ),2,3( ) 3870. 1 6 1,2,3 3878. 7 (2+,3) 3927. 30 23 1 08. 3 5 (1,2+) 116. 8 5 1,2 189. 2 6 (2+,3) β radiations Eβ E(level) Iβ Log ft Comments (70 30) 189.2 0.21 5 5.96 1 (50 30) 116.8 2.1 5.18 12 (570 30) 08.3 0.50 7 5.89 10 (730 30) 3927.30 11.5 13.91 8 (780 30) 3878.7 0.29 6.61 8 (780 30) 3870.1 0.17 5 6.86 1 (950 30) 3705.80 2.5 3 5.99 7 (1180 30) 375.65 0.51 1 7.0 13 (1290 30) 3365.86 9. 11 5.93 7 (1570 30) 3081.99 3.9 5 6.65 7 (1900 30) 2759.1 1.11 23 7.52 10 (1960 30) 2699.93 7.2 9 6.77 6 (2030 30) 2623.02 1.7 3 7.6 8 (2170 30) 289.2 0.33 7 8.29 10 (2310 30) 235.23 0.3 5 >9.2 1u (2560 30) 209.95 <0. >9.8 1u (2760 30) 1897.63 11.9 20 7.17 8 Iβ : 11 from Kurie plot analysis (70Ha21). (2820 30) 1837.3 0.06 3 10.9 1u 3 (3770 30) 881.61 13.5 16 7.71 6 Iβ : 20 from Kurie plot analysis (70Ha21). (655 25) 0.0 33 5 9.7 1u 7 Spectrum shape is first forbidden unique (70Ha21). For β intensity per 100 decays, multiply by 1.0. Existence of this branch is questionable. γ( 8 Kr) 72Hi03: Ge(Li), FWHM=2.6 kev at 1.33 MeV. NaI(Tl). Measured Eγ, Iγ, γγ. 70Ha21: Ge(Li), NaI(Tl). Measured Eγ, Iγ, γγ. Magnetic spectrometer, anthracene crystal. Measured β singles and coincidence spectra. 80Sa10: Ge(Li), NaI(Tl). Measured γγ(θ). Other: 57Jo21. Continued on next page (footnotes at end of table) 351

8 36 Kr 8 7 NUCLEAR DATA SHEETS 8 36 Kr 8 7 8 Br β Decay (31.80 min) 72Hi03,70Ha21 (continued) γ( 8 Kr) (continued) γγ directional correlation measurements (80Sa10) : level cascade A 2 A J δ(1) 1897 1016 882 0. 235 1 0.16 22 2 2 0 +0. 8 7 2095 1213 882 0. 108 23 0.008 36 2 0 +0. 01 235 16 882 0. 078 26 0.03 7 2 0 0. 0 2623 171 882 0. 3 0.16 7 2 2 0 1. 10 23 2700 803 1898 0. 106 27 0.05 5 3 2 0 0. 0 3 605(1213)882 0. 161 19 0.023 30 3 2 0 +0. 025 23 2759 1877 882 0. 32 5 0.01 8 2 2 0 0. 10 8 3082 736(16)882 0. 067 2 0.05 3 2 0 0. 09 3 987(1213)882 0. 07 0.02 6 3 2 0 0. 09 3366 28 882 0. 252 28 0.05 1 2 0 +0. 002 30 2 2 0 +0. 79 15 J sequence, δ (1), and δ(2) are from the evaluator's analysis (89Mu06). δ(2) kept fixed. Large δ so lut i ons have not been considered for E1+M2 and E2+M3 transitions. Iγ normalization: from ΣI(γ+ce) to g.s.=67 5. Iβ(g.s.)=33% 5 is the average of 3% (from Kurie plot analysis of 70Ha21) and 32% 5 (from absolute Iγ measurement of 57Jo21). Eγ E(level) Iγ Mult. δ Comments 230.2 2 3705.80 0.73 10 339.8 3705.80 0.17 35.7 2 2699.93 0.73 10 382.0 2 3081.99 1.35 20 39.1 # 7 289. 2 375.65 3870.1 7.7 8 235.23 0.10 3 561. 5 3927.30 0.20 5 60.8 3 2699.93.2 6 (E1+M2) +0.025 23 x 688.7 7 0.22 6 736.5 3 3081.99 3.1 5 D+Q 0.09 3 802.2 2 2699.93 1. 15 (E1+M2) 0.0 3 881.6 1 881.61 100 (E2) 97.5 7 3705.80 0.85 20 955.7 20 1837.3 0.15 7 987.3 3081.99 1.9 3 D+Q 0.09 1005.7 7 3705.80 1.1 3 1015.9 3 1897.63 1.8 15 (M1+E2) +0.8 7 1082.6 3705.80 0.3 6 1119.1 3878.7 0.3 6 x 112. 7 10 0.08 3 1185.0 7 3081.99 0.26 5 1213.3 2 209.95 6.2 7 (E2) δ: +0.01. 1255.5 6 3878.7 0.11 2 138.0 7 3927.30 0.15 163.8 7 235.23.7 9 (E2) δ: 0.0. 153.7 6 3878.7 0.2 5 1578.1 375.65 1.6 3 1607.6 289.2 0.95 15 171.2 2623.02 3.9 6 (M1+E2) 1.10 23 x 1779. 6 7 0.15 1807.8 8 3705.80 0.10 3 1818.7 2699.93 0.58 9 1877.5 2759.1 2.7 (M1+E2) 0.10 8 1897.6 2 1897.63 35 2029.6 5 3927.30 5.0 10 209.2 5 189.2 0.51 10 2200.7 3081.99 2.8 2218.5 12 116.8 0.16 8 Continued on next page (footnotes at end of table) 352

8 36 Kr 8 8 NUCLEAR DATA SHEETS 8 36 Kr 8 8 8 Br β Decay (31.80 min) 72Hi03,70Ha21 (continued) γ( 8 Kr) (continued) Eγ E(level) Iγ Mult. Comments 28.1 3 3365.86 16.0 16 D+Q δ: +0.002 30 for J=1, +0.79 15 for J=2. 2593.7 6 375.65 0.33 7 2622.9 5 2623.02 0.72 15 2758.7 5 2759.1 1.17 20 282.1 3705.80 2.7 2988.7 7 3870.1 0.2 10 305. 3927.30 6.0 9 3202.1 7 08.3 0.50 10 3235.3 5 116.8.9 8 3365.8 3365.86 6.9 10 3927.5 3927.30 16.3 17 08.6 6 08.3 0.66 10 115.8 15 116. 8 0. 0093 20 From 72Hi03. From γγ(θ) (80Sa10). Parity from adopted π. For absolute intensity per 100 decays, multiply by 0.16 31. # Multiply placed. x γ ray not placed in level scheme. Decay Scheme 2 0.0 8 3 5 Br 9 31.80 min * Multiply placed Intensities: Iγ per 100 parent decays %β =100 Q (g.s.)=655 25 Iβ 0.21 2.1 0.50 11.5 0.29 0.17 2.5 0.51 9. 3.9 1.11 7.2 1.7 0.33 0.3 <0. 11.9 0.06 13.5 Log ft 5.96 5.18 5.89.91 6.61 6.86 5.99 7.0 5.93 6.65 7.52 6.77 7.6 8.29 >9.2 1u >9.8 1u 7.17 10.9 1u 7.71 115.8 0.0039 3235.3 2.0 2218.5 0.07 08.6 0.27 3202.1 0.21 3927.5 6.8 305. 2.5 2029.6 2.1 138.0 0.062 561. 0.083 153.7 0.100 1255.5 0.06 1119.1 0.1 2988.7 0.17 39.1 * 282.1 1.12 1807.8 0.02 1082.6 0.1 1005.7 0.6 97.5 0.35 339.8 0.071 230.2 0.30 (2+,3) 189.2 1,2 116.8 209.2 0.21 2593.7 0.1 1578.1 0.67 39.1 * 3365.8 2.9 28.1 D+Q 6.7 (1,2+) 08.3 1 3927.30 2758.7 0.9 1877.5 (M1+E2) 1.12 1818.7 0.2 802.2 (E1+M2) 6.0 60.8 (E1+M2) 1.7 35.7 0.30 2622.9 0.30 171.2 (M1+E2) 1.6 1607.6 0.0 39.1 * 163.8 (E2) 2.0 7.7 0.02 (2+,3) 3878.7 1,2,3 3870.1 1( ),2,3( ) 3705.80 (1 ) 375.65 (1,2+) 3365.86 2200.7 1.16 1185.0 0.108 987.3 D+Q 0.79 736.5 D+Q 1.29 382.0 0.56 3 3081.99 2+ 2759.1 3 2699.93 2+ 2623.02 (2+,3 ) 289.2 + 235.23 1213.3 (E2) 2.6 + 209.95 1897.6 1.6 1015.9 (M1+E2) 6.2 955.7 0.06 2+ 1897.63 0+ 1837.3 2+ 881.61 881.6 (E2) 2 33 9.7 1u 0+ 0.0 8 3 6 Kr 8 353

8 36 Kr 8 9 NUCLEAR DATA SHEETS 8 36 Kr 8 9 8 Br β Decay (6.0 min) 70Ha21 8 Kr Levels E(level) Jπ 0.0 0+ 881.7 2+ 1897. 7 2+ 23. 6 5 + 2768. 6 7 5 β radiations Eβ E(level) Iβ Log ft (2210 110) 2768.6 100 5.13 9 For β intensity per 100 decays, multiply by 1.0. γ( 8 Kr) Nuclide production by fission and 87 Rb(n,α) reaction. Ge(Li), measured Eγ, Iγ. Antracene detector, measured βγ coincidence spectra. Other: 60Sa05. Iγ normalization: from ΣI(γ+ce) to g.s.=100 since g.s. β transition is highly forbidden. %β =100 since no IT decay is observed. Eγ E(level) Iγ @ Mult. # δ # Comments 2.0 5 2768.6 100 10 E1 Mult.: in their NMR/ON work 92Pr06 observed larger anisotropy than expected by theory which authors think could be due to an M2 admixture. 7.0 5 23.6 3 881.6 5 881.7 98 10 1016. 0 5 1897.7 1 M1+E2 +0.8 7 162. 8 5 23.6 97 10 E2 1897. 7 5 1897.7 2 From 95HeZZ. Uncertainties not given by the authors but assigned by the evaluators. Uncertainties stated by authors to be 10% on the average. # From adopted levels, gammas. @ For absolute intensity per 100 decays, multiply by 1.0. Decay Scheme (5,6 ) 320 8 3 5 Br 9 6.0 min Intensities: Iγ per 100 parent decays Q (g.s.)=655 25 %β =100 Iβ 100 Log ft 5.13 2.0 E1 100 162.8 E2 97 7.0 3 1897.7 2 1016.0 M1+E2 1 5 2768.6 + 23.6 2+ 1897.7 2+ 881.7 881.6 98 0+ 0.0 8 3 6 Kr 8 35

8 36 Kr 8 10 NUCLEAR DATA SHEETS 8 36 Kr 8 10 8 Rb ε Decay 82Gr07,70Go,71Bo01 82Gr07: Ge(Li), FWHM=2.0 kev at 1.33 MeV. Measured Eγ, Iγ. 79Gr01: Ge(Li). Eγ precision measurement making use of cascade crossover relationships. 70Go: Ge(Li), CsI, NaI. Measured βγ, Xγ. Deduced ε/β +. 71Bo01: magnetic spectrometer. Measured β + spectra. See also 66He11, 71Ge10, 58Ko92, 67Vr07. Measurements of special observables: βγ directional correlation: 71Ma3, 69De21, 65Si09. βγ circular polarization correlation: 73Sc02, 63Bo20. β + endpoint energy and spectrum shape factor: 80HuZS, 71Bo01, 6La03, 58Be81. Extraction of matrix elements and theoretical analysis are reported by 80HuZS, 73Sc02, 71De02, 71Ma3, and 65Si10. The γγ(θ) measurement of 65Ro06 disagrees with other experiments (see 83 Kr(n,γ) and 8 Br β decay (31.80 min)) and was therefore not adopted by the evaluator. 8 Kr Levels E(level) Jπ 0.0 0+ 881. 615 3 2+ 1897. 78 10 2+ β +,ε Data Eε E(level) Iβ + Iε Log ft I(ε+β + ) Comments 781.5 13 881.615 12.6 7 56.0 23 7. 11 11 68.6 16 Iε: ε/β + =.3 18 deduced from εk(exp)/β + =3.96 16 and εl(exp)/εk(exp)=0.119 2 (70Go); other measurements: ε/β + =5.75 7 (71Ge10); ε/β + =5.72 12 (58Ko92); ε/β + =5.66 2 (55We0). Theoretical value: εk/β + =3. (allowed transition), εk/β + =.2 to.7 (first forbidden transition, model dependent, see 70Go). As discussed by 70Go the values of 55We0 and 58Ko92 are probably too high because of summation and pileup effects. Also from theoretical considerations the lower value of 70Go is preferred. (783.1 23) 1897.78 1.09 8. 085 17 1.09 1657. 8 8 0.0 13.1 6 13. 6 9.509 1u 19 26.5 11 Deviation of 2% from unique forbidden shape (71Bo01,80HuZS). For intensity per 100 decays, multiply by 1.000 6. γ( 8 Kr) Iγ normalization, branching: calculated by the evaluator from the following quantities: Iβ(881.)/Iβ(g.s.)=0.97 5 (average of 0.92 as deduced from β + spectra (71Bo01) and 1.008 12 from γ ± γ ± and γ ± γ ± 881γ triple coincidence (71Ge10)), Iβ(β decay)/iβ(g.s.)=0.29 (rough estimate of 58Be81, 50% uncertainty assumed by the evaluator), ε(g.s.)/iβ(g.s.)=1.028 12 (theory) ε(881.)/iβ(881.)=.3 18 (70Go). Eγ E(level) Iγ Comments 881. 601 16 881. 615 100 1016. 158 11 1897. 78 0. 506 15 1897. 751 11 1897.78 1.07 3 Eγ: sum of 881γ+1016γ (95HeZZ). From recommended standard energies (95HeZZ). From 82Gr07. Others: 66He11, 71Ge10. For absolute intensity per 100 decays, multiply by 0.690 16. 355

8 36 Kr 8 11 NUCLEAR DATA SHEETS 8 36 Kr 8 11 8 Rb ε Decay 82Gr07,70Go,71Bo01 (continued) Decay Scheme Intensities: Iγ per 100 parent decays 2 0.0 8 3 7 Rb 7 32.77 d 1897.751 0.7 1016.158 0.39 %ε+%β + =96.2 5 Q + (g.s.)=2680.9 23 2+ 1897.78 1.09 8.085 Log ft 2+ 881.615 781.5 12.6 56.0 7.11 881.601 69.0 0+ 0.0 1657.8 13.1 13. 9.509 1u 8 3 6 Kr 8 Eε Iβ + Iε 82 Se(α,2nγ) 90Ro10 E=12 27 MeV. Enriched target. Measured: γ, ce, γ(θ), γ(θ,h,t), γγ, γ(t), γγ(t), γ linear polarization, excit. Deduced α(k)exp, assuming α(k)exp(882γ,e2)=5.9 10 (theory). HPGE, FWHM=0.9 at 60 kev, 1.9 at 1300 kev. 85Ro22: preliminary report superseded by 90Ro10. Other (α,2nγ) studies: 82Za0: E=16.5 MeV to 27.3 MeV. Enriched target. Ge(Li), NaI(Tl). Measured Eγ, Iγ, γγ, α,γ(t), time differential perturbed angular distributions. 71Mc12: E=25 MeV. Enriched target. FWHM=3.0 kev at 1.33 MeV. Measured Eγ, Iγ, γ(θ), γ(t). 73Wy01, 71WyZW: E=25 MeV. Enriched target. Si(Li), FWHM=2.5 kev at 700 kev. Measured conversion electron spectra. 8 Kr Levels E(level) Jπ T 1/2 Comments 0.0 & 0+ 881.61 & 10 2+ 3.2 ps 1 1831. 61 23 0+ 25 ps 10 1897. 82 a 18 2+ 0.30 ps +7 3 2095. 08 & 13 + 0.5 ps +5 7 235. 5 a 13 + 2 ps 3 2622. 93 23 2+ 0.28 ps 1 2700. 2 3 3 1.7 ps +1 11 2770. 66 b 15 5 7.6 ps 21 Jπ: possible configuration=((ν g 9/2 ) 1 (ν p 1/2 ) 1 ). 302. 6 3 (2+,3,+) 3172. 66 & 15 6+ 2.6 ps 7 3219. 59 c 15 5 17 ps Jπ: possible configuration=((π f 5/2 ) 1 (π g 9/2 )) or configuration=((π p 3/2 ) 1 (π g 9/2 )). 3236. 17 & 18 8+ 1.89 µs # g= 0.27 2 (82Za0). Jπ: configuration=(ν g 9/2 ) 2. 3288. 69 17 5+ 0.31 ps 10 3587. 21 c 16 6 5.5 ps 1 3638. 69 25 (5 ) 0.69 ps +28 21 3651. 62 b 20 7 3831. 72 c 16 7.9 ps 21 3951. 29 a 19 6+ 0.9 ps 5 3999. 3 ( ) 0.35 ps 10 350. 2 3 (5 ) 0.28 ps +1 7 388. 30 c 22 8 6.7 ps 17 07. 5 5 (6 ) 0.31 ps 1 718. 63 a 19 8+ 5.5 ps 21 852. 30 b 22 9 0.83 ps 35 929. 08 c 2 (9 ) 0.55 ps 21 976 1 (9+) 520. 19 & 25 10+ 0.1 ps Continued on next page (footnotes at end of table) 356

8 36 Kr 8 12 NUCLEAR DATA SHEETS 8 36 Kr 8 12 82 Se(α,2nγ) 90Ro10 (continued) 8 Kr Levels (continued) E(level) Jπ T 1/2 Comments 5373. 5 & 3 12+ 3.7 ns @ 21 g=+0.17 2. Jπ: configuration=((π f 5/2 ) 1 (π p 3/2 ) 1 (ν g 9/2 ) 2 ). g=+0.1 3 (85Ro22). 58. 83 a 21 10+ 3.5 ps 1 560. 8 c 3 (10 ) 0.9 ps 21 5901. 7 b 3 11 1.9 ps 6 6068 1 672. 3 6572. 1 3 (12) 0.2 ps 1 6590. 3 6 7015. 8 (13) 0.17 ps 7 7653. 2 5 (1 ) 0.28 ps 7 From least squares fit to Eγ. From recoil distance technique. From Doppler shift attenuation technique. # From external beam pulsing. @ From γ(t). & π=+ sequence 1. a b c π=+ sequence 2. π= J=2 sequence. π= J=1 sequence. γ( 8 Kr) Eγ E(level) Iγ Mult. δ Comments 63.5 1 3236.17 7 E2 α(k)exp=7 2. Mult.: E2 or M2 from α(k)exp but M2 ruled out by T 1/2 consideration. 169.3 1 5373.5 100 13 E2 α(k)exp=0.088 30. x 179.0 5 # 1 180.1 2 3831.72 20 3 M1+E2 0.12 8 2.5 1 3831.72 33 3 M1+E2 +0.07 3 α(k)exp=0.012 2. 298.5 1 3587.21 9 1 E1 367.6 1 3587.21 77 8 M1+E2 +0.2 6 α(k)exp=0.001. 19.0 3 3638.69 3 1 25.2 1 2770. 66 20 20 E1 α(k)exp=0.0015 2. 3.7 2 7015.8 25 7 M1 7.6 3 235.5 12 3 8.9 1 3219.59 55 7 M1 519 & 1 3219.59 3 # 50.7 2 929.08 15 5 D+Q +0.18 5 556.6 2 388.30 50 6 M1+E2 +0.17 α(k)exp=0.0016 2. 605.1 2700.2 6 3 612.1 2 3831.72 6 9 E2 α(k)exp=0.0018 2. 637. 3 7653.2 13 D 659.1 2 3831.72 0 6 E1 662.6 3 3951.29 10 # 670. 2 6572.1 11 69 1 6068 25 # 711.6 2 560.8 9 3 730.2 1 58.83 38 6 E2 763.0 2 350.2 11 3 767.3 2 718.63 19 3 Q 801.1 3 388.30 23 7 E2 802. 3 2700.2 15 5 E1 816.6 2 3587.21 8 2 881.0 3 3651. 62 110 # 30 E2 Iγ: from Iγ/Iγ(881.6)=0.11 3. Eγ: from E(level) difference. 881.6 1 881. 61 1000 [E2] 886.9 2 718.63 20 3 E1 Continued on next page (footnotes at end of table) 357

8 36 Kr 8 13 NUCLEAR DATA SHEETS 8 36 Kr 8 13 82 Se(α,2nγ) 90Ro10 (continued) γ( 8 Kr) (continued) Eγ E(level) Iγ Mult. δ Comments 93.2 2 3288.69 30 5 M1+E2 +0. 1 97.6 3 302.6 9 3 950.0 2 1831.61 21 @ 2 1016.2 3 1897.82 15 3 D+Q +0.16 8 109. 2 5901.7 2 5 E2 1077.6 1 3172. 66 50 30 E2 α(k)exp=0.000 1. 1097.3 3 929.08 20 # x 111 1 15 # 112.5 2 3219. 59 105 15 E1 111.5 5 6590.3 8 # 1198.6 2 6572.1 2 5 E1 1200.7 2 852.30 3 8 E2 1213.5 1 2095. 08 65 30 E2 1228.6 3 3999.3 10 3 1252.6 2 560.8 11 3 1268.1 3 672.3 7 # 163.8 1 235. 5 315 20 E2 153.7 3 3638.69 3 1 156.0 2 718.63 20 Q 1605.7 3 3951.29 7 3 1616.1 2 852.30 18 5 D 1636.8 07.5 3 # 170 1 976 70 # 171.3 2 2622.93 6.0 @ 3 D+Q 1.5 +5 10 1856.2 3 3951.29 15 Q 1897.8 3 1897.82 35 E2 1968.0 2 520. 19 170 20 E2 2160.8 6 302.6 8 3 At E(α)=27 MeV. From linear polarization and α(k) measurements. The α(k) are normalized to 0.00059 (E2, theory) for the 881γ. From γ(θ). # Estimated from coin measurement. @ Determined at E(α)=12 MeV. & Placement of transition in the level scheme is uncertain. x γ ray not placed in level scheme. 358

8 36 Kr 8 1 NUCLEAR DATA SHEETS 8 36 Kr 8 1 82 Se(α,2nγ) 90Ro10 (continued) Level Scheme Intensities: relative Iγ (1 ) 7653.2 637. D 13 111.5 8 1198.6 E1 2 670. 11 1268.1 7 (13) 7015.8 3.7 M1 25 (12) 6572.1 69 25 109. E2 2 11 5901.7 (10 ) 560.8 1252.6 11 711.6 9 170 70 1097.3 20 50.7 D+Q 15 1616.1 D 18 1200.7 E2 3 156.0 Q 20 886.9 E1 20 767.3 Q 19 10+ 58.83 12+ 5373.5 730.2 E2 38 169.3 E2 100 1968.0 E2 170 10+ 520.19 (9+) 976 1605.7 7 662.6 10 659.1 E1 0 612.1 E2 6 2.5 M1+E2 33 180.1 M1+E2 20 (9 ) 929.08 9 852.30 8+ 718.63 1636.8 3 801.1 E2 23 556.6 M1+E2 50 763.0 11 (6 ) 07.5 8 388.30 (5 ) 350.2 1228.6 10 1856.2 Q 15 153.7 3 19.0 3 816.6 8 367.6 M1+E2 77 298.5 E1 9 93.2 M1+E2 30 63.5 E2 112.5 E1 105 519 3 8.9 M1 55 1077.6 E2 50 2160.8 8 97.6 9 ( ) 3999.3 6+ 3951.29 7 3831.72 7 3651.62 (5 ) 3638.69 6 3587.21 5+ 3288.69 8+ 3236.17 5 3219.59 6+ 3172.66 (2+,3,+) 302.6 5 2770.66 3 2700.2 2+ 2622.93 + 235.5 + 2095.08 2+ 1897.82 0+ 1831.61 25.2 E1 20 802. E1 15 605.1 6 171.3 D+Q 6.0 881.6 [E2] 1000 2+ 881.61 881.0 E2 110 163.8 E2 315 7.6 12 1213.5 E2 65 1897.8 E2 35 1016.2 D+Q 15 950.0 21 6590.3 672.3 6068 0.28 ps 0.17 ps 0.2 ps 1.9 ps 0.9 ps 3.5 ps 3.7 ns 0.1 ps 0.55 ps 0.83 ps 5.5 ps 0.31 ps 6.7 ps 0.28 ps 0.35 ps 0.9 ps.9 ps 0.69 ps 5.5 ps 0.31 ps 1.89 µs 17 ps 2.6 ps 7.6 ps 1.7 ps 0.28 ps 2 ps 0.5 ps 0.30 ps 25 ps 3.2 ps 0+ 0.0 8 3 6 Kr 8 359

8 36 Kr 8 15 NUCLEAR DATA SHEETS 8 36 Kr 8 15 83 Kr(n,γ) E=thermal 87Ha21,72Ma2 Jπ( 83 Kr)=9/2+. 8 Kr Levels E(level) Jπ E(level) Jπ E(level) Jπ 0.0 0+ 881.69 9 2+ 1897.78 7 2+ 2095.01 11 + 235.60 10 + 2623.2 3 2+ 2700.39 10 3 2759.39 16 2+ 2771.10 11 5 2861.1 10 (2+,3,+) 302.19 11 (2+,3,+) 3082.53 12 3 3172.7 3 (6+) 3183.3 3 (2+,3,+) 3219.0 11 5 3288.97 17 5+ 3312.53 1 (3 ) 308.25 13 (3,,5 ) 326.77 1 (2+,3,+) 363.2 3587.2 6 3638.61 12 (5 ) 3718.1 22 (3 ) 3777.0 001.96 13 ( ) 21.56 1 238.7 5 278. 6 55.9 59.9 5 676.77 21 (10520. 5 # 3) +,5+ @ From adopted levels. Authors suggest (+). # Energy of the capture state deduced from least squares fit of the levels to the gammas. Possible systematic errors are not included in E. @ Thermal neutron capture by 9/2+ target. γ( 8 Kr) Thermal neutron capture in natural krypton. 87Ha21: Ge(Li), FWHM=2.3 kev at 1.33 MeV. Measured Eγ<5.5 MeV, Iγ, γγ, γγ(θ). 72Ma2: Ge(Li) pair and anticoincidence spectrometers. Measured Eγ, Iγ. γγ directional correlation measurements (87Ha21) : level cascade A 2 A J δ(1) δ(2) 1897 1016 882 0. 18 5 0.0 6 2 2 0 +0. 62 11 2095 1213 882 0. 105 1 0. 006 20 2 0 +0. 006 23 235 16 882 0. 11 1 0.01 2 2 0 +0. 007 15 2700 803 1898 0. 16 3 0.06 3 2 0 0. 11 5 803 1016 0. 12 6 0.16 6 3 2 2 0. 02 1 +0.62 # 2771 25 16 0. 06 2 0. 003 18 5 2 +0. 018 21 25(16)882 0. 08 2 0.00 2 5 2 0 0. 03 3219 112 1213 0. 13 2 0.03 5 2(a)+1.08 15 112(1213)882 0. 16 0.08 2 0 +1. 3 5 3289 93 16 0. 09 3 0.01 3 2 0. 28 2 +0. 29 8 5 2 +0. 26 6 or +2.9 5 6 2 0. 02 6 3312 612(803)1898 0. 016 9 0.21 12 3 3 2 0 3. 75 26 or +0.1 3 A 2, A are averages o f the coe f f i c i ents quoted by 87Ha21. J sequence, δ (1), and δ(2) are from the evaluator's analysis. δ(2) kept fixed. Large δ so lut i ons have not been cons idered f or E1+M2 and E2+M3 t r ans i t i ons. a adopted J(3219)=5 f rom (α,2nγ). For 5 2 δ (112)= 0. 10 +5 2 which is not in disagreement with it being pure dipole in (α,2nγ) # bad f i t. Eγ E(level) Iγ x 87.7 5 3. 6 x 10.0 6 2.16 23 x 189.3 6 0.0 # 5 x 19.3 9 1.1 # 5 x 198. 6 2.01 2 Continued on next page (footnotes at end of table) 360

8 36 Kr 8 16 NUCLEAR DATA SHEETS 8 36 Kr 8 16 83 Kr(n,γ) E=thermal 87Ha21,72Ma2 (continued) γ( 8 Kr) (continued) Eγ E(level) Iγ Mult. δ Comments x 202.3 12 0.62 # 15 x 212.6 9 0.32 # 15 x 229.3 8 0.25 # 10 236.7 5 238.7 0.8 # 3 23.7 363.2 0. # x 29. 7 0.31 # 12 x 271.1 9 0.23 5 x 288.6 9 0.61 22 x 339.6 7 0.8 5 x 37.6 8 0.53 # 21 35.7 6 2700.39 0.35 6 367.7 5 3587.2 2.56 5 382.2 5 3082.53 0.88 8 x 13.80 12 0.21 # 11 19. 5 3638.61 3.03 5 25.30 11 2771.10 1.2 9 (E1+M2) +0.018 21 x 37.6 8 0.53 # 21 6.5 5 235.60 0.95 # 7 Eγ: although 87Ha21 argued against its placement from 235.6 level due to lack of coin, the evaluator has adopted this placement in keeping with the β and (α,2nγ) studies. The bagreement of relative branching support this placement. 8.11 11 3219.0 2.8 9 63.87 &a 12 3638.61 0.35 8 x 73.1 6.01 3 x 500.01 17 0.80 7 x 519.3 5 0.61 23 x 520. 6 0.1 # 9 x 530.02 13 1.33 6 51.50 12 3312.53 1.2 6 56.98 12 308.25 1.58 6 x 57.3 5 0.32 # 11 605.5 2700.39 1.92 12 612.0 3 3312.53 2.01 13 (M1+E2 ) +0. 1 3 δ: +0.1 3 or 3.75 26. 637.13 18 308.25 1.21 11 x 69.6 3 0.67 10 x 676.3 3 0.6 9 x 681. 5 0.2 8 x 688.5 3 0.9 # 6 x 696.6 0.51 # 11 708.2 21 308.25 1.06 10 x 716.17 2 0.6 10 Iγ: autors' value of 0.6 95 is assumed to be a misprint. x 727.0 10 0.39 20 It is 0.68 9 in their γγ table. 737.0 9 3082.53 1.51 25 765.7 25 2861.1 0.6 802.62 8 2700.39 7.31 11 (E1+M2) 0.11 5 815.8 5 3587.2 0.08 # 3 x 832.9 6 0.11 5 x 87.07 20 0.6 5 x 857.1 0.23 5 x 87.30 25 1.56 # 12 881.7 11 881.69 100.0 16 (E2) 902.11 15 21.56 0.66 6 919.79 19 001.96 1.07 8 938.12 13 3638.61 2.16 10 93.36 1 3288.97 3.3 96.5 5 302.19 2.15 9 963. 13 2861.1 3.18 11 967.0 5 3312.53 0.0 # 1 987.69 19 3082.53 1.23 12 1016.20 26 1897.78 5.2 3 (M1+E2) +0.62 11 x 1030. 9 8 0.1 5 Continued on next page (footnotes at end of table) 361

8 36 Kr 8 17 NUCLEAR DATA SHEETS 8 36 Kr 8 17 83 Kr(n,γ) E=thermal 87Ha21,72Ma2 (continued) γ( 8 Kr) (continued) Eγ E(level) Iγ Mult. δ Eγ E(level) Iγ x 105. 2 0.30 6 1077.55 25 3172.7 2.27 1 1087.8 3 3183.3 0.39 5 x 1095. 3 9 0.32 9 x 1118. 02 19 0.58 6 112. 6 3219.0 6.83 10 x 112. 73 1 0.73 5 x 1151. 6 8 0.11 5 x 1173. 05 15 0.61 6 x 1195. 3 0.30 5 x 1201. 31 12 1.61 8 1213.2 12 2095.01 39.9 8 (E2+M3) +0.006 23 1230.82 11 001.96 1.9 6 x 1236. 7 0.25 6 x 1250. 3 3 0.66 9 x 125. 3 7 0.39 8 x 1261. 6 18 0.97 9 1283.0 3 55.9 0.52 8 1293.20 13 3638.61 1.8 12 x 1299. 6 3 0.55 8 x 1312. 00 22 0.76 9 1331.89 13 326.77 1.89 26 x 1337. 2 0.13 8 x 1366. 3 8 0.31 11 x 1386. 8 6 0.3 12 x 1396. 1 0.81 # 11 x 108. 2 0.7 10 x 128. 7 3 0.28 5 13.3 11 21.56 1.1 5 163.86 6 235.60 3.2 (E2+M3) +0.007 15 x 191. 7 8 1.71 6 1507.3 5 278. 0.17 5 153.27 19 3638.61 2.3 8 x 1560. 5 0.32 x 1578. 2 3 0.51 6 x 1595. 5 8 0.16 5 x 1613. 6 0.38 6 1623.20 20 3718.1 1.57 7 x 166. 6 0.59 12 1656.15 18 001.96 1.3 21 1682.0 3 3777.0 1.02 8 x 1698. 8 6 0.31 7 x 1712. 1 3 3.10 5 x 1725. 8 5 0.38 7 171.7 3 2623.2 2.10 9 x 1762. 2 3 0.36 6 x 1786. 5 3 0.35 6 x 1812. 96 17 1.3 16 1823.8 5 59.9 0.3 9 x 1855. 6 5 0.3 9 1877.8 15 2759.39 0.89 6 1897.79 8 1897.78 10.81 13 1905.65 17 676.77 0.76 6 x 192. 0 5 0.2 6 x 1959. 8 12 1.2 8 1979.3 11 2861.1 5.17 11 x 2017. 1 5 0.1 12 x 2033. 8 5 0. 12 x 201. 5 0.7 13 x 207. 6 5 0.29 6 x 2127. 9 3 0.13 13 2160.8 7 302.19 2.78 7 x 2182. 9 3 0.3 5 2200.86 11 3082.53 1.16 5 x 228. 7 5 0.01 5 x 2261. 3 3 0.39 5 2302.5 3183.3 0.51 8 x 2312. 5 0.2 8 x 2331. 8 5 0.5 6 x 2339. 8 0.58 8 x 2352. 9 0.51 6 x 2360. 6 5 0.2 9 x 2382. 5 0.50 12 x 2392. 2 6 0.3 9 x 20. 6 7 0.35 12 x 268. 2 6 0.36 11 x 2518. 5 1.02 12 25.72 19 326.77 1.31 13 x 2581. 3 0.95 1 x 2600. 9 5 0.53 10 2622.5 6 2623.2 0.37 9 x 2636. 9 0.65 12 x 2675. 6 2.12 21 x 2681. 7 7 0.32 9 x 2713. 0.6 1 2758.2 2759.39 0.61 11 x 2769. 6 6 0.38 10 x 2777. 5 17 0.19 8 x 2793. 5 11 0.21 9 x 2835. 0 3 0.96 9 x 2875. 8 10 0.21 7 x 2885. 6 5 0.55 8 x 2893. 1 6 0.1 8 x 2921. 2 5 0.70 12 x 2956. 6 6 0.2 10 x 2965. 5 12 0.20 8 x 2986. 2 6 0.39 10 x 3032. 2 6 0.5 9 x 3108. 3 11 1.05 17 x 31. 1 0.67 1 x 3230. 5 8 0.3 10 x 32. 9 7 0.39 11 x 3285. 7 10 0.6 12 x 3319. 1 9 0. 12 x 3358. 2 1 0.50 15 x 302. 0 10 0.26 8 x 312. 9 6 0.50 9 x 328. 5 9 0.29 8 x 3. 1 13 0.19 8 x 358. 2 6 0.50 10 x 3503. 6 0.27 6 x 3529. 2 @ 3 3.51 10 x 3550. 12 0.12 6 x 3591 0.10 10 x 3610. 7 9 0. 12 x 3662. 6 13 0.22 13 x 3735. 3 22 0.10 8 x 3750. 1 2 0.09 8 x 3788. 5 13 0.20 9 x 3805. 7 0.39 11 x 3895. 1 1.21 12 x 391. 5 7 0.53 10 x 3962. 2 16 0.22 9 x 3975. 8 0.9 10 x 3991. 1 9 0.39 10 x 035 0.16 12 Continued on next page (footnotes at end of table) 362