Zero Inflated Poisson Mixture Distributions

Σχετικά έγγραφα
Congruence Classes of Invertible Matrices of Order 3 over F 2

C.S. 430 Assignment 6, Sample Solutions

ST5224: Advanced Statistical Theory II

Solution Series 9. i=1 x i and i=1 x i.

An Inventory of Continuous Distributions

Statistical Inference I Locally most powerful tests

Section 8.3 Trigonometric Equations

2 Composition. Invertible Mappings

EE512: Error Control Coding

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Other Test Constructions: Likelihood Ratio & Bayes Tests

ON NEGATIVE MOMENTS OF CERTAIN DISCRETE DISTRIBUTIONS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

The Simply Typed Lambda Calculus

Homework 3 Solutions

4.6 Autoregressive Moving Average Model ARMA(1,1)

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Section 7.6 Double and Half Angle Formulas

Finite Field Problems: Solutions

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Areas and Lengths in Polar Coordinates

On a four-dimensional hyperbolic manifold with finite volume

Example Sheet 3 Solutions

Approximation of distance between locations on earth given by latitude and longitude

Exercises to Statistics of Material Fatigue No. 5

Matrices and Determinants

Μηχανική Μάθηση Hypothesis Testing

ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΣΕΞΟΥΑΛΙΚΗΣ ΔΡΑΣΤΗΡΙΟΤΗΤΑΣ ΤΩΝ ΓΥΝΑΙΚΩΝ ΚΑΤΑ ΤΗ ΔΙΑΡΚΕΙΑ ΤΗΣ ΕΓΚΥΜΟΣΥΝΗΣ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ

Areas and Lengths in Polar Coordinates

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Math 6 SL Probability Distributions Practice Test Mark Scheme

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Lecture 2. Soundness and completeness of propositional logic

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

A summation formula ramified with hypergeometric function and involving recurrence relation

Η ΠΡΟΣΩΠΙΚΗ ΟΡΙΟΘΕΤΗΣΗ ΤΟΥ ΧΩΡΟΥ Η ΠΕΡΙΠΤΩΣΗ ΤΩΝ CHAT ROOMS

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Assalamu `alaikum wr. wb.

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

derivation of the Laplacian from rectangular to spherical coordinates

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Every set of first-order formulas is equivalent to an independent set

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Concrete Mathematics Exercises from 30 September 2016

Second Order Partial Differential Equations

Longitudinal Changes in Component Processes of Working Memory

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ

Solutions to Exercise Sheet 5

CRASH COURSE IN PRECALCULUS

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Inverse trigonometric functions & General Solution of Trigonometric Equations

6.3 Forecasting ARMA processes

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Second Order RLC Filters

Συστήματα Διαχείρισης Βάσεων Δεδομένων

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

Math221: HW# 1 solutions

ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΣΜΖΜΑ ΖΛΔΚΣΡΟΛΟΓΩΝ ΜΖΥΑΝΗΚΩΝ ΚΑΗ ΣΔΥΝΟΛΟΓΗΑ ΤΠΟΛΟΓΗΣΩΝ ΣΟΜΔΑ ΤΣΖΜΑΣΩΝ ΖΛΔΚΣΡΗΚΖ ΔΝΔΡΓΔΗΑ

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Homework 8 Model Solution Section

5.4 The Poisson Distribution.

PARTIAL NOTES for 6.1 Trigonometric Identities

Commutative Monoids in Intuitionistic Fuzzy Sets

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

A Note on Intuitionistic Fuzzy. Equivalence Relation

ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. ΘΕΜΑ: «ιερεύνηση της σχέσης µεταξύ φωνηµικής επίγνωσης και ορθογραφικής δεξιότητας σε παιδιά προσχολικής ηλικίας»

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

A Laplace Type Problem for Lattice with Cell Composed by Four Isoscele Triangles and the Test Body Rectangle

Homomorphism in Intuitionistic Fuzzy Automata

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Fractional Colorings and Zykov Products of graphs

«Χρήσεις γης, αξίες γης και κυκλοφοριακές ρυθμίσεις στο Δήμο Χαλκιδέων. Η μεταξύ τους σχέση και εξέλιξη.»

Lecture 34 Bootstrap confidence intervals

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Lecture 26: Circular domains

Problem Set 3: Solutions

Uniform Convergence of Fourier Series Michael Taylor

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

ΠΕΡΙΕΧΟΜΕΝΑ. Κεφάλαιο 1: Κεφάλαιο 2: Κεφάλαιο 3:

ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «ΘΕΜΑ»

Πτυχιακή Εργασία ΓΝΩΣΕΙΣ KAI ΣΤΑΣΕΙΣ ΤΩΝ ΕΠΑΓΓΕΛΜΑΤΙΩΝ ΥΓΕΙΑΣ ΓΙΑ ΤΗΝ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΕΚΘΕΣΗ ΣΤΟΝ HIV. Στυλιανού Στυλιανή

ΣΔΥΝΟΛΟΓΗΚΟ ΔΚΠΑΗΓΔΤΣΗΚΟ ΗΓΡΤΜΑ ΗΟΝΗΧΝ ΝΖΧΝ «ΗΣΟΔΛΗΓΔ ΠΟΛΗΣΗΚΖ ΔΠΗΚΟΗΝΧΝΗΑ:ΜΔΛΔΣΖ ΚΑΣΑΚΔΤΖ ΔΡΓΑΛΔΗΟΤ ΑΞΗΟΛΟΓΖΖ» ΠΣΤΥΗΑΚΖ ΔΡΓΑΗΑ ΔΤΑΓΓΔΛΗΑ ΣΔΓΟΤ

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

On Numerical Radius of Some Matrices

Πτυχιακή Εργασία Η ΠΟΙΟΤΗΤΑ ΖΩΗΣ ΤΩΝ ΑΣΘΕΝΩΝ ΜΕ ΣΤΗΘΑΓΧΗ

Μελέτη των μεταβολών των χρήσεων γης στο Ζαγόρι Ιωαννίνων 0

Notes on the Open Economy

Strain gauge and rosettes

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Τα γνωστικά επίπεδα των επαγγελματιών υγείας Στην ανοσοποίηση κατά του ιού της γρίπης Σε δομές του νομού Λάρισας

Generating Set of the Complete Semigroups of Binary Relations

Transcript:

Applied Mathematical Sciences, Vol., 27, no. 7, 839-847 HIKARI Ltd, www.m-hikari.com https://doi.org/.2988/ams.27.7263 Zero Inflated Poisson Miture Distributions Cynthia L. Anyango, Edgar Otumba and John M. Kihoro Department of Mathematics and Statistics Maseno University, P.O. Bo 333 Maseno, Kenya Copyright c 27 Cynthia L. Anyango, Edgar Otumba and John M. Kihoro. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract This paper presents a method of constructing the Zero inflated Poisson continuous miture distributions which have applications in various fields. The distributions can be formed by either direct integration or integration of moments of the underlying distributions. The two methods are presented in sections one and two. In section four, we present the mied distributions. We further proved the identities that resulted when the resultant mied distributions were equated. Keywords: ZIP, continuous mied distributions, moments and eplicit Introduction In applications involving count data, it is common to encounter the frequency of observed zeros significantly higher than predicted by the model based on the standard parametric family of discrete distributions. In such situations, zeroinflated Poisson and zero-inflated negative binomial distribution have been widely used in modeling the data, yet other models may be more appropriate in handling the data with ecess zeros, as shown by 2 The consequences of this is misspecifying the statistical model leading to erroneous conclusions and bringing uncertainty into research and practice. Therefore the problem is to identify by constructing other alternatives, to the models already present in the literature that may be more appropriate for modeling data with ecess

84 Cynthia L. Anyango, Edgar Otumba and John M. Kihoro zeros. In their paper,, presented a method on how to construct the mied poisson distributions eplicitly. The paper gives an alternative method where the distributions can be constructed using the r th moment epectation of the underlying distribution. The identities that result from the two methods are also proved. A mied distribution is constructed when two probability distributions are mied. Consider a probability distribution whose parameter is varying and also has a distribution. Then the integral or summation of these two distributions forms a mied probability distribution. In 3, constructed a Negative Binomial distribution by miing a Poisson distribution with its parameter. In this work, the ZIP Zero- Inflated Poisson) distribution was mied with various continuous distributions to construct the ZIP miture distributions. 2 Construction of mied ZIP distribution using moments of the miing distribution 2. General case Suppose gλ) is the miing distribution, then ZIP mied distribution, which can be written in terms of the r th moment of the miing distribution as { ρ ρ) j ρ) j j j!k! ) j j! λ j gλ)dλ, k; λ jk gλ)dλ, k, 2,.... ) Letj, then f) can be written as { ρ ρ) ) EΛ ), k; P ry )! ρ) ) EΛ k ), k, 2,.... where EΛ r ) is the r th moment of the miing distribution. 2) 3 Construction of the ZIP distributions by direct integration A random variable Y follows a zero-inflated Mied Poisson distribution with miing distribution having probability density function g if its probability function is given by; P roby k) { ρ ρ)e λ gλ)dλ, k; ρ) e λ λ k k! gλ)dλ, k, 2,.... 3) If we equate equation 4 and equation 5, we get identities. This is so because the resultant distributions should be identical.

Zero inflated Poisson miture distributions 84 4 Special cases 4. Eponential distribution For an eponential distribution, the r th moment is EΛ r ) Let λ r e λ dλ λ r e λ dλ y λ, λ λ, anddλ dy EΛ r ) Thus from equation 2, we have P ry ) r! r { ρ ρ) ρ) ) ) r y y dy e )!!, k; k)!, k k, 2,.... From equation 3 we construct the mied ZIP distribution as follows ρ ρ) ) P ry k) ), ) k; k 5) ρ), k, 2,.... From equation 2 and equation 3, we have the following identities 4). 2. ρ) ρ ρ) ) ) )! ρ ρ)! ) ) k k)! ρ) k Proofs From the first identity,

842 Cynthia L. Anyango, Edgar Otumba and John M. Kihoro The second identity )!! ) ) ) Γk ) k! k ) k)!!γk ) 4.2 Gamma distribution Γk ) k! k Γk ) k! k Γk ) k! k k! k! k k ) ) ) ) k k ) ) k) ) k ) ) k ) From equation 5, ρ ρ) β β )α, k; ) P ry k) α k ) α ) k β 6) ρ) k β β, k, 2,.... The mied distribution is a ZINB distribution with parameters α, ρ and From equation 4, The mied distribution becomes β β. P ry k) { ρ ρ) ρ) ) ) β α Γα)! Γα β α Γα, β α k; Γαk), β αk k, 2,.... 7) Identities a) ρ ρ) ) ) β α α Γα ) β ρ ρ)! Γα β α β

Zero inflated Poisson miture distributions 843 b) Proof; ρ) ) β α Γα k) α k ρ) Γα β αk k ) β α β) αk ) Γα )! Γα β For the second identity α ) ) ) α α β ) α β ) α β β ) β Γα k) ) Γαβ k Γα k) β k k!γα Γα k) k!γα Γα k) k!γα Γα k) k!γα β k α k k α k k Γα k) )!Γα k) β k α k ) β k ) α k) β k β β ) β α β k ) αk) β) αk ) β β β k ) α β ) αk ) k ) ) β 4.3 Generalized Lindley distribution The mied distribution is { ρ ρ) α P ry k) ρ) k! ) α ) α ) α α Γαk) ) αk Γα) α αk k; k, 2,.... 8)

844 Cynthia L. Anyango, Edgar Otumba and John M. Kihoro which is a Zero-Inflated Generalized Poisson Lindley distribution with two parameters. Using the method of moments, ρ ρ) ) α αγα) Γα), k;! )Γα) P ry k) α α Identities a) b) Proof; ρ) ρ ρ) α α α α ρ) ) α )Γα) αγαk) αk Γαk), k, 2,.... αk 9) ) α αγα Γα! )Γα ) α α ρ ρ) α ) ) α ) α ) ρ) k! α α α αγα k) )Γα ) αk Γα k ) αk α αγα k) Γα k ) )Γα ) ) αk ) αk Γα ) )!Γα ) α α α α Γα ) )!Γα Γα ) )!Γα ) α ) ) Γα ) )!Γα ) 2) ) ) α ) ) ) α α ) 3) ) ) α α ) ) α α ) α 4) ) α α ) α) 5) ) α ) α α 6) ) α ) α 7)

Zero inflated Poisson miture distributions 845 Second item α Γ α k) ) Γ k α ) 9) ) 8) kα! αk! αγk α) Γ α k) Γk α ) Γ k α ) kα )!Γk α) αk )!Γk α ) 2) αγα k) ) ) k α kα ) Γk α ) ) ) k α αk ) 2) αγα k) ) ) kα k α) Γk α ) ) ) kα k α ) kα αk 22) αγα k) kα αγα k) kα ) kα) Γk α ) αk ) kα Γk α ) αk ) kα) 23) ) kα 24) αγα k) Γk α ) 25) ) kα ) αk 4.4 Lindley distribution The mied distribution by direct integration gives ρ ρ) 2 P ry k) 2k ρ) 2 ) k3 ) 2, k;, k, 2,.... 26) By the method of moments, we have ρ ρ) )! P ry k) ρ) 2 This implies that we have two identities, i.e 2 Γ2) 2 Γk2) k2 Γ), k; Γk), k, 2,.... k 27). ρ ρ) )! 2 ρ ρ) 2 Γ 2) 2 ) 2 Γ ) ) 28)

846 Cynthia L. Anyango, Edgar Otumba and John M. Kihoro 2. ρ) ) 2 Γ k 2) k2 Γ k ) k ρ) 2 2 k ) k2 Proofs; )! Γ 2) 2 Γ ) Γ2 2 Γ 2 Γ 2) )!Γ2 ) 2 ) 2 ) ) ) For part ii) Γk 2) k2 Γk 2) k! k2 Γk 2) k! k2 Γk 2) k! k2 k )k! k! k2 2 k ) k2 Γ k 2) Γk ) Γ k ) ) Γk 2) k ) Γk )! 29) k 2 ) ) ) k2 k 2) ) k2) Γk ) k! k ) k2 Γk ) k! k ) ) Γk ) k! k Γk ) k! k ) k) ) k k ) ) ) k k ) 5 Discussion The continuous miture distributions can be formed by direct integration. This applies to most distributions since there are no restrictions imposed during integration. In 4, showed that their is a relationship between the moment of an underlying distribution and the distribution function of the mied distribution. This paper has presented such a relationship by using Eponential, Gamma with two parameters, Lindley and the Generalized Lindley distributions as the underlying distributions being mied with the ZIP distribution. Whether direct integration is used or the method of epectation of moments, the resulting distributions must be identical but not necessarily the same. We went ahead and proved identities that resulted by equating mied distributions formed by direct integration and those formed through r th moment epectation of the ) )

Zero inflated Poisson miture distributions 847 miing distributions. Conclusion This work concentrated on purely construction. Since we did not ehaust all the available continuous distributions, therefore more work can be done by considering the distributions which we did not use, by using the methods of construction already used and also other methods can be studied or researched on. Mied Poisson distributions ehibit several interesting properties as given by. These properties include; Identifiability and Shape properties, Infinite divisibility, Posterior Moments, etc. The study of these properties can form a good basis of further research on the mied ZIP distributions constructed in this work. In this study, we restricted ourselves to continuous miing distribution. Discrete or countable mitures where we have discrete prior distributions could be of interest to a researcher, thus, research can be carried out on this. References D. Karlis and E. Xekalaki, Mied Poisson Distribution, International Statistical Review, 73 25), 35-58. https://doi.org/./j.75-5823.25.tb25. 2 W. Gardner, E. P Mulvey and E. C Shaw, Regression analysis of counts and rates: Poisson, overdispersed Poisson and negative binomial model, Psychological Bulletin, 8 995), 392-44. https://doi.org/.37//33-299.8.3.392 3 M. Greenwood and G. Yule, An inquiry into the nature of frequency distribution representative of multiple happenings with particular reference to the occurence of multiple attacks of disease or repeated accidents, Journal of Royal Statistical Society, 83 92), 255-279. https://doi.org/.237/2348 4 M. Perakis and E. Xekalaki, A process capability inde for discrete processes, Journal of Statistical Computation and Simulation, 75 25), no. 3, 75-87. https://doi.org/.8/949654687244 Received: March, 27; Published: March 23, 27