Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό ) Τμήμα T2: Κ. Κορδάς & Δ. Σαμψωνίδης

Σχετικά έγγραφα
Μάθημα 7 Διαγράμματα Feynman

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. Ασκήσεις Στοιχειωδών Σωματιδίων. 5 ο Εξάμηνο. Δ. Σαμψωνίδης Κ. Κορδάς Χ. Πετρίδου 20 Ιανουαρίου 2017

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. Ασκήσεις Στοιχειωδών Σωματιδίων

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. Ασκήσεις Στοιχειωδών Σωματιδίων

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. 5 ο Εξάμηνο Δεκέμβριος 2009

Μάθημα 2 Σχετικιστική μηχανική, μoνάδες, εκτίμηση μεγέθους ατόμων και πυρήνων, πυρήνες-συμβολισμοί

Ακήσεις #1 Μήκος κύματος σωματιδίων, χρόνος ζωής και ραδιοχρονολόγηση, ενεργός διατομή, μέγεθος πυρήνων

Μάθημα 2-3 Σχετικιστική μηχανική, μoνάδες, εκτίμηση μεγέθους ατόμων και πυρήνων, πυρήνες-συμβολισμοί

Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό ) Τμήμα T2: Κ. Κορδάς & Δ. Σαμψωνίδης

Μάθημα 4 Mέγεθος πυρήνα

Μάθημα 4 Mέγεθος πυρήνα

Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό ) Τμήμα T2: Κ. Κορδάς & Δ. Σαμψωνίδης

Μάθημα 2 α) QUIZ. Ενεργός διατομή β) Μέγεθος του πυρήνα γ) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας

Μάθημα 2 α) QUIZ. Ενεργός διατομή β) Μέγεθος του πυρήνα γ) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας

Ασκήσεις #1 επιστροφή 11/11/2011

Στοιχειώδη Σωματίδια. Διάλεξη 11η Πετρίδου Χαρά. Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

Μάθημα 2 Πείραμα Rutherford και μέγεθος πυρήνων, Πυρήνες-συμβολισμοί

Ασκήσεις #1 επιστροφή 11/11/2011

Στοιχειώδη Σωματίδια. Διάλεξη 24η Πετρίδου Χαρά. Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου

Ασκήσεις #1 επιστροφή 15/10/2012

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ

Στοιχειώδη Σωματίδια. Διάλεξη 3η Πετρίδου Χαρά

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

Μάθημα 2 α) QUIZ στην τάξη. Ενεργός διατομή β) Μέγεθος του πυρήνα γ) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας

Μάθημα 5 α) Μέγεθος του πυρήνα β) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας γ) Ασκήσεις σετ #2 - εκφωνήσεις

Μάθημα 3α Ενεργός διατομή και μέση ελεύθερη διαδρομή

Μάθημα 2 α) Μέγεθος του πυρήνα β) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας γ) Ασκήσεις σετ #2 - εκφωνήσεις

Σχετικιστική Κινηματική

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. Ασκήσεις Στοιχειωδών Σωματιδίων

Μάθημα 4 α) QUIZ στην τάξη β) Κοιλάδα β-σταθερότητας γ) Άλφα διάσπαση δ) Σχάση και σύντηξη

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. 5 ο Εξάμηνο Δεκέμβριος 2009

Μάθημα 5 Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας

Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο Τμήμα T3: Χ. Πετρίδου. Μάθημα 9

Στοιχειώδη Σωματίδια. Διάλεξη 23η Πετρίδου Χαρά. Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου

Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου. Μάθημα 6β

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

Μάθημα 2 α) QUIZ στην τάξη. Ενεργός διατομή β) Μέγεθος του πυρήνα γ) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας

Ασκήσεις στην Φυσική Στοιχειωδών Σωματιδίων

Εισαγωγή στην Πυρηνική Φυσική και τα Στοιχειώδη Σωµάτια

Δ. Σαμψωνίδης & Κ.Κορδάς. Ανιχνευτές : Μάθημα 1α Ενεργός διατομή αλληεπίδρασης σωματιδίων, μέση ελεύθερη διαδρομή σωματιδίου

Ενεργός διατοµή Χρυσός Κανόνας του Fermi

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

Στοιχειώδη Σωματίδια. Διάλεξη 10η Πετρίδου Χαρά. Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου

Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου. Μάθημα 15

Μάθημα 4 α) Άλφα διάσπαση β) Σχάση και σύντηξη

Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Μάθημα 10: Διαγράμματα Feynman. Λέκτορας Κώστας Κορδάς

Μάθημα 2 α) Μέγεθος του πυρήνα β) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας γ) Ασκήσεις σετ #2 - εκφωνήσεις

Ο Πυρήνας του Ατόμου


Φερμιόνια & Μποζόνια

Στοιχειώδη Σωματίδια. Διάλεξη 2η Πετρίδου Χαρά

Μάθημα 5 - Πυρηνική 1) Ειδη διασπάσεων και Νόμος ραδιενεργών διασπάσεων 2) αλφα, 3) βητα, 4) γαμμα

Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό ) Τμήμα T3: Κ. Κορδάς & Σ. Ε. Τζαμαρίας. Μάθημα 7 α-διάσπαση

ΚΕΝΤΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ Ε ΟΥΑΡ ΟΥ ΛΑΓΑΝΑ Ph.D. Λεωφ. Κηφισίας 56, Αµπελόκηποι, Αθήνα Τηλ.: ,

Το Μποζόνιο Higgs. Το σωματίδιο Higgs σύμφωνα με το Καθιερωμένο Πρότυπο

Yukawa: στην προσπάθεια να εξηγήσει τις δυνάμεις μεταξύ n-p στον πυρήνα

Μάθημα 2c Ενεργός διατομή, μέση ελεύθερη διαδρομή και ρυθμός διασπάσεων

Μάθημα 15 β-διάσπαση B' μέρος (διατήρηση σπίν, επιτρεπτές και απαγορευμένες

Μάθημα 1 α) Ύλη, τρόπος διαβάσματος και εξέτασης β) Εισαγωγή στο αντικείμενο γ) Πείραμα Rutherford, μονάδες, χρόνος ζωής ενεργός διατομή και ορισμοί

Σύγχρονη Φυσική : Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων 10/05/16

Μάθημα 7 α) QUIZ β-διάσπαση β) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό γ) Πυρηνικό μοντέλο των φλοιών

Μάθηµα 2 Πείραµα Rutherford και µέγεθος πυρήνων, Πυρήνες-συµβολισµοί

Στοιχειώδη Σωματίδια. Διάλεξη 21η Πετρίδου Χαρά. Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου

Σύγχρονη Φυσική : Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων 11/05/15

β διάσπαση II Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου. Μάθημα 7

Μάθημα 5 α) QUIZ στην τάξη β) Σχάση και σύντηξη γ) Πρώτο σετ ασκήσεων δ) β-διάσπαση (μέρος Α')

Σύγχρονη Φυσική : Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων 18/04/16

Λ p + π + + Όλα τα κουάρκ και όλα τα λεπτόνια έχουν ασθενείς αλληλεπιδράσεις Τα νετρίνα έχουν ΜΟΝΟ ασθενείς αλληλεπιδράσεις

Στοιχειώδη Σωματίδια. Διάλεξη 21η Πετρίδου Χαρά. Τμήμα Τ3: Χ. Πετρίδου

Μάθημα 1 α) Ύλη, τρόπος διαβάσματος και εξέτασης β) Εισαγωγή στο αντικείμενο γ) Πείραμα Rutherford, μονάδες, χρόνος ζωής ενεργός διατομή και ορισμοί

Μάθημα 5 α) β-διάσπαση β) Ασκήσεις

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

ΛΕΠΤΟΝΙΑ ΗΜ ΚΑΙ ΑΣΘΕΝΕΙΣ ΑΛΛΗΛΕΠΙΔΡΑΣΕΙΣ ΔΙΑΓΡΑΜΜΑΤΑ FEYNMAN ΔΙΑΣΠΑΣΗ ΜΙΟΝΙΟΥ

Μάθημα 7 α) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό β) Πυρηνικό μοντέλο των φλοιών

Μάθημα 12 α-διάσπαση

Σύγχρονη Φυσική 1, Διάλεξη 10, Τμήμα Φυσικής, Παν/μιο Ιωαννίνων. Ορμή και Ενέργεια στην Ειδική Θεωρία της Σχετικότητας

Στοιχειώδη σωμάτια. Τα σωμάτια ύλης

Πυρηνική δύναμη Μεσόνια και θεωρία Yukawa Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής

Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Μάθημα 7: Οπτικό θεώρημα, συντονισμοί, παραγωγή σωματιδίων σε υψηλές ενέργειες

Προλεγόµενα. Σπύρος Ευστ. Τζαµαρίας

Πυρηνική και Στοιχειώδη Ι (5ου εξαμήνου) Eπανάληψη μέσω ασκήσεων #1 μέγεθος πυρήνα, ενέργεια σύνδεσης, η μάζα ως μορφή ενέργειας

Μάθημα 3 α) QUIZ στην τάξη. Μέγεθος πυρήνα από μιονικά άτομα β) Μοντέλο σταγόνας: Hμιεμπειρικός τύπος Weitzecker Κοιλάδα β-σταθερότητας

ΦΥΣΙΚΗΣ ΣΤΟΙΧΕΙΩΔΩΝ ΣΩΜΑΤΙΔΙΩΝ ΙΙ. ΜΑΘΗΜΑ 4ο

Δ. Σαμψωνίδης & Κ.Κορδάς. Ανιχνευτές : Μάθημα 1 Ενεργός διατομή αλληεπίδρασης σωματιδίων, μέση ελεύθερη διαδρομή σωματιδίου

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ. Ισχυρές Αλληλεπιδράσεις Γκλουόνια και Χρώμα Κβαντική Χρωμοδυναμική Ασυμπτωτική Ελευθερία

Θέµατα Φυσικής Γενικής Παιδείας Γ Λυκείου 2000

Μάθημα 6 α) β-διάσπαση β) Χαρακτηριστικά πυρήνων, πέρα από μέγεθος και μάζα

Θέµατα Φυσικής Γενικής Παιδείας Γ Λυκείου 2000

α) Θα χρησιμοποιήσουμε το μοντέλο του Bohr καθώς για την ενέργεια δίνει καλά αποτελέσματα:

Διάλεξη 1: Εισαγωγή, Ατομικός Πυρήνας

Νουκλεόνια και ισχυρή αλληλεπίδραση

Q2-1. Πού βρίσκεται το νετρίνο; (10 μονάδες) Theory. Μέρος A. Η Φυσική του Ανιχνευτή ATLAS (4.0 μονάδες) Greek (Greece)

γ - διάσπαση Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

Το Καθιερωμένο Πρότυπο. (Standard Model)

Πρότυπο Αδρονίων µε Στατικά κουάρκ ΙΙ

Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου. Μάθημα 8

Transcript:

Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2017-18) Τμήμα T2: Κ. Κορδάς & Δ. Σαμψωνίδης Μάθημα 25-26 Διαγράμματα Feynman, Μποζονικός διαδότης, σταθερά σύζευξης, υπολογισμός και σύγκριση ενεργών διατομών και ρυθμών διάσπασης Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Πυρηνική & Στοιχειώδη, Αριστοτέλειο Παν. Θ/νίκης, 9-10 Ιανουαρίου 2018

1. Κουάρκ και λεπτόνια υπενθύμιση Σε μια οποιασήποτε αντίδραση μεταξύ σωματιδίων: εκτός από την ενέργεια, στροφορμή, φορτίο, τη συμμετρία των κυματοσυναρτήσεων (για ταυτόσημα σωματίδια), και τη διατήρηση ή την παραβίαση της πάριτυ, ελέγχουμε και τη διατήρηση νέων κβαντικών αριθμών (βαρυονικού και λεπτονικών) Στοιχειώδη - Διαγράμματα Feynman 2

3 Κουάρκ Κουάρκ και Λεπτόνια Φορτίο (Q) Βαρυονικός Αριθμός (Β) Αντίστοιος Αριθμός γεύσης u c t d s b +2/3 +1/3 +1-1/3 +1/3-1 Λεπτονικός Αριθμός = 0 γιά όλα τα κουάρκ Λεπτόνια Φορτίο (Q) Βαρυονικός Αριθμός (Β) Αντίστοιος Λεπτονικός Αριθμός ν e ν μ ν τ e - μ - τ - 0 0 +1-1 0 +1

4 Κουάρκ Μπορούν να συμμετέχουν σε όλες τις αλλήλεπιδράσεις (Iσχυρές, Aσθενείς και ΗλεκτροΜαγνητικές) Κβαντικοί Αριθμοί των κουάρκ και των αντικουάρκ

Λεπτόνια ΔΕΝ συμμετέχουν στις Ισχυρές αλλήλεπιδράσεις ( αισθάνονται μόνο τις Ασθενείς και ΗλεκτροΜαγνητικές) Λεπτονικός Αριθμός Κάθε οικογένεια λεπτονίων ΔΙΑΤΗΡΕΙ τον αντίστοιχο Λεπτονικό Αριθμό Ο Λεπτονικός αριθμός ΔΙΑΤΗΡΕΙΤΑΙ ΠΑΝΤΑ Στοιχειώδη - Διαγράμματα Feynman 5

6 Σωματίδια που παρατηρούμε στη φύση Λεπτόνια σημειακά δεν έχουν δομή Κάθε οικογένεια έχει τον δικό της Λεπτονικό αριθμό Αδρόνια Φτιαγμένα από κουάρκ (τα κουάρκ δεν τα βλέπουμε ελεύθερα μόνο μέσα σε αδρόνια) Βαρυόνια συνδυασμοί 3 κουάρκ π.χ, p=uud, n=udd Έχουν Bαρυονικό αριθμό B=1 Μεσόνια συνδυασμοί κουάρκ με αντι-κουάρκ π.χ. π + =ud, D - =cd, π 0 = uu και dd Έχουν Bαρυονικό αριθμό B=0

2. Αλληλεπιδράσεις σωματιδίων με ανταλλαγή διαμεσολαβητή : εικόνα Yukawa και εμβέλεια δύναμης Διαγράμματα Feynman Στοιχειώδη - Διαγράμματα Feynman 7

8 Περιγραφή σε βασικό επίπεδο - Διαγράμματα Feynman Έχουμε μιά πιό βασική ερμηνεία του συμβαίνει στις αντιδράσεις και διασπάσεις που βλέπουμε στη φύση Αλληλεπιδασεις μέσω μποζονίων διαδοτών των διαφόρων δυνάμεων ΗΜ : γ Ασθενείς : W+, W -, Z 0 Iσχυρές: g και Αναπαράσταση με διαγράμματα Feynman

Διαγράμματα Feynman Βασικοί κανόνες σε κάθε κόμβο: Ε, p διατηρείται Q διατηρείται Σπιν διατηρείται Βαρυονικός Αριθμός Λεπτονικός Αριθμός Συμβολισμοί πάνω στο διάγραμμα: Φερμιόνια: θετικός χρόνος anti-φερμιόνια: αρνητικός χρόνος π.χ., το αντι-α έρχεται από αντίθετη κατεύθυνση και εξαϋλώνεται με το Β. Όμως το αντι-α συμβολίζεται να κινείται προς το Χώρος (s) παρελθόν Μποζόνια Χρόνος (t) Το σημείο σύζευξης (κόμβος) δηλώνει την ισχύ της σύζευξης Στοιχειώδη - Διαγράμματα Feynman 9

10 Διαγράμματα Feynman

11 Διαγράμματα Feynman

12 Διαγράμματα Feynman

13 Ηλεκτρομαγνητικές Αλληλεπιδράσεις

14 Ισχυρές Αλληλεπιδράσεις

15 Οι διαδότες των ασθενών δυνάμεων Ανταλλαγή W± => μεταβολή του φορτίου των κουάρκ ή λεπτονίων που συμμετέχουν : u d, e - ν e [ανταλλαγή W -, W + αντίστοιχα]-> φορτισμένα ασθενή ρεύματα u e W - ν e σκέδαση e p (e p n v e ) d u d(αντι) ν W + e e + παραγωγή W + και διάσπαση σε ν e e + Ανταλλαγή Ζ0 -> ουδέτερα ασθενή ρεύματα ν μ (αντι) Ζ e ν μ (αντι) e

16 Ασθενείς Αλληλεπιδράσεις

17 Ασθενείς Αλληλεπιδράσεις

18 Ασθενείς Αλληλεπιδράσεις

Άσκηση 6 Αυτές οι αντιδράσεις επιτρέπονται: α) Τι είδος είναι τα νετρίνα? β) Ποιά η σύσταση κουάρκ των αδρονίων, γ) Κάνετε τα διαγράμματα Feynman Στοιχειώδη - Διαγράμματα Feynman 19 ν p μ - n D 0 K - e + ν τ - π - ν

Άσκηση 6 - Λύση Αυτές οι αντιδράσεις επιτρέπονται: α) Τι είδος είναι τα νετρίνα? β) Ποιά η σύσταση κουάρκ των αδρονίων, γ) Κάνετε τα διαγράμματα Feynman Στοιχειώδη - Διαγράμματα Feynman 20

3. Τα διαγράμματα Feynman ως εργαλεία για τον υπολογισμό του χρόνου ζωής ενός σωματιδίου και της ενεργού διατομής μιας αλληλεπίδρασης σωματιδίων Στοιχειώδη - Διαγράμματα Feynman 21

3α. Υπενθύμιση: κινηματική και μονάδες Στοιχειώδη - Διαγράμματα Feynman 22

23 Σχετικιστική κινηματική: Σχετικιστική κινηματική E = mc 2 = η ενέργεια πού έχω επειδή ενέργεια μάζα απλά και μόνο έχω μάζα m c = ταχύτητα του φωτός Η μάζα είναι μια μορφή ενέργειας γενικά, με κινητική ενέργεια Κ, έχουμε : E =Κ m c 2 E=m γ c 2, όπου γ = 1 1 β p=m γ υ =m γ β c, ό π ου p= E 2 = pc 2 m c 2 2 Σημ είωση: μ ε c = 1, μ Χρήσιμα : β= pc E 2, και β= υ/c,με υ=ταχύτητα μ ορμή γράφου ε : E 2 =p 2 +m 2, κλπ. p και βγ= mc σω ατιδίου Όσον αφορά τις μονάδες: [E] = MeV, και από τους τύπους βλέπουμε ότι για τις μονάδες της ορμής έχουμε: [pc] = [E] [pc] = MeV [p] = MeV/c * Για τις μονάδες μάζας έχουμε: [Ε] = [mc 2 ] [mc 2 ] = MeV [m] = MeV/c 2

Μονάδες (1) c= 3 10 8 m/s μ ονάδα ταχύτητας 1 μ ονάδα ενέργειας ev =1.6 10 19 Cb V =1.6 10 19 Joule Συνήθως χρησιμοποιούμε το MeV (= 10 9 ev) Σταθερά του Plank = h = 6.626 x 10-3 4 J s ħ c=197 MeV fm, όπου ħ= h 2π μ ονάδα δράσης ενέργειας χρόνου 1 α= e 2 e2 [mks ]= 4 πε 0 ħ c ħ c [cgs]= 1 137 α = η σταθερά λεπής υφής = 1/137 (αδιάστατο μέγεθος και άρα ίδια τιμή σε Στοιχειώδη - Διαγράμματα Feynman όλα τα συστήματα μονάδων) ħ c=197 MeV fm Προσοχή: αν γράφουμε στον τύπο της δύναμης Coulomb και της δυναμικής ενέργειας τον παράγοντα 1/4πε 0, σημαίνει ότι χρησιμοποιούμε το Διεθνές Σύστημα μονάδων (S.I = mks), οπότε το φορτίο e είναι σε Coulomb και: Θα χρησιμοποιούμε παντού: ev για ενέργεια (ή MeV στην πυρηνική), 1/4πε 0 = 1 σε όλους τους τύπους, και θα βάζουμε: e 2 =αħ c, όπου α=1/137 e 2 =4 π ε 0 α ħ c,όπου α=1/137 Αν όμως γράφουμε τον τύπο της δύναμης Coulomb και της αντίστοιχης δυναμικής ενέργειας έχοντας θέσει 1/4πε 0 = 1, αυτό σημαίνει ότι χρησιμοποιούμε το σύστημα μονάδων cgs, οπότε το φορτίο e είναι σε esu και: e 2 =αħ c, όπου α=1/137 24

Μονάδες (2) c= 3 10 8 m/s μ ονάδα ταχύτητας 1 μ ονάδα ενέργειας ev =1.6 10 19 Cb V =1.6 10 19 Joule Συνήθως χρησιμοποιούμε το MeV (= 10 9 ev) Σταθερά του Plank = h = 6.626 x 10-3 4 J s ħ c=197 MeV fm, όπου ħ= h 2π μ ονάδα δράσης ενέργειας χρόνου 1 α= e 2 e2 [mks ]= 4 πε 0 ħ c ħ c [cgs]= 1 137 α = η σταθερά λεπής υφής = 1/137 Θα χρησιμοποιούμε παντού: ev για ενέργεια (ή MeV στην πυρηνική), 1/4πε 0 = 1 σε όλους τους τύπους, και θα βάζουμε: e 2 =αħ c, όπου α=1/137 Μετράμε: Μάζα: MeV/c 2 (αφού Ε = mc 2 ) ħ c=197 MeV fm Ορμή: MeV/c (αφού p = mγβc) Χρόνο σε: 1/MeV (αφού η μονάδα δράσης = Ενέργεια * Xρόνος = 1) Μήκος σε: μονάδες χρόνου = 1/MeV (αφού η μονάδα ταχύτητας=1) 1 amu = 1/12 μάζας ουδέτρου ατόμου 12 C = 931.5 MeV/c 2 Mάζα ηλεκτρονίου = 0.511 MeV/c 2 Μάζα πρωτονίου = 938.3 MeV/c 2, Μάζα νετρονίου = 939.6 MeV/c 2 Στοιχειώδη - Διαγράμματα Feynman 25

Μονάδες Παραδείγματα (1) c= 3 10 8 m/s μ ονάδα ταχύτητας 1 ħ c=197 MeV fm, όπου ħ= h 2π μ ονάδα δράσης ενέργειας χρόνου 1 Παράδειγμα 1 (άσκηση 6 περίθαλση ηλεκτρονίων, εργαστήριο Ατομικής) Ας υποθέσουμε ότι υπολογίζουμε το μήκος κύματος λ που έχει ένα ηλεκτρόνιο (με φορτίο = e) που επιταχύνεται σε διαφορά δυναμικού ΔV = b Volts = b V, και ότι το ηλεκτρόνιο δεν είναι σχετικιστικό, οπότε η κινητική του ενέργεια είναι p 2 / 2m, όπου m είναι η μαζα του ηλεκτρονίου, οπότε m = 511 kev / c 2 = 0.511 MeV/c 2 Έχουμε λοιπόν για το μήκος κύματoς του ηλεκτρονίου, λ: λ= h p2, με p 2 m =q ΔV =e ΔV h λ= 2 me ΔV = 2 π ħ 2 me ΔV = 2 π ħ c 2 m c 2 e ΔV λ= 2 π ħ c 2 mc 2 e ΔV = 2 π 197 ΜeV fm 2 0.511 MeV e ΔV = Στοιχειώδη - Διαγράμματα Feynman 2 π 197 106 ev fm 2 0.511 10 6 ev e b V = λ= 2 π 197 106 ev fm 2 0.511 10 6 ev ev b = 1.225 10 6 fm b Σημείωση: Για να δηλώσουμε ότι το b είναι ο καθαρός αριθμός που δηλώνει πόσα Volts είναι η διαφορά δυναμικού, ΔV, γράφουμε: (πχ. αν ΔV=1 kv ΔV = 10 3 Volts στον τύπο βάζουμε b = 10 3 ), όπου το b είναικαθαρός αριθμός 2 π 197 10 6 ev fm 2 0.511 10 6 ev ev b Έτσι έχουμε το μήκος κύματος λ σε μέτρα, αφού 1 fm = 10-15 m λ= 1.225 106 fm b [Volts] 26

Μονάδες Παραδείγματα (2) c= 3 10 8 m/s μ ονάδα ταχύτητας 1 ħ c=197 MeV fm, όπου ħ= h 2π μ ονάδα δράσης ενέργειας χρόνου 1 Αν σε όλους τους υπολογισμούς βάζουμε ενέργειες σε MeV, και επίσης βάζουμε hbar =1 και c=1, τότε ό,τι και να βρούμε (μήκος, χρόνος, ορμή, κλπ.) θα το βρούμε σε MeV Και μετά πρέπει να το μετατρέψουμε σε χρόνο (sec), μήκος (m), κλπ. Παράδειγμα 2: Ας υποθέσουμε ότι υπολογίσαμε κάποιο μήκος κύματος λ, και έχοντας βάλει hbar=c=1 στους τύπους, βρήκαμε λ = 3*10 6 / ΜeV λ = 3*10 6 MeV -1 και θέλουμε να δώσουμε το λ σε μέτρα που είναι και οι μονάδες μηκους στο Διεθνές Σύστημα (S.I) μονάδων. * Γνωρίζοντας ότι hbar * c = 197 MeV * fm, και ότι έχουμε βάλει τόση ώρα παντού hbar=1 kai c=1, οπότε και hbar*c = 1, έχουμε ουσιαστικά χρησιμοποιήσει τη σχέση 197 MeV * fm = 1, οπότε 197 ΜeV = 1 fm -1, και 1 MeV -1 = 197 fm, οπότε: λ =3*10 6 MeV -1 = 3*10 6 * 197 fm = 591 * 10 6 * 10-15 m = 591 * 10-9 m λ = 591 nm Παράδειγμα 3: Aν είχαμε υπολογίσει κάποιoν χρόνο τ = 1 MeV -1 και θέλαμε να τον δώσουμε σε seconds, τότε: επειδή ξέρουμε ότι c= 3*10 8 m/s, και έχουμε βάλει c=1 3*10 8 m/s = 1 1 m = (1/3) * 10-8 s Οπότε, ξέροντας από το hbar*c=1 ότι: 1 MeV -1 = 197 fm = 197 * 10-15 m, έχουμε επίσης ότι: 1 MeV -1 = 197 * 10-15 *(1/3) * 10-8 s = 65.7 * 10-23 s ** οπότε τ = 1 MeV -1 τ = 65.7 * 10-23 s Στοιχειώδη - Διαγράμματα Feynman 27

Μονάδες Παραδείγματα (3) c= 3 10 8 m/s μ ονάδα ταχύτητας 1 ħ c=197 MeV fm, όπου ħ= h 2π μ ονάδα δράσης ενέργειας χρόνου 1 Αν σε όλους τους υπολογισμούς βάζουμε ενέργειες σε MeV, και επίσης βάζουμε hbar =1 και c=1, τότε ό,τι και να υπολογίζουμε (μήκος, χρόνος, ορμή, κλπ.) θα είναι σε MeV γιατί θα υπάρχουν αόρατοι παράγοντες hbar και c τα οποία τα έχουμε βάλει = 1 Στοιχειώδη - Διαγράμματα Feynman! Για να το μετρέψουμε στις κανονικές μονάδες μήκους, χρόνου, κλπ απλά πολλαπλασιάζουμε το αποτέλεσμα των MeV που βρήκαμε, με το σωστό συνσδυασμό hbar και c ώστε να φτιάξουμε τις σωστές μονάδες, και μετά αντικαθιστούμε hbar * c = 197 MeV * fm και c = 3*10 8 m/s Έτσι φτάνουμε πιό γρήγορα στo αποτέλεσμα: Παράδειγμα 2: Ας υποθέσουμε ότι υπολογίσαμε ένα μήκος κύματος λ = 3*10 6 MeV -1 και θέλουμε να δώσουμε το λ σε μέτρα, τότε: λ =3*10 6 MeV -1 = 3*10 6 MeV -1 * hbar c = 3*10 6 MeV -1 * 197 MeV * fm = 591 nm Παράδειγμα 3: Aν είχαμε υπολογίσει κάποιoν χρόνο τ = 1 MeV -1 και θέλαμε να τον δώσουμε σε seconds, τότε: τ = 1 MeV -1 = 1 MeV -1 * hbar c / c = 1 MeV -1 * 197 MeV * fm / (3*10 8 m/s) = = 65.7 * 10-23 s 28

29 Μονάδες Οι ταχύτητες που συναντάμε στη φυσική των σωματιδίων είναι κοντά στο c. c= 3 10 8 m/s μονάδα ταχύτητας 1 Οι στροφορμές, δράσεις, γενικά το γινόμενο xp ~ ħ ή Et ~ ħ ħ c=197 MeV fm,όπου: ħ= h 2π μονάδα δράσης ενέργειας χρόνου 1 Φυσικές διαστάσεις είναι το c και το ħ. Είναι βολικό ένα σύστημα μονάδων όπου c = ħ =1 Μ=Ε/c 2 [E], L=ħc/E [E - 1 ] T= ħ/e [E - 1 ], α= e2 4π ħ c = 1 137

30 Μονάδες Quantity N.U. Conv. Factor to SI E GeV 1GeV = 1.6 10-1 9 J P GeV M GeV 1kg = 5.61 10 2 6 GeV length 1/GeV 1m = 5.07 10 1 5 GeV - 1 time 1/GeV-1 1sec = 1.52 10 2 4 GeV - 1 J Q dimensionless dimensionless

31 Μονάδες Αυτό μας επιτρέπει Να εκφράζουμε όλα τα φυσικά μεγέθη σε μονάδες ενέργειας: απόσταση είναι [Ε] -1. Ορμή είναι [Ε]. Κοκ. Τα φυσικά μεγέθη να εκφράζονται σε λογικές μονάδες Φυσική μονάδα μήκους: μήκος κύματος Compton: ħ /m 0 c =1 Φυσική μονάδα χρόνου: τ = ħ /m 0 c 2 =1 Φυσική μονάδα ενέργειας: Ε = m 0 c 2 =1 Μάζα πρωτονίου: 10-24 g Ενέργεια ηρεμίας 1 GeV. Άρα, αν πάρουμε ως ενέργεια αναφοράς το 1 GeV, όλα τα φυσικά μεγέθη είναι ποσότητες κοντά στη μονάδα. Ηλεκτρόνιο: 2000 φορές πιο ελαφρύ Ενέργεια ηρεμίας 0.5 MeV

3β. Ενεργός διατομή, χρόνος ζωής, ρυθμός αντίδρασης από χρυσό κανόνα Fermi Στοιχειώδη - Διαγράμματα Feynman 32

Χρηστικός ορισμός ενεργού διατομής, σ Στοιχειώδη - Διαγράμματα Feynman 33 Αν έχουμε την αντίδραση α + Χ οτιδήποτε σ Πιθανότητα αλληλεπίδρασης ενός βλήματος με ένα στόχο= επιφάνεια που φωτίζουν τα βλήματα Αν μια δέσμη σωματιδίων/βλημάτων α, που έχει ροή Φ σωματίδια ανά μονάδα επιφάνειας και ανά μονάδα χρόνου, συγκρούεται με ΕΝΑ σωματίδιο τύπου Χ, τότε: αν τα εισερχόμενα φωτίζουν μια επιφάνεια Α γύρω από το στόχο, σε χρόνο dt θα έχουν περάσει Φ*Α*dt σωματίδια γύρω από το στόχο. και επειδή το καθένα από αυτά τα βλήματα έχει πιθανότητα σ/α να αλληλεπιδράσει με το στόχο, τότε σε χρόνο dt, ο αριθμός βλημάτων που θα αλληλεπιδράσουν με το στόχο είναι Φ*Α*dt*(σ/Α) = Φ*σ*dt Αριθμός αλληλεπιδράσεων ανά μονάδα χρόνου = ρυθμός αλληλεπιδράσεων ( R ) = = σ * Φ οπότε μπορούμε χρηστικά να ορίσουμε την ενεργό διατομή, σ, ως τη σταθερά αναλογίας (με μονάδες επιφάνειας) μεταξύ του ρυθμού αλληλεπιδράσεων dn/dt και της ροής βλημάτων Φ. Οπότε η ενεργός διατομή, σ, ισούται με το ρυθμό αλληλεπιδράσεων ανά μονάδα ροής των προσπιπττων σωματιδίων και ανά σωματίδίο του στόχου φυσικά η ενεργός διατομή έχει μονάδες επιφάνειας

34 Χρόνος ζωής (τ) και πλάτος (Γ) σωματίου Πεπερασμένος χρόνος ζωής σημαίνει αβεβαιότητα στην τιμή της ενέργειας (μάζας) ενός σωματιδίου αρχής της αβεβαιότητας ΔΕ Δt=ħ, ħ όπου ΔΕ=(Δm)c 2, και Δt=τ τ= Δm c = ħ 2 Γ Η διασπορά στην κατανομή της μάζας είναι το πλάτος Γ του σωματιδίου και είναι μέτρηση του χρόνου ζωής τ Αν βάλουμε hbar = 1 στον αριθμητή, τότε ο τύπος τ = hbar / Γ, δίνει τ = 1 / Γ, οπότε ο χρόνος ζωής τ θα βγεί σε μονάδες 1/GeV. Για να δώσω το χρόνο σε sec, μπορώ μετά να το μετατρέψω σε δεπτερόλεπτα ή λεπτά ή ώρες... Για σωματίδια που διασπώνται με τις ισχυρές αλληλεπιδράσεις, τ ~ 10-2 3 s είναι περίπου όσο χρόνο χρειάζεται το φως για να διαπεράσει ένα αδρόνιο (διάμετρος ~1fm ~ 10-1 5 m). Προφανώς και δεν μπορεί να μετρηθεί μια τροχιά ενός σωματίου με χρόνο ζωής 10-2 3 s Οπότε, μετρώντας τα προϊόντα της διάσπασης και με την αρχη διατήρησης ενέργεια και ορμής, κατασκευάζουμε τη μάζα (ενέργεια) του διασπαζόμενου σωματιδίου, η οποία έχει μια κατανομή κι από εκεί μπορούμε να βρούμε το Γ 1

Ρυθμός διασπάσεων ή αλληλεπιδράσεων και σχέση με εύρος (Γ) σωματίου ή την ενεργό διατομή αλληλεπίδρασης (σ) Διασπάσεις: 1/τ = 1 διάσπαση ανά έναν χρόνο ζωής = αριθμός διασπάσεων ανά μονάδα χρόνου = ρυθμός διασπάσεων. Επειδή με hbar=1 γράφω 1/τ = Γ, λέω ότι ο ρυθμός διάσπασης είναι ανάλογος του Γ. Σκεδάσεις: Ρυθμός αλληλεπιδράσεων = σ * Φ, όπου Φ η ροή των βλημάτων (αριθμός βλημάτων ανά μονάδα χρόνου και επιφάνειας) Έτσι: α) Στις συγκρούσεις έχουμε ότι ο ρυθμός αλληλεπιδράσεων είναι ανάλογες της ενεργού διατομής, σ. Οπότε αν ξέρουμε το σ, βρίσκουμε το ρυθμό αλληλεπιδράσεων. β) Στις διασπάσεις έχουμε ότι ο ρυθμός αλληλεπιδράσεων είναι ανάλογος του εύρους, Γ. Οπότε αν ξέρουμε το Γ μπορούμε να βρούμε το ρυθμό διασπάσεων, δηλαλή το χρόνο ζωής, τ. Στοιχειώδη - Διαγράμματα Feynman 35

36 Υπολογισμός τάξης μεγέθους ενεργών διατομών (σ) και χρόνων ζωής (τ) με χρήση στοιχείων από το χρυσό κανόνα Fermi Χρυσός Κανόνας του Fermi: Ρυθμός αντίδρασης (δηλ. διάσπασης ή σύγκρουσης) = Στοιχείο Πίνακα 2 * (πυκνότητα καταστάσεων στο χώρο των φάσεων) = Μatrix Element 2 * (συνάρτηση της διαθέσιμης ενέργειας, E, για τα προϊόντα της αντίδρασης) => Ρυθμός αντίδρασης ~ Μ 2 * ρ(ε) *** Αν δεν υπάρχει αρκετή διαθέσιμη ενέργεια (δηλ. το Q της αντίδρασης είναι <0), τότε ρ(ε) = 0 και έτσι Ρυθμός =0, δηλ. ΔΕΝ γίνεται η αντίδραση, όπως λέμε και από απλή διατήρηση ενέργειας! Διασπάσεις: Γ ~ (Matrix Element) 2 * (Παράγοντας Χώρου Φάσεων) Σκεδάσεις: σ ~ (Matrix Element) 2 * (Παράγοντας Χώρου Φάσεων) Ο κανόνας του Fermi μας λέει ότι όταν το Q>0 η αντίδραση γίνεται, και μάλιστα ο παράγοντας χώρου φάσεων θέλει το Γ ή το σ να μεγαλώνει με το Q Θα δούμε τώρα κάποια συστατικά του Matrix Element, και μετά για ρ(ε) θα βάζουμε τη σωστή δύναμη του E ώστε διαστατικά να βρίσκουμε σωστά το σ ή το Γ

3γ. Pυθμός αντίδρασης, Στοιχείο Πίνακα, σταθερές σύζευξης στα διαγράμματα Feynman, και σύγκριση ενεργών διατομών και χρόνων ζωής για διάφορες αντιδράσεις Στοιχειώδη - Διαγράμματα Feynman 37

Δύο βασικά στοιχεία στο Στοιχείο Πίνακα, Μ: η ισχύς σύζευξης και ο μποζονικός διαδότης e- e- e- P 1 g 1 P 2 q, m g 2 γ e- Μεταφορά Ενέργειας & ορμής (τετραορμής): q=p 1 -P 2 όπου P 1 = τετρα-ορμή = {Ε,p x,p y,p z } του σωματιδίου #1, κλπ. q 2 = E 2 (p x 2 + p y 2 + p z 2 ) = E 2 p 2 Πλάτος σκέδασης f(q) ή Στοιχείο Πίνακα M: περιγράφει τη μετάβαση από την αρχική στην τελική κατάσταση g 1,g 2 η ισχύς της σύζευξης του διαδότη με τα σκεδαζόμενα σωμάτια. Εδώ: g 1 =g 2 =g q 2 - m 2 = πόσο μακρυά είναι η μάζα του διαδότη στην αλληλεπίδραση αυτή, από τη φυσιολογική τιμή της μάζας του διαδότη. (q=τετρα-ορμή, και m=μάζα του διαδότη) Στοιχειώδη - Διαγράμματα Feynman Μ=f ( q)= g g 1 2 q 2 m 2 38

39 Ρυθμός αλληλεπιδράσεων, στοιχείο πίνακα Μ, και σταθερά σύζευξης g Pυθμός αλληλεπιδράσεων: αριθμός μεταβάσεων από την αρχική στην τελική κατάσταση ανά μονάδα χρόνου. Ο ρυθμός εξαρτάται από το τετράγωνο του μέτρου του στοιχείου πίνακα Μ της μετάβασης: M 2 M=f ( q)= g 1 g 2 q 2 m 2 = ~ g2 M 2 q 2 m 2 g 2 q 2 m 2 2 Σκεδάσεις σωματιδίων: ο ρυθμός αλληλεπιδράσεων είναι ανάλογος της ενεργού διατομής (σ) της αλληλεπίδρασης Διασπάσεις σωματιδίου με μέσο χρόνο ζωής τ πλάτος Γ: ρυθμός διασπάσεων = 1/τ = Γ/ ħ = Γ (για hbar =1) θυμηθήτε : Γ τ =ħ τ = ħ Γ Οπότε: σ ~ M 2 ~ g 4 και Γ ~ M 2 ~ g 4

40 Ηλεκτρομαγνητικές Αλληλεπιδράσεις H σταθερά σύζευξης σε κάθε κόμβο των Feynman είναι α Σταθερά λεπτής υφής: α α= e 2 4π ε 0 ( ħ mc ) mc 2 = e2 4π ε 0 ħ c = 1 137 Θα χρησιμοποιούμε παντού: MeV για ενέργεια, 1/4πε 0 = 1 σε όλους τους τύπους, και θα βάζουμε: e 2 4 π ε 0 =e 2 =α ħ c, όπου α=1 /137 ħ c=197 MeV fm α= e 2 4π ε 0 ħ c =(με 4π ε 0 =1 και ħ c=1) a=e

41 Ηλεκτρομαγνητικές Αλληλεπιδράσεις Η ισχύς της αλληλεπίδρασης μεταξύ φορτισμένων σωματίων και φωτονίων είναι όσο το φορτίο του σωματιδίου. Για ηλεκτρόνιο = e: g = e ~ sqrt(α) : (η σταθερά της λεπτής υφής α) Σε κάθε κόμβο, ισχύς σύζευξης ~ α α Πιθανότητα σύζευξης ~ α Φωτοηλεκτρικό φαινόμενο : πλάτος της αλληλεπίδρασης ~ α => ενεργός διατομή: ~ α (1ης τάξης) Σκέδαση Coulomb: πλάτος της αλληλεπίδρασης ~ α => ενεργός διατομή: ~ α 2 (2ης τάξης) φωτοηλεκτρικό α α Σκέδαση Rutherford

Ηλεκτρομαγνητικές Αλληλεπιδράσεις Η ισχύς της αλληλεπίδρασης μεταξύ φορτισμένων σωματίων και φωτονίων είναι όσο το φορτίο του ηλεκτρονίου: g = e ~ sqrt(α) : (η σταθερά της λεπτής υφής α) Σε κάθε κόμβο, ισχύς σύζευξης ~ Πιθανότητα σύζευξης ~ α α Φωτοηλεκτρικό φαινόμενο : πλάτος της αλληλεπίδρασης ~ α => ενεργός διατομή: ~ α (1ης τάξης) φωτοηλεκτρικό α α Σκέδαση Coulomb: πλάτος της αλληλεπίδρασης ~ α => ενεργός διατομή: ~ α 2 (2ης τάξης) Στοιχειώδη - Διαγράμματα Feynman α Σκέδαση Rutherford 42

Άσκηση 7 Ποιά απ'τις 2 εκδοχές είναι η πιθανότερη να γίνει; Κατά πόσο σε σχέση με την άλλη; Στοιχειώδη - Διαγράμματα Feynman 43 Διαφορά στην πιθανότητα να συμβούν οι δύο αυτές εκδοχές: e- e- α α ενεργός διατομή σ ~ α 2 e e e e e+ α e+ e- e- γ e+ γ γ α α ενεργός διατομή σ ~ α 3 e e e e γ e+ Το πάνω είναι πιθανότερο (κατά 1/α = 137 πιθανότερο: κάθε εκπομπή φωτονίου κοστίζει έναν παράγοντα 1/α=137 μείωση στην πιθανότητα )

44 Οι διαδότες των ασθενών δυνάμεων Τα μποζόνια βαθμίδας (gauge bosons): W +, W -, Z 0 Με μάζες : W +, W - : 80 GeV/c 2, Z 0 : 90 GeV/c 2 Ηλεκτρομαγνητικές Δυνάμεις κόμβος (διάγραμμα Feynman) Ασθενείς Δυνάμεις κόμβος (διάγραμμα Feynman) γ(q) Σταθερά Σύζευξης α = e 2, W,Z (m,q) Σταθερά Σύζευξης a w = g 2, f (q )= α α q 2 f (q )= g2 q 2 m 2 Στοιχείο Πίνακα, Μ = Στοιχείο Πίνακα, Μ =

Ασθενείς Αλληλεπιδράσεις H σταθερά σύζευξης σε κάθε κόμβο είναι παρόμοια με του φωτονίου, αλλά ο όρος του διαδότη δίνει έναν τεράστιο παρονομαστή στο Matrix Element g 2 ) = f (q )= Για q 2 0: f (q g2 q 2 2 2 Μ W, Z Μ =G 10 5 GeV 2 W, Z Στην ενοποιημένη θεωρία των ηλεκτρομαγμητικών και των ασθενών δυνάμεων (την ηλεκτρασθενή θεωρία των Weinberg, Salam και Glasgow, 1968) προτάθηκε η σταθερά της σύζευξης (g) των W και Ζ με τα λεπτόνια και τα κουάρκ, να ειναι σχεδόν ίση με την ηλεκτρομαγητική σύζευξη του φωτονίου με ηλεκτρόνια (e). Οπότε g = sqrt(α weak ) = sqrt(α Η/Μ ) = sqrt(α) = e Η ασθενής σύζευξη εμφανίζεται με σταθερά G (τη σταθερά Fermi) που είναι μικρότερη από την e 2 του ηλεκτρομαγνητισμού κατά M 2 W,Z λόγω της μάζας των διαδοτών W και Ζ Γνωρίζοντας τη σταθερά του Fermi, G (από διάφορες μετρήσεις χρόνων ζωής με χρήση του χρυσού κανόνα του Fermi, π.χ., στο χρόνο ζωής του μιονίου), Περιμένουμε: Μ W, Z = g G = α G = α 90 GeV G Στοιχειώδη - Διαγράμματα Feynman όπως και βρέθηκε στο CERN το 1983! 45

Ασθενείς Αλληλεπιδράσεις Κουάρκς και λεπτόνια φέρουν ασθενές φορτίο. Τα νετρίνο έχουν μόνο ασθενές: ΔΕΝ έχουν ούτε ισχυρό, ούτε ηλεκτρομαγνητικό φορτίο Οι ασθενέις δυνάμεις είναι 10 3-10 5 φορές ασθενέστερες από τις ηλεκτρομαγνητικές μικρότερη πιθανότητα σύζευξης Οι μόνες που μπορούν να παραβιάζουν τις γεύσεις ΔC, ΔS 0 (αλλά μέχρι ΔC, ΔS = +-1. Μεγαλύτερη μεταβολή είναι απίθανη) Περιλαμβάνουν είτε μονο κουάρκς ή κουάρκς και λεπτόνια Παραδείγματα: διάσπαση νετρονίου, σκέδαση αντινετρίνο-πρωτονίου Σ - n + π - (τ 10-10 sec) ασθενής (ΔS=1) κάνει αυτό. Σ 0 Λ + γ (τ 10-19 sec) ηλεκτρομαγνητική Βλέπω γ, οπότε Η/Μ Στοιχειώδη - Διαγράμματα Feynman Βλέπω καθαρή δημιουργία νέας γεύσης κουάρκ: μόνο η ασθενής το 46

47 Χρόνος ζωής (τ) και πλάτος (Γ) σωματίου Πεπερασμένος χρόνος ζωής σημαίνει αβεβαιότητα στην τιμή της ενέργειας (μάζας) ενός σωματιδίου αρχής της αβεβαιότητας ΔΕ Δt=ħ, όπου ΔΕ=(Δm)c 2, και Δt=τ Η διασπορά στην κατανομή της μάζας είναι το πλάτος Γ του σωματιδίου και είναι μέτρηση του χρόνου ζωής τ τ= ħ Δm c 2 = ħ Γ 1 Για σωματίδια που διασπώνται με τις ισχυρές αλληλεπιδράσεις, τ ~ 10-2 3 s είναι περίπου όσο χρόνο χρειάζεται το φως για να διαπεράσει ένα αδρόνιο (διάμετρος ~1fm ~ 10-1 5 m). Προφανώς και δεν μπορεί να μετρηθεί μια τροχιά ενός σωματίου με χρόνο ζωής 10-2 3 s Οπότε, μετρώντας τα προϊόντα της διάσπασης και με την αρχη διατήρησης ενέργεια και ορμής, κατασκευάζουμε τη μάζα (ενέργεια) του διασπαζόμενου σωματιδίου, η οποία έχει μια κατανομή κι από εκεί μπορούμε να βρούμε το Γ

48 Χρόνος ζωής (τ), εύρος (Γ) σωματίου και σταθερές σύζευξης των διαφόρων αλληλεπιδράσεων Γ = 1/τ = 1 διάσπαση ανά έναν χρόνο ζωής = αριθμός διασπάσεων ανά μονάδα χρόνου = ρυθμός διασπάσεων: 1 τ =Γ ~ a2 Άρα, όπως και η ενεργός διατομή (που είναι μέτρο της πιθανότητας να γίνει μιά σκέδαση ή εξαύλωση), έτσι και το Γ είναι ανάλογο του α 2 (όπου α 2 = α 2 ή α W 2 ή α s 2 : ανάλογα αν η αλληλεπίδραση είναι ηλεκτρομαγνητική, ασθενής ή ισχυρή, αντίστοιχα)

Άσκηση 8 Συγκρίνετε τις σταθερές σύζευξης για τις εξής διασπάσεις Στοιχειώδη - Διαγράμματα Feynman 49 Σ0 Λ 0 + π 0 τ = 10-2 3 sec Σ0 -> Λ 0 + γ τ = 10-19 sec Σ- n + π - (τ 10-10 sec) => σημειώσεις στοιχειωδών, παράγραφο 1.8.

50 Άσκηση 8 λύση και Ισχυρές Αλληλεπιδράσεις Οι ισχυρές αλληλεπιδράσεις συμβαίνουν μεταξύ κουάρκ 1. Σ 0 Λ 0 + π 0 τ = ћ/γ 10-23 sec 2. Σ 0 -> Λ 0 + γ, τ = 10-19 sec ћ/τ = Γ ~ α 2 Γ 1 / Γ 2 = (α 1 / α 2 ) 2 τ 2 / τ 1 = (α 1 / α 2 ) 2 Από τους χρόνους ζωής καταλαβαίνω ότι α 1 = α stong = α s, και α 2 = α ηλεκτρομαγνητικό = α (α s / α) = ( 10-19 / 10-23 ) 1 / 2 100 Όπου : α s = g 2 /4πћc, g s s είναι το αντίστοιχο φορτίο για τις ισχυρές αλληλεπιδράσεις: χρώμα <=> ισχυρό φορτίο Κουάρκ : Red, Green, Blue (R, G, B) Αντικουάρκ: anti-red, anti-green, anti-blue : R(bar), G(bar), B(bar)

51 Άσκηση 9: σ(e+ e- μ+ μ-) Γράψτε την εξάρτηση της ενεργού διατομής από τη σταθερά σύζευξης και τη ενέργεια της σύγκρουσης στο κέντρο μάζας για την αλληλεπίδραση εξαΰλωσης e+ e- και δημιουργίας μ+ μ- : e+ e- γ μ+ μ- e- e- e+ α γ α σ(e+ e- μ+ μ-) ~ Μ 2 * ρ(ε) = (α/q 2 ) 2 * E cm k = (α/e cm 2) 2 * E cm k = α 2 * E cm -2 e+ Το α είναι αδιάστατο και το α 2 είναι από τους 2 κόμβους στο διάγραμμα Feynman. To q 2 = (P e- + P e+ ) 2 = (Ολική ενέργεια) 2 - (Ολική ορμή) 2 = E cm 2, γιατί η ολική ορμή είναι μηδέν στο σύστημα του κέντρου μάζας. Η δύναμη στην ενέργεια σύγκρουσης στο κέντρο μάζας, Εcm (που είναι η ενέργεια που είναι διαθέσιμη στα προϊόντα όταν θεωρούμε τις μάζες πολύ μικρές) είναι -2, γιατί: [Ενεργός Διατομή]= [Επιφάνεια] = [Ε] -2 Αφού E * t = hbar = 1, έχουμε ότι: [t] = 1 / [Ε] και αφού c = 1, έχουμει ότι: [Μήκος] = [Χρόνος] = 1 / [Ε]

52 Άσκηση 10: Γ ( τ- μ- ν ν) Γράψτε το είδος των νετρίνων, φτιάξτε το διάγραμμα Feynman, και βρείτε την εξάρτηση του ρυθμού διάσπασης Γ από τη σταθερά σύζευξης και τη διάσοπαση του ταυ σε μιόνο, αν θεωρήσετε τις μάζες των προϊόντων αμελητέες Γ( τ- μ- ν ν) ~ Μ 2 * ρ(ε) ~ (α w / M w 2) 2 * m τ 5 ~ G 2 * m τ 5 Το α είναι αδιάστατο,αλλά στις ασθενείς έρxεται μαζί με το M w 2 στον παρονομαστή στον όρο του διαδότη. Είναι α 2 από τους 2 κόμβους στο διάγραμμα Feynman. Το G είναι η σταθερά Fermi που έχει διαστάσεις [Ε] -2. Οποτε η δύναμη στη μάζα του ταυ(που είναι η ενέργεια που είναι διαθέσιμη στα προϊόντα όταν θεωρούμε τις μάζες τους πολύ μικρές) είναι 5, γιατί: [Εύρος σωματιδίου, Γ]= [Ε]

Άσκηση 11: Σύγκριση Γ ( τ- μ- ν ν) με Γ ( μ- e- ν ν) θεωρήσετε τις μάζες των προϊόντων αμελητέες Γ( τ- μ- ν ν) ~ Μ 2 * ρ(ε) ~ (α w / M w 2) 2 * m 5 τ ~ G 2 * m 5 τ Γ( μ- e- ν ν) ~ Μ 2 * ρ(ε) ~ (α w / M w 2) 2 * m μ 5 ~ G 2 * m μ 5 Οπότε η αναλογία των ευρών Γ, και άρα η αναλογία των ρυθμών διασπάσεων, είναι η αναλογία των μαζών εις την πέμπτη δύναμη. Στοιχειώδη - Διαγράμματα Feynman 53

54 Βασικά χαρακτηριστικά των δυνάμεων Ισχυρή Ασθενής Ηλεκτρομαγνητική Βαρυτική Σταθερά σύζευξης Τυπική ενεργός διατομή a s =0.1-1 G = G F =10-5 GeV -2 a= 1/137 KM 2 /ћc= 0.5x10-3 8 10 mb 10 pb 10-2 mb Τυπικός χρόνος ζωής (sec) 10-2 3 10-1 0 10-8 (στις ασθενείς υπάρχουν μεγάλες διαφοροποιήσεις στους χρόνους ζωής) 10-20 Ο χρόνος ζωής είναι ένδειξη για το ποιά αλληλεπίδραση είναι υπεύθυνη για τη διάσπαση, και τι α (σταθερά σύζευξης) έχει αυτή η αλληλεπίδραση. Να έχετε υπ' όψιν σας αυτές τις τάξεις μεγέθους.

55 Τέλος

56 Εκτός ύλης τα επόμενα:

57 Extras Έχοντας 4.5 GeV διαθέσιμη ενέργεια, ποιο είναι το βαρύτερο ισότοπο που μπορεί να κανείς να παράγει θεωρητικά; 1. 2 D 2. 3 He 3. 3 T Λύση Με 4.5 GeV διαθέσιμη ενέργεια μπορεί κανείς να παράγει βαρυόνια με ενέργεια μέχρι 2.25 GeV. Για να διατηρείτε ο βαρυονικός αριθμός θα πρέπει να παράγονται ο ίδιος αριθμός βαρυονίων και αντιβαρυονίων ταυτόχρονα. Άρα τελικά μόνο η μισή ενέργεια είναι διαθέσιμη για τν παραγωγή βαρυονίων. Από τα τρία ισότοπα μόνο το 2D έχει μάζα ηρεμίας μικρότερη των 2.5 GeV. Η σωστή απάντηση είναι (1)

58 Extras

59 Extras Σε μια σύγκρουση μεταξύ ενός ακίνητου πρωτονίου και κινούμενου πρωτονίου παράγεται σωματίδιο με μάζα ηρεμίας Μ επιπλέον των δύο πρωτονίων. Να βρεθεί η ελάχιστη ενέργεια που πρέπει να έχει το κινούμενο πρωτόνιο ώστε να είναι δυνατή αυτή η αντίδραση. Λύση: Στο ενεργειακό κατώφλι της αντίδρασης τα σωματίδια στο δεξί σκέλος παράγονται σε ηρεμία. Η ενέργεια και η ορμή του κινούμενου σωματιδίου είναι Εp pp αντίστοιχα. Η αναλλοίωτη μάζα του συστήματος στο κατώφλι είναι :

60 Extras Ένα σωματίδιο με μάζα ηρεμίας m και κινητική ενέργεια διπλάσια της μάζας ηρεμίας του συγκρούεται με ένα ακίνητο σωματίδιο ίσης μάζας. Τα δύο σωματίδια συνδυάζονται και παράγουν ένα νέο σωματίδιο. Να υπολογιστεί η μάζα ηρεμίας του νέου σωματιδίου. Λύση Έστω Μ η μάζα του νέου σωματιδίου. Το κινούμενο σωματίδιο έχει συνολική ενέργεια Ε=m+T=3m. Στο όριο όπου το σωμάτιο παράγεται σε ηρεμία και το τετράγωνο της αναλλοίωτης μάζας είναι S=(E+m) 2 -p 2 =M 2 Mε E 2 -p 2 =m 2, έχουμε Μ 2 =Ε 2 +2Εm+m 2 -p 2 =2Em+2m 2 =8m 2, M=2 2m