ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Σχετικά έγγραφα
Inverse trigonometric functions & General Solution of Trigonometric Equations

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Section 8.3 Trigonometric Equations

Matrices and Determinants

Solutions to Exercise Sheet 5

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section

Areas and Lengths in Polar Coordinates

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Areas and Lengths in Polar Coordinates

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Section 7.6 Double and Half Angle Formulas

Homework 8 Model Solution Section

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Finite Field Problems: Solutions

Example Sheet 3 Solutions

Differential equations

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Math221: HW# 1 solutions

2 Composition. Invertible Mappings

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

derivation of the Laplacian from rectangular to spherical coordinates

Statistical Inference I Locally most powerful tests

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

CRASH COURSE IN PRECALCULUS

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Differentiation exercise show differential equation

ST5224: Advanced Statistical Theory II

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Section 9.2 Polar Equations and Graphs

Homework 3 Solutions

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

PARTIAL NOTES for 6.1 Trigonometric Identities

Trigonometry 1.TRIGONOMETRIC RATIOS

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

EE512: Error Control Coding

Solution to Review Problems for Midterm III

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Trigonometric Formula Sheet

C.S. 430 Assignment 6, Sample Solutions

IIT JEE (2013) (Trigonomtery 1) Solutions

Second Order Partial Differential Equations

Chapter 6 BLM Answers

An Inventory of Continuous Distributions

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Math 6 SL Probability Distributions Practice Test Mark Scheme

MathCity.org Merging man and maths

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

The Simply Typed Lambda Calculus

3.4. Click here for solutions. Click here for answers. CURVE SKETCHING. y cos x sin x. x 1 x 2. x 2 x 3 4 y 1 x 2. x 5 2

Reminders: linear functions

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

If we restrict the domain of y = sin x to [ π 2, π 2

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

F19MC2 Solutions 9 Complex Analysis

Srednicki Chapter 55

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Parametrized Surfaces

Review Exercises for Chapter 7

( y) Partial Differential Equations

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Quadratic Expressions

SOLUTIONS & ANSWERS FOR KERALA ENGINEERING ENTRANCE EXAMINATION-2018 PAPER II VERSION B1

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these

COMPLEX NUMBERS. 1. A number of the form.

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

1 String with massive end-points

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Problem 1.1 For y = a + bx, y = 4 when x = 0, hence a = 4. When x increases by 4, y increases by 4b, hence b = 5 and y = 4 + 5x.

6.3 Forecasting ARMA processes

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

An Introduction to Signal Detection and Estimation - Second Edition Chapter II: Selected Solutions

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

A Note on Intuitionistic Fuzzy. Equivalence Relation

Paper Reference. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced. Thursday 11 June 2009 Morning Time: 1 hour 30 minutes

Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016

D Alembert s Solution to the Wave Equation

*H31123A0228* 1. (a) Find the value of at the point where x = 2 on the curve with equation. y = x 2 (5x 1). (6)

Every set of first-order formulas is equivalent to an independent set

TRIGONOMETRIC FUNCTIONS

( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)

Lecture 26: Circular domains

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν.

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Strain gauge and rosettes

Numerical Analysis FMN011

Approximation of distance between locations on earth given by latitude and longitude

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Lifting Entry (continued)

w o = R 1 p. (1) R = p =. = 1

Section 8.2 Graphs of Polar Equations

Transcript:

Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least value is which occurs when [, 8] ] + Q. (B) Sol h ( ) h f 3+ h f 3 e e f ' 3 lim lim lim h 0 h h 0 h h 0 h ( ) 0 ( 3 h) f 3 h f 3 + 6h h f '( 3 ) lim lim lim h 0 h h 0 h h 0 h ( 6h h ) h ( h 6) 6 lim lim 3 h 0 h 0 h + 6h h + h + 6h h + + Hence f ' 3 f ' 3 B ] Page 009 Q. 3 (C) Sol Now again g ( k) k f ( k) 009 009 k f ( 009 k) 009 Again g ( 009 k) () + (3) gives k 0 g k g 0 + g + g +... + g 009? f ( k) + f ( 009 k) f k ( f ( k) ) + f ( k) f ( 009 k) [ ] ( f 009 k + f 009 k ) ().() f ( k) ( f ( k) ) + ( f ( k) ) f ( k) + ( f ( k) ) ( f ( k) ) + ( f ( k) ) g k + g 009 k g ( 0) + g ( 009) g( ) + g( 008) g + g( 007) : : :... g 00 + g 005..(3) 009 k 0 g k 005 [C] ]

Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com Q. (C) Sol ( ) g '( ) f ( + f ( f ( ) )) + f '( f ( )).f '( ) g '( 0) f '( f ( 0 )). + f '( 0 ).f '( 0) f '( 0) + ( 3) 6 Ans. ] Q. 5 (C) Sol f ( ) g f + f f ; f 0 0; f ' 0 3 3 Page f ' f ', y 009 7. 3.7 9 7; y ( 7, think! ) 3 y b 3 now 009 y b 7.009 7. 0 3 3 3.7 3.7 8.7 b 7. ( ) Ans. ] 3 3 3 Q. 6 (D) Sol f ( ) 009 ( + ) Put + t d dt 00 00 t dt I. dt 006 t t t put y dt dy t t 006 d 005 00 y t I y dy C C + + 005 00 t 005

Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com Q. 7 (B) Sol 008 r r 008 n n n n 008 Tr. + + 3 +... + n S 009 n 008 S d ] 009 008 008 008 Page 3 Question Type B.Comprehension or Paragraph Q. 8 () Sol Q. A Q. B Q. 3 D [Sol. () tan y tan + C (3) 0; y π C tan y tan π + note : even π π π < tan + < ; < (A) π + is as shown. y tan tan + (D) is correct () The graph of f π π < tan < ; < < ( A) Hence range is (, ) (B) Q. 9 () Sol Q. A Q. D Q. 3 A [Sol. Since minimum value is zero hence touches the -ais and mouth opening upwards i.e., a 0 f f + 3 > given

Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com f ( ) f ( ) f ( + ) f ( ) Hence f is symmetric about the line f ( ) a ( + ) Now given f ( ) f ( ) + f () and f ( ) in ( 0, ) From () and () f now f ( ) a ( + ) f ( ) a a ( + ) f now proceed ] Q. 0 () Sol Q. A Q. D Q. 3 C [Sol. f ( 0) ( + ) f e e cos f ' t dt tf ' t dt 0 0 f ( ) ( e + e ) cos ( f ( ) f ( 0) ) t.f ( t) f ( t) dt 0 0 f ( ) ( e + e ) cos f ( ) + + f ( ) f ( t) dt 0 f e + e cos f t dt () 0 differentiating equation () f ' f cos e e + + e + e sin dy + + Ans. (i) d f ' 0 + f 0 0.0 0 Ans (ii) Hence y e ( cos sin ) e ( cos sin ) (ii) (iii) I.F. of DE () is e Page

Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com Page 5 y.e e cos sin d cos + sin d y.e e cos sin d sin cos + C Let I e ( cos sin ) d e ( A cos + Bsin ) Solving A 3/ 5 and B / 5 and C / 5 3 y e cos sin ( sin cos ) e + e 5 5 5 Ans. (iii) ] Question Type C.Assertion Reason Type Q. (B) Sol f log log / + + > 6 log/ + + log log log + + f is contant Hence f is many one as well into. Also range is a singleton f is constant but a constant function can be anything not the correct eplanation] π π Q. (B) Sol Domain is {, } and range is, elements range must have two elements] and domain having two Q. 3 (A) Sol Using { } + { } if I { } { } f, { } { } f + ( { }) { } { } min. ] f /. 3 3 e e { } Q. (D) Sol +. e e e Hence range is [0, ) S is false]

Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com Page 6 Q. 5 (C) Sol. Q. 6 (B) Sol Line touches the curve at ( 0, b ) and dy d fails to eist. tangent line can be drawn. ] dy d 0 also eists but even if Q. 7 (D) Sol tan h 0 h lim ] π/ sin cot cot π lim. ; put h ( π ) cot π Q. 8 (B) Sol Range of f is singleton then angle has to be a singleton. If S and S are reverse then the answer will be B. ] Q. 9 (A) Sol y ln not differentiable at y cos is not differentiable at and domain of f is { 0 }. Hence if domain of f is π 3π, 0, π ] differentiable y cos sgn cos 0 ln Q. 0 (A) Sol f '( ) ; note that f f ( ) f is increasing ( 0, e) and f is decreasing e, ] Q. (B) Sol + > f ' 3 0 a > 0 ab < 0 b

Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com Page 7 3 + k 3 + / 3 3 g( ) + + k 3 3 g '( ) 6 + 3 ] 3 3 Q. (A) Sol. Q. 3 (C) Sol. Q. (A) Sol Let f ( ) 0 f ( r ) f ( r ) Hence there must eist some c ( r, r ) where 6 5 3 but f '( ) + + + 6 5 3 for for has two roots say r and r, f ' + + + > 0 + + + > 3 5 6, f ' 0 f ' c 0 where r, r [ a, b] hence f '( ) > 0 for all Rolles theorem fails f ( ) 0 can not have two or more roots.] Q. 5 (D) Sol f ( ) + + 7 f ( ) f ( ) Area < 0 area > 0 Case - I : for 0 < <

Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com Page 8 + + y 7 3 If < < 0 f 3 + now f ' 0 f ' 0 0 for > f + + 7 f ( ) ( ) note lim f ( ) f ( ) f ' f ' + f is continuous. Also f is derivable at ] Q. 6 (D) Sol Let b > 0, then f ( ) b > 0 and f ( 5) a + 3b 6 ( a + b) b 6 b 6 ( + b) < 0 Hence by IVT, some c (, 5) s.t. f ( c) 0 If b 0 then a f 3 + 0 3 + 5 ( )( 5) 0 5 < < and Hence f ( ) 0 if If b 0, f ( ) b 0 f a + b 3 3 ( a + b) + ( 3 ) b 3 ( 3) ( 3) b which lies in (, 5 )

Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ( 3)( b) > 0 ( as b < 0) Hence f ( ) as f ( ) have opposite signs some c (, ) (, 5) for which f c 0 Statement - is valid for all b R statement - is false. D ] Statement - is obviously true Q. 7 (D) Sol f ( ) + + 7 Page 9 f ( ) f ( ) Area for < 0 area of > 0 Case-I : for 0 < < y + + 7 3 For > f + + 7 f ( ) ( ) note lim f ( ) f ( ) f is continuous R. + Also f ' f ' f is derivable at y f and +ve -ais is Area bounded by the Area 6 3 d + 3 + + 3 3 0 Area bounded by the f ( ) and -ais 3 3 Ans.] Question Type D.More than one may corect type Q. 8 () Sol A, B, D [Hint. A; A ; B ; C aperiodic; D π ]

Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com Q. 9 () Sol Page B, C, D [Sol. The graph of f ( ) f and f ( 0) Verify alternatives y f + Q. 30 () Sol Q. B, C, D f g [Sol. Solving and n n We have 0 and 3 n n + A d 3 n + 0 0 3 n + 3 n + hence, 3 n + 3 n + 3 n + 6 n 5 6 n + Hence n is a divisor of 5, 0, 30 B, C, D] Q. 3 () Sol Q. A, B, D dy [Sol. y f ( ) d + I.F. e ye e f d + C now if 0 then 0, y 0, C ye +.() ye e e d + C ye + C

Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com + y ; y ( ) Ans. e e ( A) is correct e ( + ) e y ' ; e e e e y '( ) Ans. e e e ( B) is correct if > ye e d + ye e C y e + Ce as y is continuous + lim lim ( e + Ce ) e 3e e + Ce C for > 3 + hence y( 3) e + e e ( e + ) y e e y ' e 3 y ' 3 e Ans. D is correct ] Question Type E.Match the Columns Q. 3 () Sol Q. (A) P, S, (B) Q, R; (C) Q, R (D) P.S. Page π tan f ( ) f ( ) (, ) π g tan f ( ) f ( ) (, ) 3 π tan f ( ) f ( ) (, ) d( ) f ( ) ± 5 d( ) + f ( ) 3 6, 0 6,0 P,S [Sol. Let (A) (B) refer to graph of y f ( ) Q, R

Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com Page (C) k ( 3, ) k (, 3) Q, R f '( ) (D) + f ( ) g ' < 0 f ' > 0 6, 0 P,S ] Q. 33 () Sol (A) Q; (B) S; (C) P; (D) R ln [Sol. f ( ) a ; f '( ) a 8 8 + +.() f '( ) ( ) If a, f '( ) 0 8 Hence / a C P is the point of inflection and now f '( ) 0 gives 6 8a 0 + or 6 8a + 0 8 8a ± 6a 6 a + a a a a > or a > 3 and f ''( ) 8 a + a 6 f '' a > 8 a + a a + a Hence for a a + a > and, f ( B ) ly for a > and has a local minima S we have local miima A Q finally for 0 a < 6 8a + f '( ) 8 6a 6 < 0 f ' 0 a a Hence > f is monotonic ( D) ( R ) 6 8a + 8 Q. 3 () Sol (A) S; (B) Q; (C) P; (D) R [Sol.

Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com Page (A) st verte n C way and n can not be taken. Remaining vertices are 3,, 5... ( n ) OOOO four tobetaken ( n 3) vertices... ( n 7) not tobeta ken number of gaps ( n 6 ) n 6 C.n Hence required number of ways 36 5 n Ans. S which is satisfied by 3 3 (B) + a + b + c + + k + k + + k out of which can be selected in n 6 C ways. b and a c Now a can be taken in 0 ways and as a c hence c can be only in one way Also b. Q Hence total 0 Ans. Alternatively: i a + bi + c 0 + 0i c a + b i 0 + 0i a c and b ] 6 (C) z ( + i) z( i )...( ) 6 6 z + i z + i z z z 0 or z if z 0 z 0 if z then zz z z hence equation () becomes ( + ) ( + ) z i i z 7 + i ( + i)( i) z i + i π π mπ + mπ + z cos + isin 7 7 Where m 0,,,...,6 are the other solutions 6 Total solutions 8 Ans. ( P ) (D) f ( ) + g( )

Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com Page f ( ) g( ) + Put f + g g( ) f ( ) 0 f ( ) < < f < f ( ) f (as f ( ) is a non negative integer) again put f ( 000) + g( 000) 000 f 000 + g 000 log 000 g( 000) log ( 000) f ( 000) 0 log 000 f ( 000) < log 000 f ( 000) < ( log000) ( log 000) f ( 000) log 000 f ( 000) 9 as f is an integer Hence f ( ) + f ( 000) Ans. ( R )]