Supplementary Information

Σχετικά έγγραφα
Ionic liquid effect over the Biginelli reaction under homogeneous and heterogeneous catalysis

Photo-Induced Self-Assembly of Pt(II)-Linked Rings and Cages via the Photolabilization of a Pt(II) Pyridine Bond

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

SUPPLEMENTARY MATERIAL. A Facile and Convenient Approach for the Synthesis of Novel Sesamol-Oxazine and Quinoline- Oxazine Hybrids

SUPPLEMENTARY MATERIAL

D-Glucosamine-derived copper catalyst for Ullmann-type C- N coupling reaction: theoretical and experimental study

Supplementary Information

chlorostibine Iou-Sheng Ke and François P. Gabbai Department of Chemistry, Texas A&M University, College Station, TX

Electronic Supplementary Information (ESI)

Electronic Supplementary Information (ESI)

Synthesis, Crystal Structure and Supramolecular Understanding of 1,3,5-Tris(1-phenyl-1H-pyrazol-5- yl)benzenes

Supporting Information. Research Center for Marine Drugs, Department of Pharmacy, State Key Laboratory

Nitric oxide (NO) reactivity studies on mononuclear Iron(II) complexes supported by a tetradentate Schiff base Ligand

Iodine-catalyzed synthesis of sulfur-bridged enaminones and chromones via double C(sp 2 )-H thiolation

IV. ANHANG 179. Anhang 178

Table of Contents 1 Supplementary Data MCD

Bloco A, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, Brazil. Contents Pages

Cycloaddition of Homochiral Dihydroimidazoles: A 1,3-Dipolar Cycloaddition Route to Optically Active Pyrrolo[1,2-a]imidazoles

Fused Bis-Benzothiadiazoles as Electron Acceptors

Patrycja Miszczyk, Dorota Wieczorek, Joanna Gałęzowska, Błażej Dziuk, Joanna Wietrzyk and Ewa Chmielewska. 1. Spectroscopic Data.

College of Life Science, Dalian Nationalities University, Dalian , PR China.

C H Activation of Cp* Ligand Coordinated to Ruthenium. Center: Synthesis and Reactivity of a Thiolate-Bridged

Stereochemistry and mechanistic insight in the [2 k +2 i +2 i ] annulations of ketenes and imines

Enantioselective Synthesis of the Anti-inflammatory Agent ( )-Acanthoic Acid

Supporting Information

Nickel and Platinum PCP Pincer Complexes Incorporating an Acyclic Diaminoalkyl Central Moiety Connecting Imidazole or Pyrazole Rings

Supporting Information. Palladium Complexes with Bulky Diphosphine. Synthesis of (Bio-) Adipic Acid from Pentenoic. Acid Mixtures.

Supporting Information

Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones

Zebra reaction or the recipe for heterodimeric zinc complexes synthesis

Electronic Supplementary Information

Supporting Information for. Catalytic C H α-trifluoromethylation of α,β-unsaturated Carbonyl Compounds

Supporting Information

Electronic supplementary information (ESI) Bodipy functionalized ortho-carborane dyads for low-energy photosensitization

The Free Internet Journal for Organic Chemistry

Supplementary Information. Living Ring-Opening Polymerization of Lactones by N-Heterocyclic Olefin/Al(C 6 F 5 ) 3

Supporting Information

Supporting Information

Supporting Information

10-π-electron arenes à la carte: Structure. Sr, Ba; n = 6-8) complexes

Supporting Information for Substituent Effects on the Properties of Borafluorenes

Supplementary Materials for. Kinetic and Computational Studies on Pd(I) Dimer- Mediated Halogen Exchange of Aryl Iodides

Electronic Supporting Information. 3-Aminothiophenecarboxylic acid (3-Atc)-induced folding in peptides

Novel electroluminescent donor-acceptors based on dibenzo[a,c]phenazine as

An experimental and theoretical study of the gas phase kinetics of atomic chlorine reactions with CH 3 NH 2, (CH 3 ) 2 NH, and (CH 3 ) 3 N

Heavier chalcogenone complexes of bismuth(iii)trihalides: Potential catalysts for acylative cleavage of cyclic ethers. Supporting Information

Synthesis and Biological Evaluation of Novel Acyclic and Cyclic Glyoxamide derivatives as Bacterial Quorum Sensing and Biofilm Inhibitors

Supplementary Materials

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

Supporting Information

Supporting Information for

Supporting Information. A catalyst-free multicomponent domino sequence for the. diastereoselective synthesis of (E)-3-[2-arylcarbonyl-3-

Pyrrolo[2,3-d:5,4-d']bisthiazoles: Alternate Synthetic Routes and a Comparative Study to Analogous Fused-ring Bithiophenes

Supporting Information

Supporting Information

Electronic Supplementary Information DFT Characterization on the Mechanism of Water Splitting Catalyzed by Single-Ru-substituted Polyoxometalates

SUPPLEMENTARY DATA. Waste-to-useful: Biowaste-derived heterogeneous catalyst for a green and sustainable Henry reaction

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Supporting Information. A Combined Crossed Molecular Beams and ab Initio Investigation on the Formation of Vinylsulfidoboron (C 2 H

ELECTRONIC SUPPORTING INFORMATION

Supporting Information

Supplementary Information

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Mandelamide-Zinc Catalyzed Alkyne Addition to Heteroaromatic Aldehydes

Supporting Information

Supporting Information for: Intramolecular Hydrogen Bonding-Assisted Cyclocondensation of. 1,2,3-Triazole Synthesis

Electronic Supplementary Information

Supporting Information

Supporting Information

Supporting Information

Supporting Information

Synthesis of novel 1,2,3-triazolyl derivatives of pregnane, androstane and D-homoandrostane. Tandem Click reaction/cu-catalyzed D-homo rearrangement

Multifunctinality and Crystal Dynamics of Highly Stable Porous Metal-Organic Framework [Zn 4 O(NTB) 2 ]

Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2

Supporting Information

LP N to BD* C-C = BD C-C to BD* O-H = LP* C to LP* B =5.

Table S1. Summary of data collections and structure refinements for crystals 1Rb-1h, 1Rb-2h, and 1Rb-4h.

Supplementary Figure S1. Single X-ray structure 3a at probability ellipsoids of 20%.

Supporting Information for: electron ligands: Complex formation, oxidation and

of the methanol-dimethylamine complex

Electronic Supplementary Information

gem-dichloroalkenes for the Construction of 3-Arylchromones

Supporting Information. Experimental section

ELECTRONIC SUPPLEMENTARY MATERIAL-RSC Adv.

Supporting Information

Supplementary information

Supporting Information

Electronic Supplementary Information:

Cinchona-Alkaloids based Isoselenazolones: Synthesis and Their Catalytic Application in Asymmetric Bromolactonization of Alkenoic Acid

Supporting Information

Carbohydrates in the gas phase: conformational preference of D-ribose and 2-deoxy-D-ribose

Supporting Information

Supplementary material

multicomponent synthesis of 5-amino-4-

Supporting information

Supporting Information

Supplementary Information for

Palladium-Catalyzed Direct ortho-sulfonylation of. Azobenzenes with Arylsulfonyl Chlorides via C H. Table of Contents

Supporting Information. Pd(0)-Catalyzed Decarboxylative Coupling and Tandem C H Arylation/Decarboxylation for the. Synthesis of Heteroaromatic Biaryls

Supporting Information To. Microhydration of caesium compounds: Journal of Molecular Modeling

Transcript:

Supplementary Information Natural Organic Acid as Green Catalyst for Xanthenones Synthesis: Methodology, Mechanism and Calcium Channel Blocking Activity Bruna S. Terra, a Aura M. B. Osorio, a Aline de Oliveira, a Rebeca P. M. Santos, b Andressa P. Mouro, b Natália F. de Araújo, b Cameron C. da Silva, c Felipe T. Martins, c Luciene B. Vieira, b Daniella Bonaventura, b Heitor A. de Abreu, a Antonio F. C. Alcântara a and Ângelo de Fátima*,a a Departamento de Química and b Departamento de Farmacologia, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, 31270-901 Belo Horizonte-MG, Brazil c Instituto de Química, Universidade Federal de Goiás, Campus Samambaia, CP 131, 74001-970 Goiânia-GO, Brazil 9,9-Dimethyl-12-phenyl-9,10-dihydro-8H-benzo[a]xanthen-11(12H)-one (4a) mp 158-159 C [Lit. 1 155-156 C]; IR (ATR) / cm -1 2967, 1651, 1621, 1501, 1479, 1452, 1373, 1218, 1191, 1144, 1027, 933, 870, 837, 744; 1 H NMR (400 MHz, CDCl 3 ) δ 7.96 (d, 1H, J 8.0 Hz), 7.67-7.64 (m, 2H), 7.35-7.30 (m, 3H), 7.28-7.23 (m, 2H), 7.12 (t, 2H, J 8.0 Hz), 6.98 (t, 1H, J 8.0 Hz), 5.70 (s, 1H), 2.44 (s, 2H), 2.21 (d, 2H, J 16.0 Hz), 2.15 (d, 2H, J 16.0 Hz), 1.00 (s, 3H), 0.86 (s, 3H); 13 C NMR (100 MHz, CDCl 3 ) δ 197.1, 164.3, 148.2, 145.3, 132.0, 131.9, 129.3, 128.9, 128.7, 127.5, 126.7, 125.3, 124.1, 118.2, 117.5, 114.7, 51.3, 41.8, 35.2, 32.6, 29.8, 27.5; HRMS (ESI) m/z C 25 H 22 O 2 [M + Na] + observed: 377.1425; C 25 H 22 O 2 [M + Na] + requires: 377.1518. 9,9-Dimethyl-12-(4-nitrophenyl)-9,10-dihydro-8H-benzo[a]xanthen-11(12H)-one (4b) mp 172-174 C; [Lit. 2 177-179 C]; IR (ATR) / cm -1 2913, 1650, 1594, 1452, 1370, 1283, 1219, 1180, 1167, 1141, 1012, 974, 959, 836, 803, 766, 743, 729, 700, 656; 1 H NMR (200 MHz, CDCl 3 ) δ 8.03 (d, 2H, J 6.0 Hz), 7.82 (sl, 3H), 7.53-7.39 (m, 5H), 5.81 (s, 1H), 2.59 (s, 2H), 2.34 (d, 1H, J 16.0 Hz), 2.22 (d, 1H, J 16.0 Hz), 1.13 (s, 3H), 0.94 (s, 3H); 13 C NMR (50 MHz, CDCl 3 ) δ 196.7, 164.6, 151.8, 147.7, 146.2, 131.5, 130.9, 129.6, 129.3 128.6, 127.3, 125.2, 123.5, 123.0, 117.0, 115.9, 112.9, 50.7, 41.3, 34.8, 32.2, 29.2, 27.0; HRMS (ESI) m/z C 25 H 21 NO 4 [M + H] + observed: 400.1488; C 25 H 21 NO 4 [M + H] + requires: 400.1549. 12-(4-Fluorophenyl)-9,9-dimethyl-9,10-dihydro-8H-benzo[a]xanthen-11(12H)-one (4c) mp 165-167 C; [Lit. 3 185-186 C]; IR (ATR) / cm -1 2912, 1651, 1594, 1489, 1452, 1370, 1283, 1219, 1180, 1141, 1011, 975, 959, 836, 803, 766, 743, 729, 700, 657; 1 H NMR (400 MHz, CDCl 3 ) δ 7.93 (d, 1H, J 12.0 Hz), 7.80-7.76 (m, 2H), 7.46-7.37 (m, 2H), 7.34-7.29 (m, 3H), 6.86 (t, 2H, J 8.0 Hz), 5.71 (s, 1H), 2.57 (s, 2H), 2.32 (d, 1H, J 16.0 Hz), 2.25 (d, 1H, J 16.0 Hz), 1.12 (s, 3H), 0.97 (s, 3H); 13 C NMR (100 MHz, CDCl 3 ) δ 196.9, 163.9, 161.2, 147.7, 140.5, 131.5, 131.2, 129.9, 129.8, 129.0, 128.4, 127.0, 124.9, 123.5, 117.3, 117.0, 115.1, 114.9, 114.0, 50.8, 41.3, 39.9, 32.2, 29.3, 27.0; HRMS (ESI) m/z C 25 H 21 FO 2 [M + H] + observed: 373.1589; C 25 H 21 FO 2 [M + H] + requires: 373.1604. *e-mail: adefatima@qui.ufmg.br

12-(4-Chlorophenyl)-9,9-dimethyl-9,10-dihydro-8H-benzo[a]xanthen-11(12H)-one (4d) mp 162-164 C; [Lit. 1 178-179 C]; IR (ATR) / cm -1 2951, 1659, 1647, 1597, 1488, 1368, 1224, 1198, 1184, 1166, 1141, 1087, 1027, 979, 937, 834, 812, 752, 728, 657; 1 H NMR (200 MHz, CDCl 3 ) δ 7.91 (d, 1H, J 8.0 Hz), 7.81-7.76 (m, 2H), 7.45-7.30 (m, 5H), 7.14 (d, 2H, J 8.0 Hz), 5.69 (s, 1H), 2.57 (s, 2H), 2.33 (d, 1H, J 16.0 Hz), 2.23 (d, 1H, J 16.0 Hz), 1.13 (s, 3H), 0.97 (s, 3H); 13 C NMR (50 MHz, CDCl 3 ) δ 196.8, 164.0, 147.6, 143.2, 131.8, 131.4, 131.1, 129.7, 129.0, 128.4, 128.3, 127.1, 125.0, 123.4, 117.0, 113.7, 50.8, 41.3, 34.1, 32.2, 29.2, 27.0; HRMS (ESI) m/z C 25 H 21 ClO 2 [M + Na] + observed: 411.1120; C 25 H 21 ClO 2 [M + Na] + requires: 411.1128. 12-(2-Hydroxyphenyl)-9,9-dimethyl-9,10-dihydro-8H-benzo[a]xanthen-11(12H)-one (4e) mp 224-227 C; [Lit. 4 229-230 C]; IR (ATR) / cm -1 3192, 2961, 1656, 1629, 1617, 1593, 1484, 1377, 1230, 1182, 1117, 1029, 810, 764; 1 H NMR (400 MHz, CDCl 3 ) δ 9.28 (s, 1H, OH), 7.79-7.75 (m, 2H), 7.68 (d, 1H, J 8.0 Hz), 7.40-7.32 (m, 3H), 7.02-7.00 (m, 2H), 6.63-6.61 (m, 2H), 5.77 (s, 1H), 2.61 (s, 2H), 2.42 (d, 1H, J 16.0 Hz), 2.35 (d, 1H, J 16.0 Hz), 1.15 (s, 3H), 0.99 (s, 3H); 13 C NMR (100 MHz, CDCl 3 ) δ 200.6, 166.8, 152.8, 147.8, 132.7, 131.5, 131.1, 129.1, 128.7, 128.2, 127.9, 127.5, 125.2, 123.4, 121.5, 118.8, 117.4, 116.5, 113.9, 50.2, 41.5, 32.3, 29.0, 28.0, 27.2; HRMS (ESI) m/z C 25 H 22 O 3 [M + Na] + observed: 393.1447; C 25 H 22 O 3 [M + Na] + requires: 393.1467. 12-(3-Hydroxyphenyl)-9,9-dimethyl-9,10-dihydro-8H-benzo[a]xanthen-11(12H)-one (4f) mp 238-240 C; [Lit. 5 237-239 C]; IR (ATR) / cm -1 3407, 2964, 1638, 1615, 1585, 1478, 1466, 1369, 1348, 1275, 1223, 1175, 1145, 1113, 1025, 950, 820, 787, 751, 699; 1 H NMR (200 MHz, DMSO-d 6 ) δ 9.21 (s, 1H), 8.01 (d, 1H, J 8.0 Hz), 7.93-7.89 (m, 2H), 7.51-7.43 (m, 3H), 6.96 (t, 1H, J 8.0 Hz), 6.72 (d, 1H, J 8.0 Hz), 6.65 (s, 1H), 6.43 (d, 1H, J 8.0 Hz), 5.49 (s, 1H), 2.73-2.61 (m, 2H), 2.33 (d, 1H, J 16.0 Hz), 2.14 (d, 1H, J 16.0 Hz), 1.06 (s, 3H), 0.90 (s, 3H); 13 C NMR (50 MHz, DMSO-d 6 ) δ 195.8, 163.6, 157.1, 147.1, 146.2, 131.0, 130.7, 128.9, 128.5, 127.0, 124.9, 123.2, 118.9, 117.3, 117.0, 115.1, 113.2, 50.1, 40.3, 33.9, 31.8, 28.7, 26.2; HRMS (ESI) m/z C 25 H 22 O 3 [M + Na] + observed: 393.1449; C 25 H 22 O 3 [M + Na] + requires: 393.1467. 12-(4-Hydroxyphenyl)-9,9-dimethyl-9,10-dihydro-8H-benzo[a]xanthen-11(12H)-one (4g) mp 210-212 C; [Lit. 2 185-187 C]; IR (ATR) / cm -1 3161, 2966, 2871, 1651, 1628, 1617, 1588, 1510, 1450, 1369, 1221, 1184, 1169, 1026, 1012, 839, 825, 746, 653; 1 H NMR (200 MHz, DMSO-d 6 ) δ 9.21 (s, 1H), 8.03 (d, 1H, J 6.0 Hz), 7.89-7.86 (m, 2H), 7.48-7.39 (m, 3H), 7.08 (d, 2H, J 8.0 Hz), 6.58 (d, 2H, J 8.0 Hz), 5.47 (s, 1H), 2.59-2.56 (m, 2H), 2.31 (d, 1H, J 16.0 Hz), 2.11 (d, 1H, J 16.0 Hz), 1.03 (s, 3H), 0.88 (s, 3H); 13 C NMR (50 MHz, DMSO-d 6 ) δ 195.9, 164.3, 155.5, 147.0, 135.4, 131.0, 130.6, 129.0, 128.7, 128.4, 126.9, 124.8, 123.3, 117.7, 117.1, 114.8, 113.5, 50.1, 40.7, 33.1, 31.8, 28.8, 26.1; HRMS (ESI) m/z C 25 H 22 O 3 [M + Na] + observed: 393.1880; C 25 H 22 O 3 [M + Na] + requires: 393.1467. 9,9-Dimethyl-12-(4-(methylthio)phenyl)-9,10-dihydro-8H-benzo[a]xanthen-11(12H)-one (4h) mp 171-173 C; [Lit. 6 209-211 C]; IR (ATR) / cm -1 2954, 1645, 1594, 1488, 1374, 1221, 1163, 1140, 1023, 976, 958, 933, 844, 820, 778, 747, 666; 1 H NMR (200 MHz, CDCl 3 ) δ 7.98 (d, 1H, J 6.0 Hz), 7.79-7.74 (m, 2H), 7.45-7.30 (m, 5H), 7.07 (d, 2H, J 8.0 Hz), 5.68 (s, 1H), 2.57 (s, 2H), 2.37 (s, 3H), 2.29-2.19 (m, 2H), 1.12, (s, 3H), 0.98 (s, 3H); 13 C NMR (50 MHz, CDCl 3 ) δ 196.9, 163.8, 147.6, 141.7, 135.8, 131.4, 128.8, 128.3, 126.9, 126.4, 124.9, 123.5, 117.4, 117.0, 114.0, 50.8, 41.3, 34.1, 32.2, 29.2, 27.1, 15.6; HRMS (ESI) m/z C 26 H 24 O 2 S [M + Na] + observed: 423.1320; C 26 H 24 O 2 S [M + Na] + requires: 423.1395.

12-(4-Methoxyphenyl)-9,9-dimethyl-9,10-dihydro-8H-benzo[a]xanthen-11(12H)-one (4i) mp 204-205 C; [Lit. 6 206-208 C]; IR (ATR) / cm -1 2956, 1645, 1594, 1509, 1378, 1259, 1224, 1026, 848, 799, 746; 1 H NMR (200 MHz, CDCl 3 ) δ 7.98 (d, 1H, J 8.0 Hz), 7.79-7.72 (m, 2H), 7.44-7.22 (m, 5H), 6.70 (d, 2H, J 8.0 Hz), 5.65 (s, 1H), 3.68 (s, 3H), 2.56 (s, 2H), 2.32 (d, 1H, J 16.0 Hz), 2.22 (d, 1H, J 16.0 Hz), 1.11 (s, 3H), 0.97 (s, 3H); 13 C NMR (50 MHz, CDCl 3 ) δ 197.0, 163.6, 157.7, 147.6, 137.1, 131.4, 129.3, 128.7, 128.3, 126.9, 124.8, 123.6, 117.8, 117.0, 114.3, 113.5, 55.0, 50.8, 41.3, 33.8, 32.2, 29.2, 27.1; HRMS (ESI) m/z C 26 H 24 O 3 [M + Na] + observed: 407.1546; C 26 H 24 O 3 [M + Na] + requires: 407.1623. 4-(9,9-Dimethyl-11-oxo-9,10,11,12-tetrahydro-8H-benzo[a]xanthen-12-yl)benzonitrile (4j) mp 206-208 C; [Lit. 7 203-204 C]; IR (ATR) / cm -1 2951, 2229, 1649, 1597, 1500, 1464, 1366, 1224, 1190, 1179, 1025, 1015, 978, 938, 845, 812, 752, 664; 1 H NMR (200 MHz, CDCl 3 ) δ 7.86-7.79 (m, 3H), 7.47-7.34 (m, 7H), 5.77 (s, 1H), 2.59 (s, 2H), 2.35 (d, 1H, J 16.0 Hz), 2.24 (d, 1H, J 16.0 Hz), 1.13 (s, 3H), 0.95 (s, 3H); 13 C NMR (50 MHz, CDCl 3 ) δ 196.7, 164.5, 149.8, 147.7, 132.1, 131.5, 131.0, 129.5, 129.2, 128.6, 127.3, 125.1, 123.1, 118.8, 117.0, 116.0, 113.0, 110.0, 50.7, 41.3, 34.9, 32.2, 29.2, 27.0; HRMS (ESI) m/z C 26 H 21 NO 2 [M + Na] + observed: 402.1442; C 26 H 21 NO 2 [M + Na] + requires: 402.1470. 12-(4-Hydroxy-3-methoxyphenyl)-9,9-dimethyl-9,10-dihydro-8H-benzo[a]xanthen-11(12H)-one (4k) mp 199-200 C; [Lit. 1 164-166 C]; IR (ATR) / cm -1 3549, 2969, 1644, 1619, 1597, 1510, 1372, 1267, 1200, 1184, 1169, 1121, 1038, 832, 757; 1 H NMR (200 MHz, CDCl 3 ) δ 8.00 (d, 1H, J 8.0 Hz), 7.80-7.74 (m, 2H), 7.48-7.30 (m, 3H), 7.02 (s, 1H), 6.71-6.63 (m, 2H), 5.65 (s, 1H), 3.81 (s, 3H), 2.54 (s, 2H), 2.29 (s, 2H), 1.12 (s, 3H), 0.98 (s, 3H); 13 C NMR (50 MHz, CDCl 3 ) δ 197.1, 163.7, 147.7, 146.1, 143.8, 136.9, 131.4, 128.7, 128.3, 126.9, 124.8, 123.6, 121.0, 117.7, 117.0, 114.4, 114.1, 111.3, 55.8, 50.9, 41.4, 34.1, 32.2, 29.3, 27.1; HRMS (ESI) m/z C 26 H 24 O 4 [M + Na] + observed: 417.1300; C 26 H 24 O 4 [M + Na] + requires: 417.1314. 12-(4-Hydroxy-3,5-dimethoxyphenyl)-9,9-dimethyl-9,10-dihydro-8H-benzo[a]xanthen-11(12H)-one (4l) mp 205-206 C; [Lit. 8 189-191 C] IR (ATR) / cm -1 3279, 2928, 2869, 1638, 1620, 1595, 1514, 1457, 1425, 1372, 1321, 1178, 1114, 807, 749, 664; 1 H NMR (200 MHz, CDCl 3 ) δ 7.97 (d, 1H, J 8.0 Hz), 7.76-7.70 (m, 2H), 7.44-7.30 (m, 3H), 6.52 (s, 2H), 5.61 (s, 1H), 5.36 (s, 1H), 3.71 (s, 6H), 2.52 (s, 2H), 2.25 (s, 2H), 1.07 (s, 3H), 0.95 (s, 3H); 13 C NMR (50 MHz, CDCl 3 ) δ 196.9, 163.7, 147.7, 146.7, 136.0, 133.1, 131.4, 128.8, 128.3, 126.9, 124.9, 123.6, 117.5, 116.9, 114.3, 105.3, 56.2, 50.8, 41.3, 34.4, 32.2, 29.3, 26.9; HRMS (ESI) m/z C 27 H 26 O 5 [M + Na] + observed: 447.1404; C 27 H 26 O 5 [M + Na] + requires: 447.1420. 9,9-Dimethyl-12-(thiophen-2-yl)-9,10-dihydro-8H-benzo[a]xanthen-11(12H)-one (4m) mp 174-176 C; [Lit. 2 163-164 C]; IR (ATR) / cm -1 2963, 1650, 1593, 1518, 1462, 1375, 1357, 1285, 1221, 1176, 1146, 1115, 1064, 1026, 1013, 975, 958, 834, 812, 744, 699, 663; 1 H NMR (400 MHz, CDCl 3 ) δ 8.05 (d, 1H, J 8.4 Hz), 7.82-7.78 (m, 2H), 7,49 (ddd, 1H, 3 J 8.4 Hz, 3 J 7.4 Hz, 4 J 1.2 Hz), 7.42 (ddd, 1H, 3 J 7.4 Hz, 3 J 7.4 Hz, 4 J 1.2 Hz), 7.31 (d, 1H, J 8.4 Hz), 7.01 (dd, 1H, 3 J 5.2 Hz, 4 J 1.6 Hz), 6.78-6.74 (m, 2H), 6.05 (s, 1H), 2.57 (s, 2H), 2.35 (s, 2H), 1.14 (s, 3H), 1.05 (s, 3H); 13 C NMR (100 MHz, CDCl 3 ) δ 196.8, 164.5, 148.4, 131.3, 129.0, 128.3, 127.1, 126.2, 125.0, 124.9, 123.9, 123.4, 117.1, 117.0, 113.7, 50.7, 41.3, 32.2, 29.3, 29.2, 27.1; HRMS (ESI) m/z C 23 H 20 O 2 S [M + Na] + observed: 383.1001; C 23 H 20 O 2 S [M + Na] + requires: 383.1082.

9,9-Dimethyl-12-(pyridin-2-yl)-9,10-dihydro-8H-benzo[a]xanthen-11(12H)-one (4n) mp 179-181 C; [Lit. 9 179-181 C]; IR (ATR) / cm -1 1645, 1428, 1377, 1222, 1176, 1144, 1014, 849, 803, 756, 742, 658; 1 H NMR (400 MHz, CDCl 3 ) δ 8.43 (ddd, 1H, 3 J 4.8 Hz, 4 J 1.6 Hz, 5 J 1.2 Hz), 8.19 (d, 1H, J 8.0 Hz), 7.78-7.73 (m, 2H), 7.56-7.55 (m, 2H), 7.46 (ddd, 1H, 3 J 8.6 Hz, 3 J 7.0 Hz, 4 J 1.2 Hz), 7.39-7.33 (m, 2H), 6.97 (dd, 1H, J 8.4 Hz, 3 J 4.4 Hz), 5.88 (s, 1H), 2.66 (d, 1H, J 16.0 Hz), 2.61 (d, 1H, J 16.0 Hz), 2.34 (d, 1H, J 16.0 Hz), 2.24 (d, 1H, J 16.0 Hz), 1.13 (s, 3H), 1.00 (s, 3H); 13 C NMR (100 MHz, CDCl 3 ) δ 196.9, 165.1, 162.8, 147.7, 131.5, 131.4, 128.9, 128.4, 127.0, 124.8, 123.6, 121.4, 117.4, 112.6, 50.9, 41.4, 37.6, 32.3, 29.5, 27.1; HRMS (ESI) m/z C 24 H 21 NO 2 [M + H] + observed: 356.1629; C 24 H 21 NO 2 [M + Na] + requires: 356.1650. 9,9-Dimethyl-12-(5-nitrofuran-2-yl)-9,10-dihydro-8H-benzo[a]xanthen-11(12H)-one (4o) mp 194-196 C; IR (ATR) / cm -1 2965, 1644, 1595, 1538, 1497, 1391, 1372, 1353, 1286, 1222, 1171, 1016, 975, 950, 812, 743, 735, 665; 1 H NMR (400 MHz, CDCl 3 ) δ 8.06 (d, 1H, J 8.4 Hz), 7.85-7.81 (m, 2H), 7.58 (t, 1H, J 7.4 Hz), 7.47 (t, 1H, J 7.4 Hz), 7.32 (d, 1H, J 9.2 Hz), 7.12 (d, 1H, J 3.6 Hz), 6.46 (d, 1H, J 3.6 Hz), 5.92 (s, 1H), 2.68 (d, 1H, J 17.6 Hz), 2.62 (d, 1H, J 17.6 Hz), 2.41-2.33 (m, 2H), 1.17 (s, 3H), 1.12 (s, 3H); 13 C NMR (100 MHz, CDCl 3 ) δ 196.6, 166.4, 159.4, 147.9, 131.4, 131.0, 130.0, 128.8, 127.6, 125.4, 123.6, 117.4, 112.8, 112.6, 110.3, 109.1, 50.7, 41.4, 32.4, 29.4, 29.1, 27.2; HRMS (ESI) m/z C 23 H 19 NO 5 [M + Na] + observed: 412.1154; C 23 H 19 NO 5 [M + Na] + requires: 412.1161. References 1. Li, J.; Lu, L.; Su, W.; Tetrahedron Lett. 2010, 51, 2434. 2. Rama, V.; Kanagara, K.; Pitchumani, K.; Tetrahedron Lett. 2012, 53, 1018. 3. Zhang, Z.-H.; Zhang, P.; Peng, Y.; Yang, S. H.; Wang, H. J.; Deng, J.; J. Chem. Sci. 2010, 122, 427. 4. Mo, L.-P.; Chen, H.-L.; J. Chin. Chem. Soc. 2010, 57, 157. 5. Khazaei, A.; Zolfigol, M. A.; Moosavi-Zare, A. R.; Zare, A.; Khojasteh, M.; Asgari, Z.; Khakyzadeh, V.; Khalafi-Nezhad, A.; Catal. Commun. 2012, 20, 54. 6. Tabatabaeian, K.; Khorshidi, A.; Mamaghani, M.; Dadashi, A.; Jalali, M. K.; Can. J. Chem. 2011, 89, 623. 7. Shirini, F.; Khaligh, N. G.; Dyes Pigm. 2012, 95, 789. 8. Iniyavan, P.; Sarveswari, S.; Vijayakumar, V.; Res. Chem. Intermed. 2015, 41, 7413. 9. Naidu, K. R. M.; Krishna, B. S.; Kumar, M. A.; Arulselvan, P.; Khalivulla, S. I.; Lasekan, O.; Molecules 2012, 17, 7543.

Table S1. Electronic nuclear energy, entropy, and total energy of reagents, intermediates, and products of the Scheme 1, for structures in the gaseous phase and without intermolecular interactions Compound E elect / Hartree S / (cal mol -1 K -1 ) G total / Hartree 1 343.43350953 78.237 343.345551 5 343.77034961 78.577 343.668383 2 458.21069783 85.497 458.080157 6(RR)/6(SS) 802.00927345 119.064 801.751280 6(RS)/6(SR) 802.00608185 119.858 801.748682 7(RR)/7(SS) 802.19224398 122.395 801.923617 7(RS)/7(SR) 802.19600028 121.483 801.927014 7(RS)/7(SR) 802.18310871 123.758 801.915177 8 725.97601200 114.115 725.747697 9 725.97051987 113.723 725.742029 3 459.65702757 92.298 459.488427 10(RR)/10(SS) 1185.64222292 159.169 1185.219512 10(RS)/10(SR) 1185.64057052 159.534 1185.217637 11(RRR)/11(SSS) 1185.62683514 153.194 1185.200008 11(RRS)/11(SSR) 1185.63766615 159.205 1185.214516 11(RSR)/11(SRS) 1185.63038838 157.947 1185.206107 11(RSS)/11(SRR) 1185.62059066 159.179 1185.219516 12(RRR)/12(SSS) 1185.65473113 167.478 1185.237566 12(RRS)/12(SSR) 1185.61336051 153.972 1185.187313 12(RSR)/12(SRS) 1185.65037566 164.316 1185.231176 12(RSS)/12(SRR) 1185.65276349 165.508 1185.234639 4(R)/4(S) 1109.27718129 147.430 1108.892093 H 2 O 76.01074652 44.987 76.005366 H 3 O + 76.28933842 48.251 76.271703

Table S2. Electronic nuclear energy, entropy, and total energy of reagents, intermediates, and products of the Scheme 2, for structures in the gaseous phase and without intermolecular interactions Compound E elect / Hartree S / (cal mol -1 K -1 ) G total / Hartree 1 343.43350953 78.237 343.345551 5 343.77034961 78.577 343.668383 2 458.21069783 85.497 458.080157 13(RR)/13(SS) 801.98843491 120.340 801.731797 13(RS)/13(SR) 801.99019428 121.009 801.733947 14(RR)/14(SS) 802.19164214 121.946 801.923138 14(RS)/14(SR) 802.19814540 122.692 801.930406 15 725.98218290 113.930 725.754004 16 725.97065189 115.240 725.743349 3 459.65702757 92.298 459.488427 17(RR)/17(SS) 1185.64723838 159.904 1185.225088 17(RS)/17(SR) 1185.64211859 159.600 1185.219436 18(RRR)/18(SSS) 1185.62990388 154.791 1185.204187 18(RRS)/18(SSR) 1185.64211857 159.598 1185.219435 18(RSR)/18(SRS) 1185.63641958 158.312 1185.212540 18(RSS)/18(SRR) 1185.63937867 161.594 1185.217622 19(RRR)/19(SSS) 1185.65552026 164.707 1185.236694 19(RSS)/19(SSR) 1185.65460163 165.579 1185.236684 19(RSR)/19(SRS) 1185.65648070 167.509 1185.239495 19(RSS)/19(SRR) 1185.64922236 168.478 1185.232887 20(R)/20(S) 1109.27716783 149.395 1108.893327

Table S3. Changes in energy of each reaction step described on Scheme 1, based on data shown in Table S1, only one enantiomer is shown in each pair of ones Step Reaction E elect / (kcal mol -1 ) S / (cal mol -1 K -1 ) G total / (kcal mol -1 ) 1 1 5 36.55 2.92 35.45 2 5 + 2 6(RR) 17.71 45.01 1.72 2 5 + 2 6(RS) 15.71 44.22 0.09 3 6(RR) 7(RR) 60.00 0.07 58.99 3 6(RS) 7(RS) 55.23 0.64 62.65 4 7(RR) 8 45.87 39.97 60.10 4 7(RR) 9 42.43 39.58 56.55 4 7(RS) 8 51.61 38.61 65.40 4 7(RS) 9 48.16 38.22 61.84 5 8 + 3 10(RR) 5.76 47.24 10.42 5 8 + 3 10(RS) 4.73 46.88 11.60 5 9 + 3 10(RR) 9.21 46.85 6.87 5 9 + 3 10(RS) 8.17 46.49 8.04 6 10(RR) 11(RRR) 9.66 5.98 12.24 6 10(RR) 11(RRS) 2.86 0.04 3.13 6 10(RS) 11(RSS) 12.54 0.36 1.18 6 10(RS) 11(RSR) 6.39 1.59 7.24 7 11(RRR) 12(RRR) 17.50 14.28 23.57 7 11(RRS) 12(RRS) 15.25 5.23 17.07 7 11(RSR) 12(RSR) 12.54 6.37 15.73 7 11(RSS) 12(RSS) 20.19 6.33 9.49 8 12(RRR) 4(R) 55.35 28.20 46.29 8 12(RRS) 4(R) 29.39 41.71 14.76 8 12(RSR) 4(R) 52.62 31.37 42.28 8 12(RSS) 4(R) 54.12 30.17 44.45

Table S4. Changes in energy of each reaction step described on Scheme 2, based on data shown in Table S2 Step Reaction E elect / (kcal mol -1 ) S / (cal mol -1 K -1 ) G total / (kcal mol -1 ) 1 1 5 36.55 2.92 35.45 2 2 + 3 13(RR) 4.64 43.73 10.51 2 2 + 3 13(RS) 5.74 42.55 9.16 3 13(RR) 14(RR) 47.30 1.66 47.06 3 13(RS) 14(RS) 44.33 1.58 43.85 4 14(RR) 15 50.12 40.24 64.36 4 14(RR) 16 42.89 41.55 57.68 4 14(RS) 15 46.04 39.49 59.80 4 14(RS) 16 38.81 40.80 53.12 5 15 + 3 17(RR) 5.04 46.32 10.88 5 15 + 3 17(RS) 1.82 46.63 14.43 5 16 + 3 17(RR) 12.27 47.63 4.20 5 16 + 3 17(RS) 9.06 47.94 7.74 6 17(RR) 18(RRR) 10.88 5.11 13.12 6 17(RR) 18(RRS) 3.21 0.31 3.55 6 17(RS) 18(RSS) 1.72 1.99 1.14 6 17(RS) 18(RSR) 3.58 1.29 4.33 7 18(RRR) 19(RRR) 16.07 9.92 20.40 7 18(RRS) 19(RRS) 7.83 5.98 10.82 7 18(RSR) 19(RSR) 12.59 9.20 16.91 7 18(RSS) 19(RSS) 6.18 6.88 9.58 8 19(RRR) 20(R) 55.86 32.94 44.97 8 19(RRS) 20(R) 55.28 32.07 44.96 8 19(RSR) 20(R) 56.46 30.14 46.73 8 19(RSS) 20(R) 51.90 29.17 42.58

Table S5. Electronic (E elect ), entropy (S) and Gibbs free energy (G total ) of the optimized compounds at LC-ωPBE/6-311++G(d,p) level of theory Compound E elect / Hartree S / (cal mol -1 K -1 ) G total / Hartree 25 C 5 345.732635019 80.542 345.638653019 2 460.886681498 87.864 460.765671498 6 806.656781353 123.714 806.416850353 13 806.637386015 127.229 806.400126015 TS-1 806.640134897 123.978 806.405818897 TS-2 806.623670106 125.058 806.386925106 130 C 5 345.732635019 213.780 345.638653 2 460.886681498 263.830 460.765671 6 806.656781353 482.264 806.400831 13 806.637386015 483.614 806.416850 TS-1 806.640134897 479.662 806.386925 TS-2 806.623670106 480.059 806.400126 Coordinates of chemical species calculated at LC-ωPBE/6-311++G(d,p) level of theory and energetic data Cartesian coordinates of the structures calculated at LC-ωPBE/6-311++G(d,p) level of theory are given hereafter, and also the correspondent energetic data. The total Gibbs free energy (G total ) is the sum of the electronic energy (E elect ) with the thermal correction for the Gibbs free energy, which includes the zero point energy (ZPE) and depends on the temperature. This correction takes in account vibrational, translational and rotational motions in gas phase for the studied molecules. Structure 5 E elect = -345.732635019 Hartree G total at 25 C = -345.638653019 Hartree G total at 130 C = -345.638653 Hartree Cartesian coordinate C 0.098646 0.000000-0.003574 C 0.072244 0.000000 1.383362 C 1.248104 0.000000 2.137998 C 2.460933 0.000000 1.503005 C 2.505542 0.000000 0.092977 C 1.312170 0.000000-0.652918 C 3.702483 0.000000-0.640319 O 4.893949 0.000000-0.184525 H 3.678605 0.000000-1.729241

H 3.364991 0.000000 2.105660 H 1.196985 0.000000 3.220001 H -0.883646 0.000000 1.897043 H -0.825478 0.000000-0.568462 H 1.353156 0.000000-1.737615 H 4.954698 0.000000 0.784449 Structure 2 E elect = -460.886681498 Hartree G total at 25 C = -460.765671498 Hartree G total at 130 C = -460.765671Hartree Cartesian coordinate C -1.203792 0.000000-0.743898 C 0.010825 0.000000-0.021622 C 1.236926 0.000000-0.718828 C 1.209794 0.000000-2.133446 C 0.031231 0.000000-2.812827 C -1.193407 0.000000-2.106316 C 2.450691 0.000000 0.010479 C 2.445238 0.000000 1.371625 C 1.218172 0.000000 2.071799 C 0.036383 0.000000 1.396265 O -2.381926 0.000000-2.769078 H 0.023946 0.000000-3.899447 H 2.148936 0.000000-2.677591 H 3.388645 0.000000-0.536376 H 3.379135 0.000000 1.922736 H 1.221768 0.000000 3.156573 H -0.905425 0.000000 1.935620 H -2.152456 0.000000-0.219208 H -2.226963 0.000000-3.715971 Structure 6 E elect = -806.637386015 Hartree G total at 25 C = -806.400126015 Hartree G total at 130 C = -806.416850 Hartree Cartesian coordinate C -17.991785-0.055460 7.880906 C -17.211363 0.705758 8.738706 C -15.839751 0.779388 8.552793 C -15.245787 0.094479 7.506777 C -16.023251-0.661196 6.640896

C -17.391961-0.736467 6.826253 C -19.482665-0.123998 8.073136 O -20.195238 0.148847 6.894082 C -19.933264-1.567874 8.544856 C -19.453014-1.765543 9.949409 C -20.311428-1.440711 11.009784 C -21.670416-1.098250 10.722593 C -22.224666-1.172639 9.478803 C -21.404114-1.580409 8.419120 C -19.862138-1.522103 12.332031 C -18.575958-1.937647 12.593966 C -17.735686-2.273210 11.539164 C -18.163456-2.179463 10.223432 O -21.861793-1.948603 7.271395 H -23.285416-1.007538 9.324658 H -22.309250-0.825406 11.558847 H -20.535492-1.268813 13.144391 H -18.223121-2.012382 13.615648 H -16.728043-2.616883 11.745773 H -17.489531-2.436276 9.413823 H -19.503539-2.285991 7.844896 H -19.781930 0.570415 8.868330 H -17.999389-1.317322 6.137856 H -15.559962-1.189184 5.814960 H -14.173468 0.155347 7.357972 H -15.235267 1.380535 9.222632 H -17.676016 1.249329 9.555922 H -19.745384 0.846578 6.408347 H -22.822229-1.846648 7.195262 Structure 13 E elect = -806.656781353 Hartree G total at 25 C = -806.416850353 Hartree G total at 130 C = -806.400831Hartree Cartesian coordinate C -16.344571 1.086621 7.074601 C -14.968462 1.344457 7.212257 C -14.067873 1.168972 6.096266 C -14.566064 0.735028 4.916666 C -15.997072 0.466265 4.686818 C -16.852448 0.655478 5.891837 C -12.661363 1.436641 6.261933

C -12.186484 1.851119 7.451471 C -13.087194 2.021812 8.544420 C -14.423676 1.781482 8.437013 O -18.152750 0.439106 5.807138 H -16.315520 1.219459 3.946432 H -13.906014 0.577404 4.068031 H -12.005243 1.296557 5.409753 H -11.132491 2.056434 7.592357 H -12.687825 2.356019 9.496768 H -15.078702 1.920988 9.288793 H -17.011527 1.220134 7.917514 H -18.424687 0.108927 4.944314 C -16.034188-0.423942 1.566062 C -15.386079-0.491645 0.346055 C -14.178143-1.164289 0.240657 C -13.624573-1.767005 1.356767 C -14.269409-1.693053 2.582570 C -15.476967-1.018589 2.691865 C -16.202320-0.917719 4.016254 O -15.786890-1.845245 4.981409 H -17.275496-1.038212 3.806389 H -13.833241-2.168350 3.455230 H -12.686035-2.303819 1.275039 H -13.673495-1.226316-0.716823 H -15.830196-0.030135-0.528614 H -16.992842 0.085335 1.632418 H -15.937630-2.740278 4.662051 Structure TS1 E elect = -806.640134897 Hartree G total at 25 C = -806.405818897 Hartree G total at 130 C = -806.386925 Hartree Cartesian coordinate C -0.658116-0.403281 0.244671 C -0.341069-0.133524 1.586989 C 0.980655 0.211473 1.923999 C 1.958555 0.293892 0.912153 C 1.629356 0.028464-0.387631 C 0.312416-0.329351-0.719429 C 1.301693 0.430764 3.295130 C 0.380924 0.289403 4.284512 C -0.946781-0.062947 3.946250

C -1.333152-0.162857 2.619478 C -1.885849 2.065807 2.678076 O -2.398547 2.291565 3.850656 O -1.890408-0.234239 4.871127 C -2.679601 2.126208 1.468171 C -2.042470 2.505674 0.288553 C -2.781287 2.662391-0.870868 C -4.143271 2.418846-0.857822 C -4.780562 2.017123 0.312178 C -4.054840 1.873511 1.473193 H 0.656917 0.426756 5.325079 H 2.322438 0.697187 3.551495 H 2.976575 0.557234 1.179894 H 2.384775 0.080465-1.163109 H 0.065185-0.556842-1.750610 H -1.671378-0.689819-0.016951 H -2.326512-0.540334 2.401676 H -0.820310 2.273899 2.632256 H -4.567335 1.534561 2.370776 H -5.845620 1.817520 0.309855 H -4.721187 2.539642-1.767425 H -2.291743 2.976329-1.785163 H -0.974562 2.696729 0.286262 H -3.366246 2.290048 3.839235 H -1.545004-0.092664 5.759425 Structure TS2 E elect = -806.623670106 Hartree G total at 25 C = -806.386925106 Hartree G total at 130 C = -806.400126 Hartree Cartesian coordinate C 0.120259 0.115450-0.185653 C 0.122762-0.026765 1.197050 C 1.321235-0.060092 1.888177 C 2.517124 0.048488 1.199682 C 2.519981 0.189634-0.181876 C 1.326458 0.220145-0.874297 C -1.180440 0.208275-0.869642 O -1.318799 0.924069-1.962830 C -1.693687-1.719846-1.299623 C -0.735651-1.951158-2.296503 C -1.003878-1.651198-3.620088

C -2.322843-1.230859-3.970858 C -3.336911-1.171868-2.992678 C -3.048215-1.453308-1.694289 C -0.003759-1.764388-4.635353 C -0.297384-1.456256-5.919542 C -1.607116-1.023770-6.261992 C -2.587536-0.915446-5.326457 O -4.010539-1.338112-0.762616 H -1.513402-2.122506-0.305990 H 0.252401-2.296403-2.008536 H 0.987311-2.107883-4.356844 H 0.455425-1.542834-6.694088 H -1.826489-0.782703-7.296594 H -3.584029-0.593318-5.606509 H -4.351169-0.909790-3.269342 H -3.819281-1.870358 0.015865 H -2.053730 0.299414-0.228079 H 1.355191 0.313377-1.957851 H 3.458475 0.276308-0.716965 H 3.456503 0.026520 1.740494 H 1.320183-0.161170 2.967184 H -0.815519-0.092634 1.739857 H -0.475955 1.075616-2.409429

Table S6. Crystal data and refinement parameters of xanthenone 4e derivatives reported in this study Structural formula C 25 H 22 O 3 fw / (g mol -1 ) 370.43 Cryst. syst. monoclinic Space group C2/c Z / Z 8/1 T / K 298(2) Unit cell a / Å 26.011(5) b / Å 6.8970(10) c / Å 21.557(5) / degree 97.902(10) V / Å 3 3830.6(13) Calcd. density / (mg m -3 ) 1.285 Absorp. coeff. / mm -1 0.083 -Range / degree 3.06 to 26.39 Index ranges h 31 to 32 k 8 to 8 l 26 to 26 Data collected 7430 Unique reflections 3918 Unique reflections with I > 2 (I) 2820 Symmetry factor (R int ) 0.0224 Completeness to max / % 99.7 F (000) 1568 Parameters refined 256 Goodness-of-fit on F 2 1.050 R1 factor for I > 2 (I) 0.0497 wr2 factor for all data 0.1355 max/min / (eå -3 ) 0.233/ 0.231 CCDC deposit number 1002986

5 2 TS1 Imaginary wave number: 181i cm -1 TS2 Imaginary wave number: 321i cm -1 6 13 Figure S1. Optimized structures at LC-ωPBE/6-311++G(d,p) level of theory. Legend atoms: C (black), O (red) and H (grey).

Figure S2. Variation of Gibbs free energy (ΔG total ) in function of temperature for the studied steps at LC-ωPBE/6-311++G(d,p) level of theory.

Compound: 5 HOMO 1 E = 0.56518 Hartree HOMO E = 0.55492 Hartree LUMO E = 0.22307 Hartree LUMO + 1 E = 0.11112 Hartree Figure S3. Frontier orbitals of all species sketched in Scheme 3.

Compound: 2 HOMO 1 E = 0.34090 Hartree HOMO E = 0.31031 Hartree LUMO E = 0.02934 Hartree LUMO + 1 E = 0.03268 Hartree Figure S3. Frontier orbitals of all species sketched in Scheme 3 (cont.).

Compound: 6 HOMO 1 E = 0.47301 Hartree HOMO E = 0.47075 Hartree LUMO E = 0.18861 Hartree LUMO + 1 E = 0.08611 Hartree Figure S3. Frontier orbitals of all species sketched in Scheme 3 (cont.).

Compound: 13 HOMO 1 E = 0.47529 Hartree HOMO E = 0.46650 Hartree LUMO E = 0.19926 Hartree LUMO + 1 E = 0.09553 Hartree Figure S3. Frontier orbitals of all species sketched in Scheme 3 (cont.).

Compound: TS1 HOMO 1 E = 0.48191 Hartree HOMO E = 0.45144 Hartree LUMO E = 0.18082 Hartree LUMO + 1 E = 0.09809 Hartree Figure S3. Frontier orbitals of all species sketched in Scheme 3 (cont.).

Compound: TS2 HOMO 1 E = 0.48191 Hartree HOMO E = 0.45144 Hartree LUMO E = 0.18082 Hartree LUMO + 1 E = 0.09809 Hartree Figure S3. Frontier orbitals of all species sketched in Scheme 3 (cont.).

Figure S4. Gibbs free energy in function of intrinsic reaction coordinate for TS1 and TS2 at LC-ωPBE/6-311++G(d,p) level of theory. 7.97 7.95 7.67 7.66 7.64 7.35 7.33 7.30 7.28 7.26 7.23 7.13 7.12 7.10 7.00 6.98 6.96 5.70 2.44 2.23 2.19 2.17 2.13 1.00 0.86 4a 3.21 3.15 1.16 1.13 2.01 1.00 1.02 2.19 3.25 2.27 2.19 1.04 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 Figure S5. 1 H NMR spectrum (400 MHz, CDCl 3 ) of compound 4a.

197.1 164.3 148.2 145.3 132.0 131.9 129.3 128.9 128.9 128.7 127.5 126.7 125.3 124.1 118.2 117.5 114.7 78.0 77.7 77.4 51.3 41.8 35.2 32.6 29.8 27.5 4a 200 150 100 50 Figure S6. 13 C NMR spectrum (down) and DEPT 135 (up) (100 MHz, CDCl 3 ) of compound 4a. 8.04 8.01 7.82 7.53 7.50 7.41 7.41 7.39 5.81 2.59 2.38 2.38 2.30 2.28 2.19 1.77 1.13 0.94 4b 3.18 3.19 1.11 1.04 2.05 1.00 5.34 3.19 2.06 Figure S7. 1 H NMR spectrum (200 MHz, CDCl 3 ) of compound 4b. 5.0

196.7 164.6 151.8 147.7 146.2 131.5 130.9 129.5 129.3 128.6 127.3 125.2 123.5 123.0 117.0 115.9 112.9 77.6 77.0 76.4 50.7 41.3 34.8 32.2 29.2 27.0 4b 150 100 50 Figure S8. 13 C NMR spectrum (down) and DEPT 135 (up) (50 MHz, CDCl 3 ) of compound 4b. 7.95 7.92 7.80 7.78 7.76 7.46 7.46 7.45 7.44 7.43 7.42 7.41 7.40 7.39 7.37 7.37 7.34 7.33 7.32 7.31 7.31 7.30 7.29 7.26 6.88 6.86 6.86 6.84 5.71 2.57 2.34 2.30 2.27 2.23 1.12 0.97 4c 2.98 3.04 1.16 1.16 2.01 0.98 2.12 3.26 2.32 2.20 1.06 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 Figure S9. 1 H NMR spectrum (400 MHz, CDCl 3 ) of compound 4c.

196.9 163.9 162.4 159.9 147.7 140.5 140.5 131.5 131.2 129.9 129.8 129.0 128.4 127.0 124.9 123.5 117.3 117.0 115.1 114.9 114.0 77.3 77.0 76.7 50.8 41.3 33.9 32.2 29.3 27.0 4c 150 100 50 Figure S10. 13 C NMR spectrum (100 MHz, CDCl 3 ) of compound 4c. 129.9 129.8 128.9 128.4 127.0 124.9 123.4 117.0 115.1 114.9 50.8 41.3 33.9 29.2 27.0 4c 150 100 50 Figure S11. DEPT 135 spectrum (100 MHz, CDCl 3 ) of compound 4c.

7.93 7.89 7.81 7.78 7.77 7.76 7.45 7.42 7.39 7.35 7.30 7.26 7.16 7.12 5.69 2.57 2.37 2.29 2.28 2.19 1.59 1.13 0.97 4d 3.21 3.23 1.16 1.09 2.09 1.00 2.16 4.95 2.13 1.19 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 Figure S12. 1 H NMR spectrum (200 MHz, CDCl 3 ) of compound 4d. 196.8 164.0 147.6 143.2 131.8 131.4 131.1 129.7 129.0 128.4 128.3 127.1 125.0 123.4 117.0 113.7 77.6 77.0 76.4 50.8 41.3 34.1 32.2 29.2 27.0 4d 150 100 50 Figure S13. 13 C NMR spectrum (down) and DEPT 135 (up) (50 MHz, CDCl 3 ) of compound 4d.

9.28 9.28 7.79 7.78 7.77 7.76 7.75 7.69 7.67 7.40 7.40 7.38 7.38 7.36 7.36 7.35 7.32 7.26 7.02 7.02 7.01 7.00 6.63 6.63 6.62 6.62 6.62 6.61 5.77 2.61 2.44 2.40 2.37 2.33 1.15 0.99 4e 3.16 3.19 1.21 1.19 2.27 1.00 2.04 2.07 3.32 1.14 2.27 0.96 Figure S14. 1 H NMR spectrum (400 MHz, CDCl 3 ) of compound 4e. 5.0 0.0 200.6 166.8 152.8 147.8 132.7 131.5 131.1 129.1 128.7 128.2 127.9 127.5 125.2 123.4 121.5 118.8 117.4 116.5 113.9 77.3 77.0 76.7 50.2 41.5 32.3 29.0 28.0 27.2 4e 200 150 100 Figure S15. 13 C NMR spectrum (100 MHz, CDCl 3 ) of compound 4e. 50

129.1 128.7 128.2 127.9 127.5 125.2 123.4 121.5 118.8 116.5 50.2 41.5 29.0 28.0 27.2 4e 150 100 Figure S16. DEPT 135 spectrum (100 MHz, CDCl 3 ) of compound 4e. 50 9.21 8.03 7.99 7.93 7.89 7.51 7.47 7.43 7.00 6.96 6.92 6.74 6.71 6.65 6.46 6.43 6.42 5.49 3.34 2.73 2.64 2.61 2.50 2.37 2.35 2.29 2.18 2.10 1.06 0.90 4f 3.16 3.26 1.11 1.22 2.15 1.00 1.08 1.01 1.07 1.16 3.26 2.08 1.24 0.95 Figure S17. 1 H NMR spectrum (200 MHz, DMSO-d 6 ) of compound 4f. 5.0

195.8 163.6 157.1 147.1 146.2 131.0 130.7 128.9 128.5 127.0 124.9 123.2 118.9 117.3 117.1 115.1 113.2 50.1 40.7 40.3 39.8 39.4 39.0 38.6 38.2 33.9 31.8 28.7 26.2 4f 150 100 Figure S18. 13 C NMR spectrum (50 MHz, DMSO-d 6 ) of compound 4f. 50 128.9 128.5 127.0 124.9 123.2 118.9 117.1 115.1 113.2 50.1 50.0 40.2 33.9 28.7 26.2 4f Figure S19. DEPT 135 spectrum (50 MHz, DMSO-d 6 ) of compound 4f.

9.21 8.04 8.01 7.89 7.86 7.48 7.44 7.39 7.10 7.06 6.60 6.56 5.47 3.43 2.59 2.56 2.50 2.35 2.27 2.15 2.07 1.03 0.88 4g f 3.10 3.30 1.13 1.19 2.01 0.93 2.02 2.09 3.15 2.12 1.18 1.00 Figure S20. 1 H NMR spectrum (200 MHz, DMSO-d 6 ) of compound 4g. 5.0 195.9 163.3 155.5 147.0 135.4 131.0 130.6 129.0 128.7 128.4 126.9 124.8 123.3 117.7 117.1 114.8 113.5 50.1 40.7 40.3 39.8 39.4 39.0 38.6 38.2 33.1 31.8 28.8 26.1 4g 150 100 Figure S21. 13 C NMR spectrum (50 MHz, DMSO-d 6 ) of compound 4g. 50

128.9 128.7 128.4 126.9 124.7 123.2 117.0 114.9 114.8 50.1 40.1 33.1 28.7 26.1 4g 150 100 Figure S22. DEPT 135 spectrum (50 MHz, DMSO-d 6 ) of compound 4g. 50 7.99 7.96 7.79 7.77 7.74 7.45 7.41 7.37 7.35 7.30 7.26 7.09 7.05 5.68 2.57 2.37 2.29 2.28 2.19 1.12 0.98 4h 3.10 3.39 2.05 3.24 2.02 1.00 2.00 5.25 2.08 1.02 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 Figure S23. 1 H NMR spectrum (200 MHz, CDCl 3 ) of compound 4h.

196.9 163.8 147.6 141.7 135.8 131.4 128.8 128.3 126.9 126.4 124.9 123.5 117.0 114.0 77.6 77.0 76.4 50.8 41.3 34.1 32.2 29.2 27.1 15.6 4h 150 100 50 Figure S24. 13 C NMR spectrum (down) and DEPT 135 (up) (50 MHz, CDCl 3 ) of compound 4h. 8.00 7.96 7.79 7.77 7.76 7.75 7.72 7.44 7.43 7.40 7.39 7.35 7.33 7.29 7.26 7.25 7.22 6.72 6.68 5.65 3.68 2.56 2.36 2.28 2.26 2.18 1.60 1.11 0.97 0.00 4i 2.98 2.98 1.12 1.18 1.96 3.00 1.00 2.07 5.41 2.13 1.08 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0.0 Figure S25. 1 H NMR spectrum (200 MHz, CDCl 3 ) of compound 4i.

197.0 163.6 157.7 147.6 137.1 131.4 129.3 128.7 128.3 126.9 124.8 123.6 117.8 117.0 114.3 113.5 77.6 77.0 76.4 55.0 50.8 41.3 33.8 32.2 29.2 27.1 4i 150 100 50 Figure S26. 13 C NMR spectrum (down) and DEPT 135 (up) (50 MHz, CDCl 3 ) of compound 4i. 7.86 7.83 7.79 7.47 7.44 7.42 7.39 7.38 7.34 5.77 2.59 2.39 2.31 2.28 2.20 1.85 1.13 0.95 4j 2.92 3.04 1.09 1.25 2.03 1.00 7.21 3.17 Figure S27. 1 H NMR spectrum (200 MHz, CDCl 3 ) of compound 4j. 5.0

196.7 164.5 149.8 147.7 132.1 131.5 131.0 129.5 129.2 128.6 127.3 125.1 123.1 118.8 117.0 116.0 113.0 110.0 77.7 77.0 76.4 50.7 41.3 34.9 32.2 29.2 27.0 4j 150 100 50 Figure S28. 13 C NMR spectrum (down) and DEPT 135 (up) (50 MHz, CDCl 3 ) of compound 4j. 8.02 7.98 7.80 7.78 7.74 7.48 7.45 7.41 7.38 7.34 7.30 7.26 7.02 6.71 6.67 6.63 5.65 3.81 2.56 2.29 1.12 0.98 4k 3.05 3.32 2.11 1.99 3.26 1.00 2.00 0.93 3.21 2.04 1.00 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 Figure S29. 1 H NMR spectrum (200 MHz, CDCl 3 ) of compound 4k.

197.1 163.7 147.7 146.1 143.8 136.9 131.4 128.7 128.3 126.9 124.8 123.6 121.0 117.7 117.0 114.4 114.1 111.3 77.6 77.0 76.4 55.8 50.9 41.4 34.1 32.2 29.3 27.1 4k 150 100 50 Figure S30. 13 C NMR spectrum (down) and DEPT 135 (up) (50 MHz, CDCl 3 ) of compound 4k. 7.99 7.95 7.76 7.74 7.70 7.44 7.41 7.37 7.34 7.30 7.26 6.52 5.61 5.36 3.71 2.52 2.25 1.07 0.95 4l 3.20 3.36 2.10 1.99 5.90 1.00 1.01 2.07 3.10 2.06 1.00 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 Figure S31. 1 H NMR spectrum (200 MHz, CDCl 3 ) of compound 4l.

196.9 163.7 147.7 146.7 136.0 133.1 131.4 128.8 128.3 126.9 124.9 123.6 117.5 116.9 114.3 105.3 77.6 77.0 76.4 56.2 50.8 41.3 34.4 32.2 29.3 26.9 4l 150 100 50 Figure S32. 13 C NMR spectrum (down) and DEPT 135 (up) (50 MHz, CDCl 3 ) of compound 4l. 8.061 8.040 7.825 7.802 7.778 7.510 7.507 7.493 7.489 7.486 7.472 7.468 7.439 7.436 7.422 7.419 7.416 7.401 7.399 7.324 7.302 7.260 7.015 7.011 7.002 6.999 6.779 6.777 6.776 6.771 6.769 6.767 6.763 6.754 6.751 6.742 6.050 3.489 2.569 2.353 1.136 1.050 4m 3.01 3.01 2.02 1.98 1.00 2.00 1.00 1.05 1.04 1.05 2.11 1.03 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 Figure S33. 1 H NMR spectrum (400 MHz, CDCl 3 ) of compound 4m.

196.8 164.5 148.4 131.3 129.0 128.3 127.1 126.2 125.0 124.9 123.9 123.4 117.0 117.0 113.7 77.3 76.9 76.6 50.7 41.3 32.2 29.3 29.2 27.1 4m 150 100 Figure S34. 13 C NMR spectrum (100 MHz, CDCl 3 ) of compound 4m. 50 129.1 128.4 127.1 126.3 125.0 124.9 124.0 123.4 117.0 50.8 41.3 29.3 29.2 27.2 4m 150 100 Figure S35. DEPT 135 spectrum (100 MHz, CDCl 3 ) of compound 4m. 50

8.44 8.43 8.43 8.42 8.42 8.20 8.18 7.78 7.78 7.76 7.73 7.56 7.56 7.56 7.55 7.48 7.47 7.46 7.46 7.45 7.44 7.44 7.39 7.39 7.37 7.37 7.37 7.35 7.35 7.33 7.26 6.98 6.97 6.96 6.95 5.88 3.94 2.68 2.64 2.63 2.59 2.58 2.36 2.32 2.26 2.26 2.22 2.22 1.13 1.00 4n 3.28 3.38 1.22 1.16 1.17 1.29 1.00 1.10 2.42 1.20 2.02 2.47 1.21 1.10 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 Figure S36. 1 H NMR spectrum (400 MHz, CDCl 3 ) of compound 4n. 196.9 165.1 162.8 147.7 131.5 131.4 128.9 128.4 127.0 124.8 123.7 123.6 121.4 117.4 112.6 50.9 41.4 37.6 32.3 29.5 27.1 4n 150 100 Figure S37. 13 C NMR spectrum (100 MHz, CDCl 3 ) of compound 4n. 50

128.9 128.4 127.0 124.8 123.7 121.4 117.4 50.9 41.4 37.6 29.5 27.1 4n 150 100 Figure S38. DEPT 135 spectrum (100 MHz, CDCl 3 ) of compound 4n. 50 8.071 8.050 7.854 7.829 7.806 7.594 7.575 7.557 7.555 7.490 7.472 7.452 7.333 7.310 7.260 7.125 7.116 6.473 6.464 5.922 3.485 2.705 2.661 2.644 2.600 2.417 2.375 2.332 1.171 1.124 4o 3.03 3.06 2.18 1.03 1.12 1.00 1.02 0.94 1.04 1.07 1.07 2.13 1.05 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 Figure S39. 1 H NMR spectrum (400 MHz, CDCl 3 ) of compound 4o.

196.6 166.4 159.4 147.9 131.4 131.0 130.0 128.8 127.6 125.4 122.6 117.4 112.8 112.6 110.3 109.1 77.4 77.0 76.7 50.7 41.4 32.4 29.4 29.1 27.2 4o 150 100 Figure S40. 13 C NMR spectrum (100 MHz, CDCl 3 ) of compound 4o. 50 130.0 128.8 127.6 125.4 122.6 117.4 112.8 110.3 50.7 41.4 29.4 29.1 27.2 4o 150 100 Figure S41. DEPT 135 spectrum (100 MHz, CDCl 3 ) of compound 4o. 50